GOGREEN Galaxy Groups And The Role of Halo Mass in the Quenching of Star Formation

Andrew Reeves Monday, August 24, 2020

Image credit: Adam Block, UA

Reminder: "Quenching" of star formation in galaxies

Dictionary definition: to extinguish, stifle, or suppress

Star-forming

Quiescent/quenched

Intro: 2 key concepts

Dark matter halos and how a cluster is made
 "Central" vs "satellite" galaxies

Key concept #1: Dark matter halos and how a cluster is made

Galaxies reside in dark matter halos Dark matter halo merger history tree

Halo mass ranges in this work What we mean by "groups" of galaxies

"Groups" in GOGREEN are gravitationally bound collections of galaxies with halo masses $M_{200c} < 10^{14} M_{\odot}$

This study: 20 groups total (span the blue region)

Groups at 1<z<1.5 in COSMOS/SXDF survey regions, with halo masses estimated based on x-ray fluxes

Key concept #2: "Central" vs "satellite" galaxies

Central galaxy

Satellite galaxy

IMAGE CREDIT: Michael Balogh

This work and how it fits into **GOGREEN**

Gemini Observations of Galaxies in Rich Early ENvironments

Project goal: to constrain or understand how quenching processes in galaxies depend on their group/cluster halo mass at 1<z<1.5, by making use of our GOGREEN cluster measurements and 1<z<1.5 group measurements (explicitly analyzed in this work).

Fits into the core GOGREEN science goals:

- Environmental-quenching of low mass galaxies
- Hierarchical assembly of baryons

Unique feature of GOGREEN:

- Wide range of halo masses at GOGREEN redshifts, 1<z<1.5
- Depth of observations to lower stellar mass galaxies at 1<z<1.5

Method Background subtraction

<u>3 survey regions on the sky</u>:

- COSMOS field
 - UltraVISTA DR1
 - UltraVISTA DR3 (ultra-deep stripes)
- •SPLASH SXDF

Nethod:
$$N_G = N_C - N_{\text{field}} \left(\frac{A_C}{A_{\text{field}}} \right)$$

- •Sum over all groups
- Quiescent / star-forming color cut using rest-frame U-V vs V-J
- z=z_{group}±dz photometric redshift cut
- Simple background subtraction to compute stellar mass functions
- •For a given stellar mass bin, error bars are simple Poisson, ie: ${\rm sqrt}(N_C)$ (field contribution to the error was very negligible)
- •Other details of course, but these are the essential points

Results Quenching Dependence on Stellar and Halo Mass

Results

"Quenched Fraction Excess" and Dependence on Halo Mass

Results in context QFE in groups - evolution with redshift

Our work is for all galaxies with log(Mstellar)>10
Appears to be a general decreasing trend of QFE towards higher redshift

Results+literature comparison A quick look into redshift evolution

$$QFE = \frac{f_{Q,cluster} - f_{Q,field}}{(1 - f_{Q,field})}$$

- No clear redshift evolution
- Enhanced Quenched Fraction Excess for groups/clusters at all redshifts
- Clusters more enhanced QFE overall than groups at all redshifts
- Exact halo dependence unclear

Results What does this mean?

- Environment-related processes are commonly observed in the most massive clusters (tidal stripping, jelly-fish galaxies, etc); quenching toy models indicate long quenching timescales in the literature at low redshifts
 - The excess of quenching observed even in early modest structures (groups) at GOGREEN redshifts indicate the quenching timescales are shorter
 - Quenching/galaxy formation mechanisms in the early universe in need of further study
- Accretion histories of groups/clusters are different but also theoretically well-understood
 - →We can then combine our observational quenching constraints with toy accretion models to constrain timescales associated with quenching

Backup/extra slides

Results + Simulation Comparison

<u>The data:</u> QFE higher in clusters than groups; unclear halo mass trend

BAHAMAS hydro simulation: captures QFE > in clusters than groups, but not stellar mass trend

<u>GAEA SAM model</u>: appears to capture stellar mass trend but not halo mass trend

Toy model: Accretion+quenching

Two accretion models:

What they are and how they differ

From central to first time

as a satellite,

McGee+2009 formalism

Const rate of accretion, plus cluster head-start

Figure 5. The time since a galaxy in a halo of a given mass, observed at a given epoch, was first found as a satellite is shown using the formalism of McGee et al. (2009). The black dotted lines show the z = 0 curves with the corresponding times rescaled by a factor $(1 + z)^{-3/2}$. This shows that the average accretion rate of haloes of a given mass evolves like the dynamical time.

Accreted onto main cluster progenitor

dN/dt prop dM/dt

Bouché+2010

Balogh+2016

Example quenching time-delay constraints

Comparing accretion histories

