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GCLASS Cluster Sample

Name Redshift Velocity-Disp Photometry Members
SpARCS 

J003442-430753 0.867 610 km s-1 ugriz,JK,IRAC 45
SpARCS 

J003645-441050 0.869 910 km s-1 ugriz,JK,IRAC 48
SpARCS 

J161312+564930 0.871 1230 km s-1 ugriz,JK,IRAC 93
SpARCS 

J104737+574137 0.956 680 km s-1 ugriz,JK,IRAC 31
SpARCS 

J021524-034331 1.004 760 km s-1 ugriz,JK,IRAC 48
SpARCS 

J105111+581803 1.034 530 km s-1 ugriz,JK,IRAC 34
SpARCS 

J161641+554513 1.157 700 km s-1 ugriz,JK,IRAC 46
SpARCS 

J163435+402151 1.177 840 km s-1 ugriz,JK,IRAC 50
SpARCS 

J163852+403843 1.196 590 km s-1 ugriz,JK,IRAC 44
SpARCS 

J003550-431224 1.335 940 km s-1 ugriz,JK,IRAC 26
Field Galaxies 0.85 < z < 1.20 N/A 294

Muzzin+2009, Wilson+2009, Demarco+2010
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GCLASS Papers (14 published, 1 in prep)
• The effect of environment on galaxy evolution at z ~ 1 (Muzzin+2012, Balogh+2016, 

Matharu+in prep)


• Mass growth of brightest cluster galaxies since z ~ 1 (Lidman+2012, Lidman+2013)


• Dynamics of cluster galaxies and implications for quenching (Noble+2013, Muzzin+2014, 
Noble+2016) 

• Stellar mass function of cluster galaxies at z ~ 1 (van der Burg+2013)


• The mass-size relation of cluster and field galaxies at z ~ 1 (Matharu+2019, Matharu+2020)


• Total stellar baryon content and cluster assembly since z ~ 1 (van der Burg+2014, van der 
Burg+2015)


• Growth of the red-sequence in clusters since z ~ 1 (Foltz+2015)


• Cluster scaling relations and dark matter profiles at z ~ 1 (Biviano+2016)
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GCLASS: Key Results

•Clusters are compact and dense at z = 1 and grow in stellar mass 
inside out
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Clusters contain 3.1 +/- 1.1 
times more poststarbursts 
than the field

Muzzin+2012

3. Poststarburst Galaxies are Common in Clusters 
at z = 1

GOGREEN results in talk by    
K. McNab



Muzzin+2014

3. Poststarburst Galaxies Represent a Key 
Transition Population

Poststarbursts are 
found at small radii, 
but high velocities 



Quenching @0.5R200 with 0.1 Gyr < T < 0.5 Gyr

A reasonable match to phase space, avoids key regions

3. Poststarburst Galaxies Represent a Key 
Transition Population

Muzzin+2014



3. Poststarburst Galaxies Represent a Key 
Transition Population

Poststarbursts 
are intermediate 
in size and 
morphology 
between SF and 
Q galaxies

Matharu+2020
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represent a key rapidly-quenching transition population
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GCLASS WFC3 Grism Program

Direct F140W Image G141 Grism

SpARCS J1638+4038, z = 1.179

A 38-orbit G141 grism program to get resolved H-alpha maps of cluster galaxies

Jasleen Matharu 
(Texas A&M)



Demo of how WFC3 slitless spectroscopy works
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