The GOGREEN survey

Michael Balogh GOGREEN and GCLASS Data Release Workshop August 24-28, 2020

GOGREEN/GCLASS Data Release and Workshop Agenda

Agenda

GOGREEN	Data Release: Pu	blic session		
EDT	PDT	CEST		
10:00-10:20	07:00-07:20	16:00-16:20	Summary of the GOGREEN survey	Michael Balogh, University of Waterloo
10:20-10:40	07:20-07:40	16:20-16:40	Summary of GCLASS	Adam Muzzin, York University
Published r	esults: Public s	ession		
10:40-11:00	07:40-08:00	16:40-17:00	Stellar mass functions and quenching rates	Remco van der Burg, ESO
11:00-11:20	08:00-08:20	17:00-17:20	The main sequence of star formation	Lyndsay Old, ESA
11:20-11:40	08:20-08:40	17:20-17:40	The ages of quiescent galaxies	Kristi Webb, University of Waterloo
11:40-12:00	08:40-09:00	17:40-18:00	Discussion	
12:00-12:30	09:00-09:30	18:00-18:30	BREAK	
Work in pro	ogress: Public s	ession		
12:30-12:50	09:30-09:50	18:30-18:50	HST imaging and Morphology	Jeffrey Chan, UC Riverside
12:50-13:10	09:50-10:10	18:50-19:10	The role of halo mass in quenching	Andrew Reeves, University of Waterloo
Data Releas	e: Public session	n		
13:10-13:30	10:10-10:30	19:10-19:30	Data Release contents	Michael Balogh, University of Waterloo
13:30-14:00	10:20-11:00	10:20-20:00	Discussion	

Meeting is being recorded and will be posted publicly

Feel free to put questions in the chat – they may be answered directly there or we can return to them during the discussion session

Tuesday, August 25, 2020

Work in progress (continued): Public sessio								
EDT	PDT	CEST						
10:00-10:20	07:00-07:20	16:00-16:20	Ch					
10:20-10:40	07:20-07:40	16:20-16:40	Tra					
10:40-11:00	07:40-08:00	16:40-17:00	Pre					
11:00-12:00	08:00-09:00	17:00-18:00	Dis					

n	
ister Dynamics	Andrea Biviano, Trieste
ansition galaxies	Karen McNab, University of Waterloo
edictions from simulations	Egidius Kukstas, LJMU
scussion	

The GOGREEN team

Michael Balogn, Waterloo (PI)	Michael Cooper, UC Irvine	Hernan IV
Kristi Webb. PhD	Gabriella De Lucia, Trieste	Julie Nant
Andrew Reeves. PhD	Ricardo Demarco, Concepcion	Allison No
Karen McNab, MSc	Alexis Finoguenov, Helsinki	Lyndsay C
Matthew Pereira Wilson	Ben Forrest, UCR	Irene Pint
Adam Muzzin, York	David Gilbank	Bianca Po
Gregory Rudnick. Kansas	Pascale Jablonka, EPFL	Heath Shi
Gillian Wilson, UC Riverside	Kristen Jones, Kansas	Remco va
M. Victoria Alonso, Cordoba	Egidius Kukstas, Liverpool JM	Benedetta
Andrea Biviano. Trieste	Joel Leja, Harvard CfA	Howard Y
Pierluigi Cerulo, Concepcion	Chris Lidman, ANU	Dennis Za
Jeffrey Chan. UC Riverside	Ian McCarthy, Liverpool JM	
Kevin Cooke, Kansas	Sean McGee, Birmingham	

Bob Abraham, Toronto; Richard Bower, Durham; Charlie Conroy, CfA Harvard; Warrick Couch, AAO; Erica Ellingson, Boulder; Henk Hoekstra, Leiden; Mark David Lacy, NRAO; Diego Garcia Lambas, Cordoba; Matt Owers, AAO; Laura Parker, McMaster; Alessandro Rettura, JPL; Ian Smail, Durham; Jason Surace, Caltech IPAC; Jeremy Tinker, NYU; Carlos Valotto, Cordoba; Tracy Webb, McGill; Andrew Wetzel, UC Davis; Jon Willis, Victoria

with help from:

Callum Bellhouse, INAF/Padova; Kevin Boak, Waterloo; Anna Davidson, Kansas; Nicole Drakos, UCSC; Sean Fillingham, U Washington; Caelan Golledge, Kansas; Stephen Gwyn, NRC/CADC, Grayson Petter, Kansas; Melinda Townsend, Kansas

Iuriel, Cordoba ais, Andrés Bello ble, ASU ld, ESA os-Castro, Toronto ggianti, INAF/Padova pley, McGill n der Burg, ESO Vulcani, INAF/Padova ee, Toronto ritsky, Arizona

Management team Postdocs/students

Scientific Motivation

Why study Galaxy clusters?

- Rich environments with many galaxies at the same distance.
- Nearly all baryons directly observable
- Cosmologically sensitive ightarrow
- Examples of extreme environments and rare ulletprocesses
- Mass and baryon accretion history ulletreasonably well understood from theory

Abell 1689: X-ray: NASA/CXC/MIT/E.-H Peng et al.; Optical: NASA/STScI

Insights into galaxy evolution

Behroozi et al. (2010)

the baryon cycle

Star formation in the Universe has been declining for the past 10 billion years – must ultimately be related to

Adapted from Man+Belli 2018

Quenching: galaxies eventually stop forming stars, and the number of dead galaxies builds up

Star forming Dead – not star forming Log number of galaxies stellar mass time growth 0.2 < z < 0.5 1 < z < 1.52.5 < z < 3 log Stellar Mass log Stellar Mass

Adapted from Muzzin+2013, based on ULTRAVISTA photometry of the COSMOS field

Much of this quenching is
likely related to various
feedback processes that
disrupt the gas flow
Strongly mass dependent

A satellite galaxy loses its source of fresh gas from cosmological accretion. Many of the other complex physical processes (e.g. SFR, feedback) are likely unaffected

But galaxies that are satellites of a more massive host halo are more likely to be quenched. i.e. SFR history also depends on the large scale *environment*.

1010

1011

Stellar mass

Adapted from Hirschmann+2014

Galaxies in clusters are more likely to be quenched

No shortage of ideas:

- Ram pressure stripping
- Merging/harassment
- Tidal stripping

...but theoretical models consistently *overpredict* the number of quenched satellites

Adapted from Hirschmann+2014, Guo+2011 SAM+Millenium theoretical models

Redshift evolution can be an important discriminator because the properties of the infalling population are very different

Survey Strategy and Design GOGREEN and GCLASS but mostly GOGREEN

Some spectroscopic cluster surveys at z>0.2

S	
0	
Ð	
J L	

Survey	Year	Redshift	Number of clusters	Number of redshifts	F
CNOC	1996	0.2-0.5	16	2600	Y
EDisCs	2008	0.4-1.0	26	~2500	Ν
IMACS	2013	0.2-0.5	5	6000	C
VLT-CLASH	2014	0.2-0.6	13	30,000	R
SPT-GMOS	2016	0.3-0.8	>60	2200	B
XXL	2018	<0.6	164	2500	G
GCLASS	2012	0.8-1.3	10	1250	Ν
MaDCoWS	2019	0.7-1.5	38	~1000 (?)	Ģ
GOGREEN	2020	1-1.5	21	1500	E

Reference

- 'ee et al. (1996)
- Ailvang-Jensen et al. (2008)
- Demler et al. (2013)
- Rosati et al. (2014)
- Bayliss et al. (2016)
- Suglielmo et al. (2018)
- Auzzin et al. (2012)
- Gonzalez et al. (2018)
- Balogh et al. (2020)

GOGREEN and **GCLASS** Gemini GMOS spectroscopy of 26 clusters

ullet

 \bullet

- Redshift
- Halo mass \bullet
 - Stellar mass

Providing a wide baseline in key parameters:

GOGREEN: a 530h Gemini LLP

Name	RA (.	Dec J2000)	z	N_z	N _{mem}	$\sigma_{ m int}$ km/s
		SPT Clus	ters			
SPT-CL J0546-5345	86.6562	-53.7580	1.068	63	33	980 ± 70
SPT-CL J2106-5844	316.5191	-58.7411	1.126	67	39	1055 ± 85
SPT-CL J0205-5829	31.4390	-58.4829	1.323	65	22	680 ± 60
		SpARCS Cl	usters			
SpARCS0034-4307	8.6751	-43.1315	0.867	126	44	700 ± 150
SpARCS0036-4410	9.1875	-44.1805	0.869	114	48	750 ± 90
SpARCS1613+5649	243.3110	56.8250	0.871	152	94	1350 ± 100
SpARCS1047+5741	161.8890	57.6871	0.956	137	30	660 ± 120
SpARCS0215-0343	33.8500	-3.7256	1.004	110	48	640 ± 130
SpARCS1051+5818	162.7968	58.3009	1.034	176	34	690 ± 40
SpARCS1616+5545	244.1718	55.7571	1.157	195	47	780 ± 40
SpARCS1634+4021	248.6475	40.3643	1.177	176	59	715 ± 40
SpARCS1638+4038	249.7152	40.6452	1.194	161	53	565 ± 30
SpARCS0219-0531	34.9316	-5.5249	1.328	56	10	810 ± 80
SpARCS0035-4312	8.9571	-43.2068	1.335	121	21	840 ± 50
SpARCS0335-2929	53.7649	-29.4822	1.368	66	12	540 ± 30
SpARCS1034+5818	158.70560	58.3092	1.388	40	14	250 ± 30
SpARCS1033+5753	158.3565	57.8900	1.460	61	9	955 ± 90
	CO	SMOS/SXD	F Clusters			
SXDF64XGG	34.3319	-5.2067	0.916	17	8(1)	530 ± 80
SXDF49XGG	34.4996	-5.0649	1.091	101 ¹	14 (6)	255 ± 50
COSMOS-63	150.3590	1.9352	1.1722	26	8 (5)	N/A
SXDF76bXGG	34.7474	-5.3235	1.182	80 ²	7(7)	210 ± 65
COSMOS-221	150.5620	2.5031	1.196	54	9 (9)	200 ± 50
COSMOS-28	149.4692	1.6685	1.316	54	10 (10)	285 ± 75
COSMOS-125	150.6208	2.1675	1.404	39	9 (7)	N/A
SXDF87XGG	34.5360	-5.0630	1.406	1011	9 (8)	700 ± 110
SXDF76aXGG	34.7461	-5.3041	1.459	802	6 (6)	520 ± 180

TOTAL

GOGREEN Spectroscopy

- 3-year 438h Gemini LP started in 2014. Extended to 530h over 10 semesters on both telescopes
- Red-sensitive detectors allow us to extend \bullet sample to z=1.5
- 99% of original allocation executed \bullet
- Last data taken July 2019 \bullet

2257

705

Image credit: Gemini/NSF/AURA

Deep multiwavelength imaging

	Name	u/U	B/g	V	r/R	i/I	z/Z	Y/J_1	J	Ks	[3.6] <i>µ</i> m	[4.5] <i>µ</i> m	[5.8] <i>µ</i> m	[8.0] <i>µ</i> m
	SPTCL-0205	26.2 ^(b)	26.7 ^(b)	25.6 ^(b)	25.9 ^(b)	25.4 ^(b)	24.2 ^(b)	24.2 ^(h)	23.9 ^(h)	24.0 ^(h)	23.7 ())	23.2 ^(j)	_	_
	SPTCL-0546	25.3 ^(b)	26.1 ^(b)	25.3 ^(b)	25.6 ^(b)	25.0 ^(b)	23.8 ^(b)	24.1 ^(h)	23.9 ^(h)	23.9 ^(h)	24.0 ⁽⁾⁾	23.8 ^(j)	_	-
	SPTCL-2106	26.0 ^(b)	26.3 ^(b)	25.9 ^(b)	25.8 ^(b)	25.3 ^(b)	24.6 ^(b)	24.4 ^(h)	24.1 ^(h)	23.6 ^(g)	23.7 ^(j)	23.0 ^(j)	_	-
	SpARCS-0219	25.8 ^(b)	26.0 ^(b)	25.3 ^(b)	25.5 ^(b)	25.2 ^(b)	24.1 ^(b)	24.4 ^(h)	24.3 ^(h)	24.0 ^(h)	24.0 ()	23.8 ^(j)	21.4 🛈	21.4 ()
	SpARCS-0335	26.3 ^(b)	26.4 ^(b)	25.9 ^(b)	26.3 ^(b)	25.5 ^(b)	24.6 ^(b)	25.2 ^(g)	24.3 ^(h)	23.7 ^(h)	24.4 ^(j)	24.3 ^(j)	21.6 ())	21.6 ^(j)
	SpARCS-0035	25.9 ^(b)	26.4 ^(b)	25.8 ^(b)	26.0 ^(b)	25.5 ^(b)	25.5 ^(d)	24.2 ^(h)	24.9 ^(g)	24.2 ^(g)	24.6 ^(j)	24.5 ^(j)	22.8 ^(j)	22.6 ^(j)
	SpARCS-1034	_	26.0 ^(c)	_	26.1 ^(c)	25.5 ^(c)	25.4 ^(e)	25.1 ^(e)	24.5 ⁽ⁱ⁾	24.0 ⁽ⁱ⁾	22.7 ^(j)	22.4 ^(j)	19.9 ⁽)	19.7 ^(j)
	SpARCS-1051	26.3 ^(a)	26.1 ^(c)	_	26.1 ^(c)	25.6 ^(c)	25.4 ^(e)	25.0 ^(e)	24.5 ⁽ⁱ⁾	24.1 ⁽ⁱ⁾	22.6 ^(j)	22.5 ^(j)	19.7 ⁽)	19.6 ^(j)
	SpARCS-1616	25.9 ^(a)	26.2 ^(c)	_	26.1 ^(c)	25.7 ^(c)	25.6 ^(e)	24.7 ^(e)	24.2 ⁽ⁱ⁾	23.8 ⁽ⁱ⁾	22.7 ^(j)	22.6 ^(j)	21.2 🛈	21.3 ^(j)
	SpARCS-1634	25.9 ^(a)	26.4 ^(c)	_	26.2 ^(c)	25.8 ^(c)	25.0 ⁽)	-	24.2 ⁽ⁱ⁾	23.8 ⁽ⁱ⁾	23.0 ^(j)	22.8 ^(j)	21.3 🛈	21.3 ^(j)
	SpARCS-1638	26.1 ^(a)	26.4 ^(c)	-	26.2 ^(c)	25.6 ^(c)	25.3 O	24.2 ^(c)	24.1 ⁽ⁱ⁾	23.6 ⁽ⁱ⁾	22.8 ^(j)	22.5 ^(j)	21.3 ())	21.4 ^(j)
	COSMOS/UltraVISTA	26.8 ^(a)	26.9 ^(c)	26.4 ^(c)	26.4 ^(c)	26.0 ^(c)	25.2 ^(c)	24.5 ^(k)	24.3 ^(k)	23.8 (k)	23.9 ^(j)	23.6 ^(j)	21.7 🛈	21.7 ^(j)
													+S++	-160
그 것같은 것은 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같은 것 같아요. 그는 그 그는 것 같아요. 그는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그														
													4	
				× •		• • .	· · · · · ·		18					
				•										
				••••••••••••••••••••••••••••••••••••••		•			· · ·					
									•••					

C. N. States

~40 proposals, to 8 telescopes, over 4 years 14-band coverage for most clusters, including IRAC and HST F160W

W

Rest-frame optical spectroscopy

Spectroscopy covers key spectral features

Combined spectra of quiescent galaxies within mass and environment selections, shown within the wavelength region included in the SFH fitting procedure. The spectra in each subsample were de-redshifted, re-binned to a common wavelength sampling, flux normalized about 4120 Å, and then averaged. The uncertainty in the co-added spectra was determined from bootstrapping. Prominent spectral features are labelled on the top axis, and number of galaxies in each co-add are indicated on the left.

Webb et al. (2020, submitted)

First results

- Luminosity functions for six clusters (Chan et al. 2019, ApJ, 880, 119) 1.
- Stellar mass functions in clusters (van der Burg et al. 2020 A&A, 638, 112) 2.
- SFR-mass relation and its dependence on environment (Old et al. 2020 MNRAS, 493, 3. 5987)
- Ages of the quiescent galaxy population (Webb et al. 2020, submitted)

In Preparation

- The role of halo mass in environmental quenching at z=1 (Andrew Reeves et al.)
- The morphology of quenched cluster galaxies in GOGREEN (Jeffrey Chan et al.)
- Transition galaxies in GOGREEN (Karen McNab et al.)
- Dynamics and mass profiles of clusters at 0.8<z<1.5 (Andrea Biviano et al.)

Jeffrey Chan

Remco van der Burg

Lyndsay Old

Kristi Webb

High fraction of quenched galaxies

van der Burg et al. (2020)

More on this at 10:40 EDT!

Environmental quenching is even more effective at z=1 than at z=0

Depends on stellar mass – unlike at z=0

See also Muzzin et al. (2012); Balogh et al. (2016)

Stellar mass functions

Stellar mass function of dead galaxies in clusters is identical to that in the field; in stark contrast from what is observed locaslly

More on this at 10:40 EDT!

Quiescent galaxy ages

The median age of cluster quiescent galaxies is only 0.3 Gyr older than that of field quiescent galaxies

More on this at 11:20 EDT!

Star formation rates

The SFR of galaxies in the clusters are at most slightly lower than those in the field. Similar to what is seen at low redshift

Old et al. (2020)

More on this at 11:00 EDT!

z=1.3

z>1 clusters have a substantial
population of dead galaxies,
but their origin is very
different from those that
dominate at z<1.</pre>

z=0

gogreensurvey.ca for more information

Full GOGREEN and GCLASS data released Aug 11, 2020:

Gemini Observations of Galaxies in Rich Early ENvironments

Team

Internal Q

Publications

http://gogreensurvey.ca/data-releases/datapackages/gogreen-and-gclass-first-data-release/

Survey Details -

GOGREEN and GCLASS First Data Release

Home

Science

GOGREEN

Release date: Aug 11, 2020

Description and Executive Summary

This is the first Public Data Release (DR1), including all GOGREEN and GCLASS data. It is described in the accompanying paper, Balogh et al. (2020).

This release includes photometry (imaging, catalogues and derived products) and spectroscopy for all systems in GOGREEN and GCLASS, except SpARCS1033 for which most of the photometric imaging and catalogues are not available. We include the available, reduced HST images for all GOGREEN clusters. The Ultravista photometric catalogues (Muzzin et al. 2013) are also included, as these are the source of photometry for the COSMOS- systems in the sample. The SXDF catalogue of Mehta et al. (2018) must be downloaded separately, from http://homepages.spa.umn.edu/~mehta074/splash/

Finally we provide two python3 Jupyter notebooks for reading, manipulating and plotting the data.

Errata and updates

Please report problems and questions to mbalogh@uwaterloo.ca.

Data Access

The whole data release is ~24Gb in size. This is dominated by the images in the PHOTOMETRY/IMAGES directory. If you don't need access to those you can save a lot of download time.

- 1. CADC (https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/gogreen)
- 2. NSF's NOIRLab Data Labs (coming soon, to https://datalab.noao.edu/gogreendr1/). In addition to the raw data directory, Data Labs will soon provide an integrated file service with Simple Image Access and other features being developed.

http://gogreensurvey.ca/

Survey Description: Balogh et al. (2017) Data Release: Balogh et al. (2020, submitted)

More on this at 13:10 EDT!

Hom	ne Science -	Survey Details 🔻	Publications	Team	Internal	Q		
ublications								
OGREEN:								
1. Gemini Observations of Galaxies in Rich E M.L. Balogh et al., 2017, MNRAS, 470, 4168	arly Environments (GOGREEN) I: Survey	Description					
2. The Rest-frame H-band Luminosity Func J. Chan et al., 2019 ApJ, 880, 119	tion of Red Sequence	ce Galaxies in Cluster	s at 1.0 <z<1.3< th=""><th></th><th></th><th></th><td></td><th></th></z<1.3<>					
3. The GOGREEN survey: The environmenta L. Old et al., 2020, MNRAS, 493, 5987	l dependence of the	e star-forming galaxy	main sequence at	1 <z<1.5< th=""><th></th><th></th><td></td><th></th></z<1.5<>				
4. The GOGREEN Survey: A deep stellar mar R. van der Burg et al., 2020 A&A, 638, 112	ss function of cluste	er galaxies at 1 <z<1.4 a<="" th=""><th>nd the complex n</th><th>ature of sate</th><th>ellite quencl</th><th>hing,</th><td></td><th></th></z<1.4>	nd the complex n	ature of sate	ellite quencl	hing,		
5. The GOGREEN Survey: Ages and star forn K. Webb et al., 2020 MNRAS, submitted	mation histories of c	quiescent cluster gala:	xies at 1 <z<1.5< th=""><th></th><th></th><th></th><td></td><th></th></z<1.5<>					
6. The GOGREEN Survey: The halo mass de A. Reeves et al., in preparation	pendence of galaxy	group populations at	1 <z<1.5< th=""><th></th><th></th><th></th><td></td><th></th></z<1.5<>					
7. The GOGREEN and GCLASS First Data Rel M. Balogh et al., 2020 MNRAS, submitted	lease							
8. The GOGREEN survey: a critical assessme E. Kukstas et al., in preparation	ent of environmenta	al trends in cosmologi	cal hydrodynamic	al simulatio	ons at z=1			
9. The GOGREEN survey: evidence for quies Jeffrey Chan et al., in preparation	cent disk excess in	clusters at 1 <z<1.5< th=""><th></th><th></th><th></th><th></th><td></td><th></th></z<1.5<>						
10. The GOGREEN survey: Dynamics and ma Andrea Biviano et al., in preparation	ass profiles of the cl	uster sample						

GOGREEN/GCLASS Data Release and Workshop Agenda

Agenda

GOGREEN	Data Release: Pu	blic session		
EDT	PDT	CEST		
10:00-10:20	07:00-07:20	16:00-16:20	Summary of the GOGREEN survey	Michael Balogh, University of Waterloo
10:20-10:40	07:20-07:40	16:20-16:40	Summary of GCLASS	Adam Muzzin, York University
Published r	esults: Public s	ession		
10:40-11:00	07:40-08:00	16:40-17:00	Stellar mass functions and quenching rates	Remco van der Burg, ESO
11:00-11:20	08:00-08:20	17:00-17:20	The main sequence of star formation	Lyndsay Old, ESA
11:20-11:40	08:20-08:40	17:20-17:40	The ages of quiescent galaxies	Kristi Webb, University of Waterloo
11:40-12:00	08:40-09:00	17:40-18:00	Discussion	
12:00-12:30	09:00-09:30	18:00-18:30	BREAK	
Work in pro	ogress: Public s	ession		
12:30-12:50	09:30-09:50	18:30-18:50	HST imaging and Morphology	Jeffrey Chan, UC Riverside
2:50-13:10	09:50-10:10	18:50-19:10	The role of halo mass in quenching	Andrew Reeves, University of Waterloo
Data Releas	e: Public session	n		
13:10-13:30	10:10-10:30	19:10-19:30	Data Release contents	Michael Balogh, University of Waterloo
13:30-14:00	10:30-11:00	10:30-20:00	Discussion	1

Tuesday, August 25, 2020

Work in progress (continued): Public session							
EDT	PDT	CEST					
10:00-10:20	07:00-07:20	16:00-16:20	Cluste				
10:20-10:40	07:20-07:40	16:20-16:40	Trans				
10:40-11:00	07:40-08:00	16:40-17:00	Predic				
11:00-12:00	08:00-09:00	17:00-18:00	Discu				

More to come today and in progress

r Dynamics	Andrea Biviano, Trieste
ition galaxies	Karen McNab, University of Waterloo
tions from simulations	Egidius Kukstas, LJMU
ssion	

tomorrow including some work

END

Runts, rejects and extras

Galaxy formation and evolution is driven by star formation

log Stellar Mass

Slide courtesy of Kristi Webb

Galaxy formation and evolution is driven by star formation

log Stellar Mass

Adapted from Muzzin+2013, based on ULTRAVISTA photometry of the COSMOS field

Observations show that the

log Stellar Mass

Slide courtesy of Kristi Webb

Galaxies stop forming stars (quench). There are more of these quenched galaxies at higher stellar masses and at later times.

log Stellar Mass

Adapted from Muzzin+2013, based on ULTRAVISTA photometry of the COSMOS field

Non-Star forming (quiescent) galaxies

log Stellar Mass

Slide courtesy of Kristi Webb

Galaxies in clusters are more likely to be quenched

10¹²

Adapted from Hirschmann+2014

Insight into galaxy evolution: What causes quenching?

Since at least redshift $z \approx 2$, the population of galaxies without significant star formation has been building up.

The physical process or processes responsible for this "quenching" of star formation are not well understood.

Adapted from Man+Belli 2018

Quenching: driven by feedback

Supernova feedback

log Stellar Mass

log Number of galaxies

AGN feedback

Isolated Galaxies

Star formation rates are determined by a variety of processes occurring over a wide range of time and spatial scales.

A satellite galaxy loses its source of fresh gas from cosmological accretion. Many of the other complex physical processes (e.g. SFR, feedback) are likely unaffected

Cluster Galaxies

Satellite galaxy

Data Quality and Completeness

Selection

Targets selected based on z-[3.6] colour. Excellent at excluding foreground galaxies

Balogh et al. (2017, 2020)

Redshifts

Faint galaxies z[']>23.5

observed on multiple masks to build up exposure time

Balogh et al. (2020)