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Nomenclature and Notation

Identity matrix:

I =
(

1 0
0 1

)
Dirac notation:

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
Pauli matrices:

σx = X =
(

0 1
1 0

)
ρy = Y =

(
0 −i
i 0

)
σz = Z =

(
1 0
0 −1

)

X⊗X =
(

0 1
1 0

)
⊗
(

0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


Hadamard matrix:

H =
1√
2

(
1 1
1 −1

)

~ = h
2π Reduced Planck’s constant

〈Z〉 Expectation value of Z
H Hamiltonian
ρ Density matrix

Mm Generalized measurement operator
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Chapter 1

Introduction to Quantum
Information and
Quantum Information
Processing

Main reference: Quantum Computation and Quantum Information, M. A.
Nielsen and I. L. Chuang. Cambridge Univ. Press (2000).

1.1 Postulates of Quantum Mechanics

1.1.1 Postulate no. 1:

Associated to any isolated physical system is a complex inner-product
vector space (i.e. a Hilbert space) called the state space of the system.

The closed system is completely described by its state vector, a unit vector
in it’s state space. The quantum bit, or qubit, is an example of such a system.

Example: The qubit

The qubit is the simplest example of a state space in quantum
mechanics because it has only two dimensions.
Let |0〉 and |1〉 form an orthnormal basis. An arbitrary state vector is
represented as

|ψ〉 = α |0〉+ β |1〉

where α and β are complex numbers satisfying |α|2 + |β|2 = 1 (i.e.
〈ψ|ψ〉 = 1).

1



Chapter 1. Introduction to QIP 2

The coefficients α and β are often referred to as amplitudes. The
probability of finding the system in the associated basis state upon
measurement is given by the square of the amplitudes (e.g. |α|2, |β|2).

1.1.2 Postulate no. 2:

The evolution of a closed quantum system is described by a unitary
transformation.

The state |ψ〉 at time t1 is related to |ψ′〉 at time t2 by a unitary operator
U that depends only on the times t1 and t2.

A unitary operator, U, satisfies the condition U†U = I.

Example: Single-qubit unitary operators

X operator: “bit flip” or “NOT” operator

X(α |0〉+ β |1〉) = α |1〉+ β |0〉

Z operator: “phase flip” operator

Z(α |0〉+ β |1〉) = α |0〉 − β |1〉

Hadamard operator

H =
1√
2

(
1 1
1 −1

)

H |0〉 =
1√
2

(|0〉+ |1〉) H |1〉 =
1√
2

(|0〉 − |1〉)

H2 |0〉 = |0〉
H2 |1〉 = |1〉

}
⇒ H2 = I

Postulate no. 2′:

The continuous-time evolution of a closed quantum system is de-
scribed by the Schrödinger equation:

i~
d |ψ〉

dt
= H |ψ〉

The Hamiltonian, H, is a Hermitian operator, which means that H† = H.
As a result, it has a spectral decomposition

H =
∑
E

E |E〉 〈E|



Chapter 1. Introduction to QIP 3

where E are the energy eigenvalues and |E〉 are the eigenvectors of the system,
also referred to as energy eigenstates.

Example: H = ~ωX

Energy eigenstates of H are the eigenvectors of X.

X =
(

0 1
1 0

)
The eigenvectors of X are

1√
2

(
1
1

)
=

1√
2

(|0〉+ |1〉)

1√
2

(
1
−1

)
=

1√
2

(|0〉 − |1〉)

with corresponding eigenvalues of λ = ±1. As a result, the energy eigen-
values of H are E0 = −~ω, which is the ground state, and E1 = +~ω.

The solution to the Schrödinger equation for a time-independent Hamilto-
nian is described by a unitary transformation:

|ψ(t2)〉 =

unitary operator︷ ︸︸ ︷
e−i

H
~ (t2−t1) |ψ(t1)〉

= U(t2, t1) |ψ(t1)〉

1.1.3 Postulate no. 3:

Quantum measurement is described by a set {Mm} of measurement
operators.

Quantum measurements act on the state space of the system being measured.
The index m refers to the possible measurement outcomes. By applying the
measurement operators Mm to the state |ψ〉, the probability for outcome m is

p(m) = 〈ψ|M†mMm |ψ〉

and the state after measurement is

Mm√
〈ψ|M†mMm |ψ〉

|ψ〉 .

The operator Mm satisfies the completeness relation∑
m

M†mMm = I
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which means that the probabilities sum to unity.∑
m

p(m) =
∑
m

〈ψ|M†mMm |ψ〉

= 〈ψ|
∑
m

M†mMm︸ ︷︷ ︸
I

|ψ〉

= 〈ψ|ψ〉
= 1

Example: Measurement of a qubit in the computational basis

Let M0 = |0〉 〈0| and M1 = |1〉 〈1|.
Note the following:

M2
0 = |0〉 〈0| 0〉 〈0|

= |0〉 〈0|
= M0

Similarly:
M2

1 = M1

Also:
M†0M0 + M†1M1 = I

For an arbitrary quantum state |ψ〉 = α |0〉 + β |1〉, the probability of
measuring a |0〉 state is

p(0) = 〈ψ|M†0M0 |ψ〉
= 〈ψ|M0 |ψ〉
= 〈ψ| 0〉 〈0|ψ〉
= |α|2.

Similarly for the |1〉 state,

p(1) = 〈ψ|M†1M1 |ψ〉 = |β|2.

After measurement, the |0〉 state becomes

M0

|α|
|ψ〉 =

α

|α|
|0〉 ∼= |0〉
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and the |1〉 state becomes

M1

|β|
|ψ〉 =

β

|β|
|1〉 ∼= |1〉 ,

up to global phase factors, which are irrelevant.

Projective measurements

Projective measurements are a special class of measurements described by an
observable M, which is a Hermitian operator on the state space being observed.
The spectral decomposition of M is

M =
∑
m

m Pm

where Pm is the projector onto the eigenspace of M with eigenvalue m. Upon
measuring |ψ〉, the probability of outcome m is given by

p(m) = 〈ψ|Pm |ψ〉

and the state immediately after a measurement outcome m is

Pm√
p(m)

|ψ〉 .

As long as the general measurement operators Mm satisfy the additional con-
dition

MmMm′ = δm,m′Mm

(i.e. they are orthogonal projectors), then they are also projective measurement
operators.

The average value of a projective measurement is∑
m

m p(m) =
∑
m

m 〈ψ|Pm |ψ〉

= 〈ψ|
∑
m

m Pm |ψ〉

= 〈ψ|M |ψ〉

Often this formula is written as an expectation value

〈M〉 = 〈ψ|M |ψ〉 .

There is an associated variance for observations of M:

∆(M) = 〈(M− 〈M〉)2〉
= 〈M2〉 − 〈M〉2
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Note that the Heisenberg Uncertainty Principle can be stated as

∆(A)∆B ≥ 1
2
|〈ψ| [A,B] |ψ〉|,

where A and B are Hermitian operators (i.e. observables).

Example: Expectation values of operators

Suppose the qubit state 1√
2
(|0〉 + |1〉) is measured using the ob-

servable Z.

〈Z〉 = 〈ψ|Z |ψ〉

=
(

1√
2

(〈0|+ 〈1|)
)

Z
(

1√
2

(|0〉+ |1〉)
)

=
1
2

[〈0|Z |0〉+ 〈1|Z |0〉+ 〈0|Z |1〉+ 〈1|Z |1〉]

=
1
2

[1 + 0 + 0− 1]

= 0

〈Z2〉 = 〈ψ|Z2 |ψ〉

=
1
2
[
〈0|Z2 |0〉+ 〈1|Z2 |0〉+ 〈0|Z2 |1〉+ 〈1|Z2 |1〉

]
=

1
2

[1 + 0 + 0 + 1]

= 1

Hence, the average measurement of the observable Z is 0, and the vari-
ance of the measurement of Z is 1.
Similarly, suppose the state is |0〉, then 〈Z〉 = 〈0|Z |0〉 = 1 and 〈Z〉 =
〈0|Z |0〉 = 1, then the average measurement is 1 and the variance is 0.

Example: The single-qubit observable

Consider the single-qubit observable:

~v · ~σ = vxX + vyY + vzZ where |~v| = 1

= vx

(
0 1
1 0

)
+ vy

(
0 i
−i 0

)
+ vz

(
1 0
0 −1

)
=
(

vz vx + ivy
vx − ivy −vz

)
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The eigenvalues of ~v · ~σ are λ = ±1, therefore the projectors
onto the λ = ±1 subspace are given by

P± =
(I± ~v · ~σ)

2
.

For λ = +1, since ~v · ~σ |ψ+〉 = (+1) |ψ+〉 and (~v · ~σ)2 = I, then

(I + ~v · ~σ)
2

|ψ+〉 =
(

1 + 1
2

)
|ψ+〉

= |ψ+〉 .

Similarly, (I−~v·~σ)
2 |ψ−〉 =

(
1+1

2

)
|ψ−〉 = |ψ−〉 for the λ = −1 case.

1.1.4 Postulate no. 4:

The state space of a composite system is the tensor product of the
state spaces of the component systems.

The state of a n component system prepared in the states |ψi〉 is given by
|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.

Example: Calculating 〈X1Z2〉

Show that 〈X1Z2〉 for a two-qubit system in state |00〉+|11〉√
2

is
equal to zero.

〈X1Z2〉 =
1
2
(
〈00|+ 〈11|

)
X1Z2

(
|00〉+ |11〉

)
=

1
2
[
〈01|X1 |01〉 〈02|Z2 |02〉+ 〈11|X1 |01〉 〈12|Z2 |02〉

+ 〈01|X1 |11〉 〈02|Z2 |12〉+ 〈11|X1 |11〉 〈12|Z2 |12〉
]

=
1
2

[0 + 0 + 0 + 0]

= 0

Note that |ψ〉 = |00〉+|11〉√
2

is an example of an entangled state: there are no
single qubit states |a〉, |b〉 for which |ψ〉 = |a〉 ⊗ |b〉.

|00〉+ |11〉√
2

= (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉)

= αγ |00〉+ βγ |10〉+ αδ |01〉+ βδ |11〉

This result implies that αγ = βδ = 1√
2

and βγ = αδ = 0, which is impossible.
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1.2 Density matrices

The density operator language provides a convenient means for describing quan-
tum systems whose states are not completely known (i.e. mixed states versus
pure states). The density matrix of a system is defined by

ρ ≡
∑
i

pi |ψi〉 〈ψi|

where pi is the probability that the system is in the quantum state |ψi〉. This is
appropriate, for example, for describing an ensemble of quantum systems (e.g.
nuclear spins in NMR).

The evolution of a density matrix ρ under the operation of U:

ρ =
∑
i

pi |ψi〉 〈ψi|
U−→

∑
i

piU |ψi〉 〈ψi|U† = UρU†

The probability of a measurement outcome of m for a given state |ψi〉:

p(m|i) = 〈ψi|M†mMm |ψi〉
= Tr

(
M†mMm |ψi〉 〈ψi|

)
So p(m) =

∑
i

p(m|i)pi

=
∑
i

pi Tr
(
M†mMm |ψi〉 〈ψi|

)
= Tr

(
M†mMmρ

)
The state after measurement with an outcome m:

ρm =
MmρM†m

Tr
(
M†mMmρ

)
Note that a pure state (i.e. ρ = |ψ〉 〈ψ|) satisfies Tr(ρ2) = 1, whereas a mixed

state satisfies Tr(ρ2) < 1.

1.2.1 General properties of density matrices

1. Trace condition: Tr(ρ) = 1

Tr(ρ) =
∑
i

pi Tr(|ψi〉 〈ψi|)

=
∑
i

pi

= 1
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2. Positivity: ρ is a positive operator

〈φ| ρ |φ〉 =
∑
i

pi 〈φ|ψi〉 〈ψi|φ〉

=
∑
i

pi|〈φ|ψi〉|2

≥ 0

Note that Postulate 4 becomes ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn for n component
systems prepared individually in the states ρi.

Example: The Bloch sphere for single-qubit mixed states

An arbitrary density matrix for a single-qubit mixed state is expressed
as

ρ =
I + ~r · ~σ

2
where ~r is a real, three-dimensional vector and satisfies |~r| ≤ 1. It is
known as the Bloch vector. If |~r| = 1, then ρ lies on the surface of the
Bloch sphere and is a pure state. If |~r| < 1, then ρ lies inside the Bloch
sphere and is a mixed state.
The axes of the Bloch sphere correspond to the Pauli spin matrices X,
Y, and Z. If ~r = 0, then ρ = I

2 , which is a fully mixed state (i.e. we
have no information about it).
Note that the statement that ρ is a pure state if |~r| = 1 follows from the
earlier observation that P± = I±~v·~σ

2 is a projector onto a single-qubit
pure state and, therefore, has the form |ψ〉 〈ψ| just as a pure density
matrix does.
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1.2.2 Reduced density matrices

The density matrix formalism is extremely useful for analyzing composite quan-
tum systems. Let A and B be two systems described by a joint density matrix
ρAB . The reduced density matrix for subsystem A is

ρA = TrB
(
ρAB

)
where TrB denotes the partial trace over subsystem B, that is

TrB (|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2|Tr (|b1〉 〈b2|)

where Tr (|b1〉 〈b2|) = 〈b2| b1〉. Note that the partial trace is also linear in its
input.

Example: Partial trace over an unentangled state

Let the system be in an unentangled state ρAB = ρ⊗ σ.
Therefore,

ρA = TrB(ρ⊗ σ)
= ρ Tr(σ)
= ρ

The density matrix of a Bell state:

ρAB =
|00〉+ |11〉√

2

(
〈00|+ 〈11|√

2

)
=
|00〉 〈00|+ |11〉 〈00|+ |00〉 〈11|+ |11〉 〈11|

2

The reduced density matrix of subsystem A:

ρA = TrB
(
ρAB

)
=
|0〉 〈0|A 〈0| 0〉B + |1〉 〈0|A 〈1| 0〉B + |0〉 〈1|A 〈0| 1〉B

2

+
|1〉 〈1|A 〈1| 1〉B

2

=
|0〉 〈0|A + |1〉 〈1|A

2

=
IA
2

The initial joint state is known exactly, but if all the information about
one subsystem was ‘discarded’ by taking its partial trace, then the other
subsystem is in a mixed state. In this case, we have no knowledge about
the remaining subsystem as it is in a maximally mixed state.
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1.3 Qubits, Gates, and Circuits

A qubit exists in a two-dimensional complex vector space. Let |0〉 and |1〉
constitute an orthonormal basis for this space. An arbitrary qubit state is a
linear superposition state expressed as

|ψ〉 = α |0〉+ β |1〉

where |α|2 + |β|2 = 1.
Some physical examples of qubits:

Spin- 1
2 particles |↑〉 ≡ |0〉 |↓〉 ≡ |1〉

Photon polarization |	〉 ≡ |0〉 |�〉 ≡ |1〉
Ground (g) and first excited (e) atomic states |g〉 ≡ |0〉 |e〉 ≡ |1〉

Since |α|2 + |β|2 = 1, the qubit state can be rewritten as

|ψ〉 = eiγ
(

cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
)

where γ, φ, and θ are real numbers. The global phase eiγ has no observable
effects, so the qubit state is effectively

|ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

where θ and φ define a point on the Bloch sphere.

Note that, in principle, it takes an infinite amount of information to perfectly
describe the continuous variables θ and φ (i.e. there are an infinite number of
points on the sphere), but that does not mean that an infinite amount of infor-
mation can be stored in one qubit; this is because upon measurement only one
of two results (0 or 1) can be found and the state will subsequently collapse.
Therefore, only one bit of information is gained from a qubit measurement. Nev-
ertheless, the extra ‘hidden’ quantum information is the reason that quantum
information processing (i.e. with many qubits) apparently allows us to solve
problems that are classically intractable.
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1.4 Multiple Qubits and the Exponential Growth
of the Hilbert Space

Consider a two-qubit system. An arbitrary quantum state can be written in the
computational basis as:

|ψ〉 = α00 |00〉+ α10 |10〉+ α01 |01〉+ α11 |11〉 .

The probability of measuring the system in, say, the state |10〉 is |α10|2. Note
that there are 22 = 4 amplitudes. If only the first qubit is measured, then
the probability of finding it in the state |0〉 would be |α00|2 + |α01|2, and the
post-measurement state would be

α00 |00〉+ α01 |01〉√
α00|2 + |α01|2

.

More generally, for n qubits, computational basis states are of the form
|x1, x2, · · ·xn〉 where x ε {0, 1}. A general superposition state, therefore, requires
2n amplitudes. What if n = 500? Then there are 2500 amplitudes, which is
more than the estimated number of atoms in the universe! No conceivable
classical computer could keep track of all of this data, but nature can. This is
what quantum information processing (quantum computing) seeks to somehow
exploit!

1.5 Single-qubit Gates

Logic gates perform manipulations on information stored in bits. Classically,
for example, the NOT gate reverses a bit state (i.e. 0→ 1 and 1→ 0), which is
called a bit flip. What would a quantum NOT gate do?

α |0〉+ β |1〉 → α |1〉+ β |0〉

This is accomplished by X =
(

0 1
1 0

)
, since X |0〉 = |1〉 and X |1〉 = |0〉. For

any valid gate operation, the qubit normalization condition must be satisfied
both before and after the gate; this implies that any gate U must be unitary
(i.e. U†U = I). This is the only condition!

Other useful single-qubit gates:

Phase flip Z =
(

1 0
0 −1

) {
Z |0〉 = |0〉
Z |1〉 = − |1〉

Bit flip and phase flip

Y =
(

0 −i
i 0

)
Y |0〉 = i |1〉 Y |1〉 = −i |0〉

XZ = iY = −ZX
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H = 1√
2

(
1 1
1 −1

)
H |0〉 = |0〉+|1〉√

2
H |1〉 = |0〉−|1〉√

2

H2 = I
Z2 = X2 = Z2 = I

There are an infinite number of single-qubit unitary operators, and thus
quantum gates, but only the properties of a subset need to be understood to
understand those of the full set. An arbitrary 2 × 2 unitary matrix can be
decomposed as

U = eiα

(
e−i

β
2 0

0 ei
β
2

)(
cos γ2 − sin γ

2
sin γ

2 cos γ2

)(
e−i

δ
2 0

0 ei
δ
2

)

where eiα is called a global phase shift. This is the Z-Y decomposition since

U = eiαRz(β) Ry(γ) Rz(δ)

where Rz(β) is a rotation about the ẑ axis by an angle β (i.e. Rz(β) = e−i
β
2 z).

An arbitrary rotation about the n̂ axis is written as

Rn(θ) = e−iθ
~σ·n̂
2

= cos
(
θ

2

)
I− i sin

(
θ

2

)
(nxX + nyY + nzZ)

where ~σ · ~x = X, ~σ · ~y = Y, and ~σ · ~z = Z.

Example: Generalized rotation

Show that e−i
θ
2 X = cos

(
θ
2

)
I− i sin

(
θ
2

)
X.

e−i
θ
2 X = I +

(
−iθ

2
X
)

+

(
−i θ2X

)2
2

+

(
−i θ2X

)3
6

+ · · ·

=

(
I−

(
θ
2

)2
2

X2 + · · ·

)
+ X

(
−i
(
θ

2

)
+ i

(
θ
2

)3
6

X2 − · · ·

)

= I

(
1− 1

2

(
θ

2

)2

+ · · ·

)
− iX

((
θ

2

)
− 1

6

(
θ

2

)3

+ · · ·

)

= I cos
(
θ

2

)
− iX sin

(
θ

2

)
As a result, if Z and Y rotations of arbitrary angles are possible, then any
possible 2× 2 unitary (and thus any single-qubit gate) can be generated.

In addition, two-qubit logic (i.e. conditional) gates are needed. An appro-
priate finite set of one- and two-qubit gates is universal, meaning that the set
can be used to implement any possible unitary on the entire system of many
qubits.
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1.6 Conditional Logic Gates

Classical two-bit gates are irreversible.

However, quantum gates are unitary and, therefore, reversible. For example,
the controlled-NOT gate:

|a〉 • |a〉

|b〉 �������� |a⊕ b〉

Note that the number of output qubits is always equal to the number of
input qubits.

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

In other words, if qubit a is 0, then apply I to qubit b; if qubit a is 1, then
apply X to qubit b.

Note that U 2
CNOT = I⊗ I, so it is reversible. The first qubit, a, is called the

control qubit, and the second qubit, b, is the target qubit. More generally, there
can be a controlled-U gate.

|c〉 • |c〉

|t〉 U Uc |t〉

|c〉 |t〉 → |c〉Uc |t〉

Example: Building a CNOT from a controlled-Z gate

Z =
(

1 0
0 −1

)
c−Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Since HZH = X:

•

H Z H
=

•

X
=

•
��������
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A controlled-U gate, for an arbitrary U, can be decomposed as

G =
•

U
=

• • P

C �������� B �������� A

where P =
(

1 0
0 eiα

)
and U = eiαA×B×C and ABC = I.

Example: Decomposing the controlled-Z gate

Verify that A = I, B = Rz

(
−π2
)
, C = Rz

(
π
2

)
, and P = I.

G = Rz

(
−π

2

)
UCNOT Rz

(π
2

)
UCNOT I

=
(

I2 − iZ2√
2

)
(|0〉 〈0|1 I2 + |1〉 〈1|1 X2)

(
I2 + iZ2√

2

)
· (|0〉 〈0|1 I2 + |1〉 〈1|1 X2)

=
(
|0〉 〈0|1 I2 + |1〉 〈1|1

(
I− iZ2√

2

)
X2

(
I + iZ2√

2

))
· (|0〉 〈0|1 I2 + |1〉 〈1|1 X2)

= (|0〉 〈0|1 I2 + |1〉 〈1|1 Y2) (|0〉 〈0|1 I2 + |1〉 〈1|1 X2)
= (|0〉 〈0|1 I2 + |1〉 〈1|1 Y2X2)
= |0〉 〈0|1 I2 + |1〉 〈1|1 iZ

A general controlled operation on multiple qubits is defined by

Cn(U)

n−qubits︷ ︸︸ ︷
|x1, x2, · · ·xn〉

k−qubits︷︸︸︷
|ψ〉 = |x1, x2, · · ·xn〉Ux1,x2,···xn |ψ〉

x1 •... •
•

xn •
ψ1

U...
ψk

where qubits x1 through xn are control qubits, and the k qubits of |ψ〉 are target
qubits.

The important property to know is that these operations can be decomposed
into a series of one- and two-qubit gates. For example,

•
•

U

=

• • •

• �������� • ��������
V V† V
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where V satisfies V2 = U. The Toffoli gate (controlled-controlled-NOT) is
given by V = 1−i

2 (I + iX). In fact, the general result will be that any unitary
on an arbitrary number of qubits can be decomposed into a universal set of one-
and two-qubit gates!

1.7 Universality and Universal Gate Sets

It is beyond the scope of this course to prove the following theorems so they
will simply be stated.

1. Two-level unitary gates are universal.
A unitary U acting on a d-dimensional Hilbert space, where d = 2n, can
be decomposed into a product of two-level matrices (i.e. those that act
non-trivially only on two or fewer vector components).
e.g. U = V1 · · ·Vk where Vi are two-level matrices and k ≤ d(d−1)

2

2. Single-qubit and CNOT gates are universal.
Any two-level unitary Vi can be decomposed into a series of arbitrary
single-qubit rotations and CNOT gates.

While these theorems are sufficient for proving the universality of one- and
two-qubit gates, it turns out that we do not know how to construct fault tolerant
quantum circuits containing arbitrary single-qubit rotations. Fortunately, we do
know how to do this for certain finite gate sets (i.e. universal sets consisting of
a finite number of discrete gates). One such set is

{H, S, CNOT, T}

where H = 1√
2

(
1 1
1 −1

)
is a Hadamard gate, S =

(
1 0
0 i

)
is a phase gate, and

T =
(

1 0
0 ei

π
4

)
is a π

8 -rotation gate.

1.8 The Deutsch-Jozsa Algorithm

The game:

Alice picks a number between 0 and 2n − 1 (i.e. a binary number using n bits)
and sends it to Bob, who calculates a function f(x) and sends the result back
to Alice, which is either 0 or 1. The function f(x) is either constant (i.e.
independent of x) or balanced (i.e. gives a result of 1 for half of all x, and 0
for the other half). Alice wants to determine with certainty whether f(x) is
constant or balanced with as little communication with Bob as possible.

Classical solution:

Alice must query Bob at least 2n

2 + 1 times, each time sending n bits.
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Quantum solution:

If Bob agrees to calculate f(x) using a unitary transform Uf using the Deutsch-
Jozsa algorithm, then Alice only requires one query to find the result with
certainty!

x
Uf

x

y y ⊕ f(x)

How it works:

Alice: |0〉 /
n

H⊗n

Uf

H⊗n FE

Bob: |1〉
↑

H
↑ ↑ ↑

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉
1. Alice and Bob initialize their qubits:

|ψ0〉 = |0〉⊗n |1〉 = |00 · · · 0〉 |1〉

2. Alice applies Hadamard gates to |0〉⊗n to create a superposition over all
basis states of her n qubits, and Bob applies a Hadamard gate to |1〉 to
create a superposition of his qubit:

H |0〉⊗n =
(
|0〉+ |1〉√

2

)(
|0〉+ |1〉√

2

)
· · ·
(
|0〉+ |1〉√

2

)
=

∑
xε{0,1}n

|x〉√
2n

H |1〉 =
|0〉 − |1〉√

2

∴ |ψ1〉 =
∑

xε{0,1}n

|x〉√
2n

(
|0〉 − |1〉√

2

)

3. Bob applies the unitary Uf to evaluate f(x):

|x, y〉 → |x, y ⊕ f(x)〉

∵ |x, 0〉 →
{
|x, 0〉 , f = 0
|x, 1〉 , f = 1

|x, 1〉 →
{
|x, 1〉 , f = 0
|x, 0〉 , f = 1

∴ |ψ2〉 =
∑
x

(−1)f(x) |x〉√
2n

(
|0〉 − |1〉√

2

)
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4. Alice applies Hadamard gates to her register of n qubits:

H |x〉 =
∑
z

(−1)x·z |z〉√
2n

∴ H⊗n |x1, x2, · · · , xn〉 =
∑

z1,··· ,zn

(−1)x1z1+···+xnzn
√

2n
|z1, · · · , zn〉

=
∑
z

(−1)x·z√
2n
|z〉

∴ |ψ3〉 =
∑
x

∑
z

(−1)x·z+f(x)

2n
|z〉
(
|0〉 − |1〉√

2

)
where x ε {0, 1}n, z ε {0, 1}n, and x · z is the bitwise product of x and z
modulo 2. Note that for a single qubit, the action of the Hadamard can
be written as x ε {0, 1}.

5. Alice measures her register.

For the state |z〉 = |0〉⊗n, the measured amplitude is
∑
x

(−1)f(x)

2n . If f(x) is
constant, then the amplitude will be +1 or -1 depending on the constant value
that f(x) takes. For example, in the case that f(x) evaluates to either 0 or 1:∑

x

(−1)f(x)

2n
=
{

+1, f(x) = 0
−1, f(x) = 1

Since 〈ψ3|ψ3〉 = 1, then the output state will be |0〉⊗n with certainty in these
cases. However, if f(x) is balanced, then∑

x

(−1)f(x)

2n
= 0

because the positive and negative contributions to the amplitude will cancel out.
So there will be zero amplitude for measuring the output state |0〉⊗n if f(x) is
balanced. In other words, another output state will be observed.

The Deutsch-Jozsa algorithm makes clever use of the quantum mechanical
effects of superposition and interference in order to very efficiently extract global
information about the function f(x) in one query and to encode this information
in the classical output of the algorithm. The last Hadamard gates H⊗n interfere
the amplitudes from |ψ2〉 such that they constructively or destructively interfere
for the output |0〉⊗n if f(x) is constant or balanced, respectively. To learn
the same global information about f(x) classically and deterministically would
require many more ( 2n

2 + 1) queries by Alice.

Caveats:

While this is an impressive quantum algorithm, the problem it solves is not
really useful and there are classical probabilistic methods that would also allow
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Alice to very rapidly discern the answer (not with perfect certainty, but with
very high probability). However, it illustrates the power of quantum informa-
tion and falls within a general category of algorithms based on the quantum
Fourier transform. This category also includes Shor’s famous algorithm that
gives exponential speed-up for factoring numbers; a quantum algorithm that
certainly does solve a useful problem with incredible efficiency!



Chapter 2

Quantum Error Correction
and Fault Tolerance

Quantum states are extremely fragile, which means that they are very suscep-
tible to noise. ‘Noise’ is a catch-all term that refers to uncontrolled interactions
with an environment, where it is implied that the environment is also not under
the control of the observer. For example, noise acting on a classical bit will flip
it with some probability p:

Classically, one strategy for protecting against the loss of information is
redundancy. In other words, logical bits are defined as multiple physical bits.
For example, three physical bits can be used to represent one logical bit:

0L = 000
1L = 111

For example, with probability p, noise will transform 000 to 001. However,
taking a simple 3-bit majority recovers the logical bit. The probability of 000
transforming into 011 is p2, a smaller probability, but in this case the majority
technique fails. As a result, the logical encoding reduces the bit error rate from
one proportional to p to one proportional to p2.

A similar idea can be applied to qubits, but not through simple redudancy.
It is impossible to copy qubits. This is known as the no-cloning theorem.

20
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Proof: No-cloning theorem

Consider the initial state |ψ〉 ⊗ |s〉, where |ψ〉 is to be copied to
replace the pure state |s〉:

|ψ〉 |s〉 Ucopy−→ U |ψ〉 |s〉 = |ψ〉 |ψ〉

Suppose that this works for two particular states, |ψ〉 and |φ〉.

U |ψ〉 |s〉 = |ψ〉 |ψ〉
U |φ〉 |s〉 = |φ〉 |φ〉

Taking the inner product of two equations gives

∵ 〈s| 〈φ|U† = 〈φ| 〈φ|
∴ 〈φ|ψ〉 = (〈φ|ψ〉)2

∴ x = x2

However, x = x2 has only two solutions: x = 0 and x = 1. Therefore,
|ψ〉 and |φ〉 must be the same state or orthogonal states. A general
cloning device is not possible!

2.1 3-qubit Code

However, it is possible to ‘spread’ the desired quantum information among mul-
tiple physical qubits to protect against noise. The 3-qubit code is the simplest
example: it protects against individual bit flip errors (i.e. X errors). The en-
coding scheme is:

|0L〉 = |000〉
|1L〉 = |111〉

In other words, a general qubit state is given by:

α |0L〉+ β |1L〉 = α |000〉+ β |111〉

A quantum circuit to perform this encoding would be:

|ψ〉 • • •

|0〉 �������� = ��������
|0〉 �������� ��������

(α |0〉+ β |1〉)⊗ |00〉 = α |000〉+ β |100〉 CNOTs−→ α000 + β111

The initial |0〉 qubits are known as the ancilla qubits.
Suppose that a bit-flip error (X operator) occurs on one of the three physical

qubits:
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no error |ψ0〉 = α |000〉+ β |111〉
flip 1st qubit |ψ1〉 = α |100〉+ β |011〉
flip 2nd qubit |ψ2〉 = α |010〉+ β |101〉
flip 3rd qubit |ψ3〉 = α |001〉+ β |110〉

Now perform the decoding operation:

• •
|ψ〉

{
��������

}
|ψdec〉��������

no error (α |0〉+ β |1〉)⊗ |00〉 = |ψ〉 |00〉
flip 1st qubit (α |1〉+ β |1〉)⊗ |11〉 = |ψ〉 |11〉
flip 2nd qubit (α |0〉+ β |1〉)⊗ |10〉 = |ψ〉 |10〉
flip 3rd qubit (α |0〉+ β |1〉)⊗ |01〉 = |ψ〉 |01〉

Note that after decoding:

• Only in one instance is the quantum state corrupted: a bit-flip on the first
qubit.

• The ancilla states corresponding to each instance are mapped to orthogonal
subspaces.

Now the ancilla qubits can be measured—without disturbing the quantum
information—and the result gives exactly which error has occurred. In this case,
an error only occurred if the ancilla state is |11〉, and the corresponding error
operator is X, so simply applying X again will correct the quantum state. This
correction is contingent on observing |11〉.

The 3-qubit code illustrates the basic idea of quantum error correction. Note
that instead of measuring the ancilla bits, an alternative approach could be to
employ a controlled quantum gate so that the entire circuit would look like:

|ψ〉 •

Noise

• �������� |ψ〉

|0〉 �������� �������� • Trash qubit

|0〉 �������� �������� • Trash qubit

encoding decoding correction

2.2 Fault Tolerance

Fault tolerance is the concept that all operations on encoded bits must be per-
formed in a way that minimizes the spread of errors. Every quantum opera-
tion, including state preparation, manipulation, correction, and readout, must
be done in a fault tolerant way. For example, errors propagate through the
CNOT gate in the following manner:

e • e

�������� e
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where e represents an error. When performing two-qubit logic on encoded
qubits, an error on one physical qubit of one block cannot be allowed to af-
fect more than one physical qubit of another block. A transversal application
of a gate prevents this from occurring.

e • e
•

Transversal: �������� e

��������
e • • e

Non-transversal: �������� e

�������� e

If a single gate on a logical qubit can be implemented as single physical qubit
gates, then clearly it is transversal and, thus, fault tolerant.

H

H
|ψL〉 /

n

H = |ψL〉
H

H


2.3 Fault Tolerant Threshold

Provided that the noise in individual quantum gates is below a certain constant
threshold, then it is possible to efficiently perform an arbitrarily large quantum
computation. Concatenated error correction can be used to reduce the error
rate.

|ψL〉

Level 2 Level 1 Level 0
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Level 0 Level 1 Level 2
Error probability p cp2 c(cp2)2

For k levels of concatenation, the failure probability of a gate at the highest

level is (cp)2k

c , while the size of the concatenated circuit goes as dk times the
size of the original circuit, where d is the maximum number of operations used
in a fault tolerant procedure for performing an encoded gate of error correction.

For an algorithm with N gates with a desired accuracy of 1 − ε, where ε is
some small error, each gate must have an error on the order of ε

N . Therefore, k
levels of concatenation must be used to satisfy:

(cp)2k

c
≤ ε

N

Provided that p ≤ 1
c , such a k can be found. The limit Pth = 1

c is known
as the threshold error probability. The aim is to reduce the threshold so that
Psys ≤ Pth. The best current estimates for the threshold error probability is in
the range of 10−3 ≤ Pth ≤ 10−6, but an exact Pth is not known for any specific
system or implementation. Reaching error levels for real gates in real systems
as small as these estimates for Pth is the primary challenge for experimental
implementation of quantum information processing.

2.4 Simulating Quantum Dynamics

The dynamical behaviour of many simple quantum systems is governed by
Schrödinger’s equation:

i~
d |ψ〉

dt
= H |ψ〉 .

For example,

i
∂ψ(x)
∂t

=
[
− 1

2m
∂2

∂x2
+ V (x)

]
︸ ︷︷ ︸

H

ψ(x)

where ψ(x) = 〈x|ψ〉. This is the position representation and the ~ has been
absorbed into H (i.e. set ~ = 1). This is simply a differential equation, and it
would appear that classical simulation of it is well established. However, the
challenge is due to the number of differential equations; the number that must
be simulated grows exponentially with the degrees of freedom of the system
(i.e. the number of basis states). For one qubit evolving under the Schrödinger
equation, a system of two differential equations must be solved. For two qubits,
four equations, and so on. In other words, 2n differential equations must be
solved for n qubits. For many physical systems of interest, no approximations
are known that will effectively reduce this number so that simulations become
classically feasible; in general, classical simulation of large quantum systems is
totally hopeless!
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How would a one-dimensional Schrödinger’s equation be simulated on a
quantum computer?

H =
p2

2m
+ V (x)

where p is the momentum operator and x is the position operator.

|ψ〉 =
∫ ∞
−∞
|x〉 〈x|ψ〉dx =

∫ ∞
−∞

ψ(x) |x〉 dx

Hence, |ψ〉 resides in an infinite-dimensional Hilbert space and the eigenvalues
of x are continuous. However, the focus can be restricted to a region of interest
−d ≤ x ≤ d, where d discretizes the problem by choosing a finite step size ∆x
so that ∣∣∣ψ̃〉 =

+ d
∆x∑

k=−d∆x

ak |k∆x〉

is a good physical approximation of |ψ〉.
Hence, there are 2d

∆x + 1 basis states which can be represented by n qubits
provided 2n = 2d

∆x + 1, i.e. there need to be n = log2( 2d
∆x + 1) qubits. Simply

replace the basis states |k∆x〉 (eigenstates of x) with |k〉 to create a compu-
tational basis state of n qubits. Here, only n qubits are needed, whereas 2n

complex numbers would be necessary classically.
Next, we must compute

∣∣∣ψ̃(t)
〉

= e−iHt
∣∣∣ψ̃(0)

〉
. In general,

[
p2

2m , V (x)
]
6= 0,

that is H0 = p2

2m and H1 = V (x) do not necessarily commute. This means that
e−iHt 6= e−iH0te−iH1t. Therefore, an approximate method for computing e−iHt

must be found. An exact way of doing this is called the Trotter formula:

ei(A+B)t = lim
n→∞

(
ei
At
n ei

Bt
n

)n
Of course, in a real computation we cannot take n → ∞, so an approximation
must be used. One such approximation:

ei(A+B)∆t = eiA
∆t
2 eiB∆teiA

∆t
2 +O(∆t3)

This approximation is good up to order (∆t)3. So, to compute (approximately)

e−iHt, it must be possible to compute e−iH0t = e−i
p2

2m t and e−iH1t = e−iV (x)t.
For this problem, note that

∣∣∣ψ̃〉 is expressed in the eigenbasis of H1, so

e−iH1t is a diagonal transform

|k〉 −→ e−iV (k∆x)∆t |k〉

so this is straightforward to compute.
e−iH0t can be computed by realizing that x and p are conjugate variables

and are thus related by the quantum Fourier transform:

UFFT ×U†FFT = p.
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Therefore, e−iH0t = UFFTe
−i x2

2m∆tU†FFT. Note that the quantum Fourier trans-
form is defined as

|j〉 −→ 1√
N

N−1∑
k=0

ei2π
jk
N |k〉

Example: Simulated Quantum Computation of Molecular
Energies. A. Aspuru-Guzik et al. Science 309, 1704–1707 (2005).

The calculation time for the energies of atoms and molecules
scales exponentially with system size on a classical computer, but
polynomially using quantum algorithms. The following algorithm can
be applied to problems of chemical interest using modest numbers of
qubits; it is based on the phase-estimation algorithm (PEA).
The first n qubits are the readout register, and the m qubits represented
by |ψ〉 are the state register. The input state of the state register, |ψy〉
is an eigenstate of the Hamiltonian, H, e.g. the ground state.

|0〉1 H •

QFT†

FE

|0〉2 H • FE
...

...
...

|0〉n H • FE

|ψg〉 /
m

U U2 Un FE

Measurement of the readout register gives φ = ωgt.
To understand the function of this circuit, here are some simple exam-
ples worked through.
Say that there is a 2-qubit readout register and a 1-qubit state register.
Say the Hamiltonian to be simulated is H = ωz

2 , whose eigenvalues are
±ω2 . The ground state is |1〉 with an eigenvalue of −ω2 .

QFT†

|0〉 H • R† H FE

|0〉 H • H • FE

|ψg〉 U U2 •

Ψ0 Ψ1 Ψ2 Ψ3

_ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _ _ _

Note that R† =
(

1 0
0 −i

)
.
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Following the state evolution through the circuit setting |ψg〉 = |1〉.

Ψ0 =
(
|0〉+ |1〉√

2

)(
|0〉+ |1〉√

2

)
|1〉

Ψ1 =
1
2

[
|0〉
(
|0〉+ |1〉

)
|1〉+ |1〉

(
|0〉+ |1〉

)
U |1〉

]
Ψ2 =

1
2
[
|00〉 |1〉+ |10〉U |1〉+ |01〉U2 |1〉+ |11〉U3 |1〉

]
∵ U(t) = e−i

ωt
2 Z =

(
e−i

ωt
2 0

0 ei
ωt
2

)
∴ Ψ2 =

1
2
[
|00〉 |1〉+ |10〉 eiωt2 |1〉+ |01〉 eiωt |1〉+ |11〉 ei 3ωt

2 |1〉
]

Applying QFT†:

|00〉 H2−→ |0〉
(
|0〉+ |1〉√

2

)
c-R†1−→ |00〉+ R†1 |01〉√

2

H1−→

( |0〉+|1〉√
2

)
|0〉+

( |0〉+|1〉√
2

)
|1〉

√
2

=
1
2
(
|00〉+ |01〉+ |10〉+ |11〉

)
|01〉 H2−→ |0〉

(
|0〉 − |1〉√

2

)
c-R†1−→ |00〉 −R†1 |01〉√

2

H1−→

( |0〉+|1〉√
2

)
|0〉 −

( |0〉+|1〉√
2

)
|1〉

√
2

=
1
2
(
|00〉 − |01〉+ |10〉 − |11〉

)
|10〉 H2−→ |1〉

(
|0〉+ |1〉√

2

)
c-R†1−→ |10〉+ R†1 |11〉√

2

H1−→

( |0〉−|1〉√
2

)
|0〉 − i

( |0〉−|1〉√
2

)
|1〉

√
2

=
1
2
(
|00〉 − i |01〉 − |10〉+ i |11〉

)
Similarly, |11〉 −→ |00〉+ i |01〉 − |10〉 − i |11〉

2

Therefore,

Ψ3 =
1
4

[(
|00〉+ |01〉+ |10〉+ |11〉

)
⊗ |1〉

+ ei
ωt
2
(
|00〉 − i |01〉 − |10〉+ i |11〉

)
⊗ |1〉

+ eiωt
(
|00〉 − |01〉+ |10〉 − |11〉

)
⊗ |1〉

+ ei3
ωt
2
(
|00〉+ i |01〉 − |10〉 − i |11〉

)
⊗ |1〉

]
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=
1
4

[
|00〉

(
1 + ei

ωt
2 + eiωt+e

i3ωt2
)

+ |01〉
(
1− ieiωt2 − eiωt + iei3

ωt
2
)

+ |10〉
(
1− eiωt2 + eiωt − ei3ωt2

)
+ |11〉

(
1 + iei

ωt
2 − eiωt − iei3ωt2

)]
⊗ |1〉

=
1
4
[
f00(ωt) |00〉+ f01(ωt) |01〉+ f10(ωt) |10〉+ f11(ωt) |11〉

]
⊗ |1〉

|00〉 |10〉 |01〉 |11〉 |00〉 etc.
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Hence, evolving under its Hamiltonian, 1
2ωZ, the ground state |1〉 picks

up a phase, φ = ωt, which the algorithm estimates by measuring the
probabilities of the computational basis states of the readout regis-
ter. In the Aspuru-Guzik paper, the authors simulate a quantum com-
puter solving for the ground state electronic energies ωg of some small
molecules, such as H2 and H2O, using a classical computer. That is,
they work out how to represent U = e−iHt using a number of quantum
gates that scales polynomially with the system size.
A direct mapping was used in which each qubit represents the fermionic
occupation state of a particular atomic orbital (i.e. |0〉 represents occu-
pied, and |1〉 represents not occupied).

Molecular system Fock space
mapping

=⇒ Hilbert space of qubits

For the most compact mapping (minimal basis set), only eight qubits
are required in the state register to simulate H2O to a high accuracy.
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Reference: A. E. Bryson Jr. and Y. Ho, Applied Optimal Control: Optimiza-
tion, Estimation and Control. Wiley (1975).

Define a performance index L(~u), where ~u is a vector (set) of n control pa-
rameters ~u = (u1, u2, . . . , un). The optimization problem is simply to minimize
(or maximize) L and find ~u such that L is the global minimum (or maximum).
Of course, finding the global minimum is not easy and, in general, one can only
guarantee that the local minimum has been found.

The simplest optimization problem to consider is that which has no con-
straints on the control parameters, ~u. The necessary conditions for a local
minimum of L are then:

∂L

∂~u
= 0, i.e.

∂L

∂ui
= 0 for all i

∂2L

∂u2
≥ 0, i.e. the matrix

∂2L

∂ui∂uj
is positive semi-definite

(all eigenvalues ≥ 0)

If ∂L
∂~u = 0 and ∂2L

∂u2 > 0, (i.e. all eigenvalues are greater than 0,) then it is
guaranteed to be a local minimum. If ∂2L

∂u2 = 0, (i.e. the determinant of the
matrix is equal to 0,) then it is a singular point and more information is needed
to determine if it is a minimum.

Example: Finding a local minimum

L = u2
1 − 2u1u2 + 4u2

2

∂L
∂u1

= 2u1 − 2u2 = 0 ⇒ u1 = u2
∂L
∂u2

= 8u2 − 2u1 = 0 ⇒ u1 = u2 = 0

The condition u1 = u2 = 0 identifies a stationary point at ~u = (0, 0).

29
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∂2L
∂u2

1
= 2 ∂2L

∂u2∂u1
= −2

∂2L
∂u1∂u2

= −2 ∂2L
∂u2

2
= 8

}
⇒
(

2 −2
−2 8

)
=

∂2L

∂ui∂uj

∣∣∣∣2− λ 2
−2 8− λ

∣∣∣∣ = 0 ⇒ λ2 − 10λ+ 12 = 0

∴ λ = 5±
√

52
2

= 5±
√

13

Both λ are greater than 0, and hence ~u = (0, 0) is a minimum.

Example: Identifying a saddle point

L = 3u2
2 − u2

1 + 2u1u2

∂L
∂u1

= 2u2 − 2u1 = 0 ⇒ u1 = u2
∂L
∂u2

= 6u2 + 2u1 = 0 ⇒ u1 = −3u2 = 0

The conditions u1 = u2 = 0 and u1 = −3u2 = 0 identify a stationary
point at ~u = (0, 0).

∂2L
∂u2

1
= −2 ∂2L

∂u1∂u2
= 2

∂2L
∂u2∂u1

= 2 ∂2L
∂u2

2
= 6

}
⇒
∣∣∣∣−2− λ 2

2 6− λ

∣∣∣∣ = 0

⇒ λ = 2± 2
√

5

∴ λ1 > 0 and λ2 < 0

Therefore, this is a saddle point. Note that if λ1 > 0 and λ2 = 0, then
this relation gives a singular point. (e.g. L = (u1 − u2

2)(u1 − 3u2
2)) It

could be a minimum with respect to a certain d~u and a maximum with
respect to another.

More generally, some constraints are placed on ~u. An example is a set of
equality constraints:

f1( ~x1, ~u1) = 0
f2( ~x1, ~u1) = 0

...
fm( ~x1, ~u1) = 0

define ~f as a constraint vector

where ~x = (x1, x2, · · · , xm). Now, L = L(~x, ~u). A stationary point has dL = 0
for arbitrary d~u, and while holding d~f = 0.
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One method for finding ~u that yield stationary points is based on the use
of Lagrange multipliers. A new function H(~u, x, λ) is defined that adjoins the
performance index and the constraints:

H(~u, ~x, λ) = L(~x, ~u) +
m∑
i=1

λifi(~x, ~u)

where λi are undetermined multipliers. The summation above can be written
as:

m∑
i=1

λifi(~x, ~u) = λT ~f(~x, ~u)

i.e. as the scalar product (λ1, λ2, · · · , λm)


f1

f2

...
fm

.

Suppose that some ~u is chosen and then ~x is determined via ~f(~u, ~x) = 0, so
that L = H. Differential changes in H can be written as:

dH =
∂H

∂x
dx +

∂H

∂u
du

where the notation has been simplified so that u ≡ ~u and x ≡ ~x.
The vector λ can be chosen so that

∂H

∂x
=
∂L

∂x
+ λT ∂f

∂x
= 0 ⇒ λT = −∂L

∂x

(
∂f

∂x

)−1

It follows that dH = dL = ∂H
∂u du , or ∂H

∂u is the gradient of L with respect to
u while holding f(x, u) = 0.

In summary, the necessary conditions for a stationary value of L(x, u) are:

1. f(x, u) = 0 (m equations)

2. ∂H
∂x = 0 (m equations)

3. δH
δu = 0 (n equations)

As a result, there are 2m+ n equations to solve for 2m+ n parameters.

Example: Finding a stationary value

Find a scalar u to yield a stationary value of L = 1
2

(
x2

a2 + u2

b2

)
subject to the linear constraint:

f(x, u) = x+mu− c = 0

where a, b, c, and m are constants, and x and u are scalars.

H =
1
2

(
x2

a2
+
u2

b2

)
+ λ (x+mu− c)



Chapter 3. Quantum Control 32

Conditions:

x+mu− c = 0
∂H
∂x = x

a2 + λ = 0
∂H
∂u = u

b2 + λm = 0

 3 equations for 3 unknowns

Solution:

x =
a2c

a2 +m2b2

u =
b2mc

a2 +m2b2

λ =
−c

a2 +m2b2

Lmin =
c2

2(a2 +m2b2)

The conditions above are sufficient for a stationary point; for a local
minimum, sufficiency requires the additional condition:

(
∂2L
∂u2

)
f=0

must

be a positive matrix.

3.1 Numerical solutions found using a first-order
gradient method

Usually, the relations for L(x, u) and f(x, u) are quite complex, and therefore
numerical methods must be used to determine the u that minimize H. (Usually,
this is true for quantum optimal control as well!) One method is using a steepest
descent method for finding minima (or steepest ascent for finding maxima).
Such methods are also called gradient methods; they are iterative algorithms for
improving estimates of control parameters u to satisfy ∂H

∂u = 0.
Steps for finding a numerical solution using a first-order gradient method:

1. Guess an initial u.

2. Determine values of x from f(x, u) = 0.

3. Determine λ from λT = −
(
∂L
∂x

) (
∂f
∂x

)−1

.

4. Determine the values of ∂H∂u = ∂L
∂u +λT ∂f∂u , which generally does not equal

0.

5. Interpret ∂H
∂u as a gradient vector, update u by ∆u = −k

(
∂H
∂u

)T
where
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k > 0 and k is a scalar constant. The predicted change in H is therefore:

∆H ≈ ∂H

∂u
∆u =

∂H

∂u

(
−k
(
∂H

∂u

)T)
= −k

(
∂H

∂u

)(
∂H

∂u

)T

6. Repeat steps 1 to 5 using revised u estimates until the quantity
(
∂H
∂u

) (
∂H
∂u

)T
is very small.

This method can be thought of as a hill-climbing method in u-space (if a
maximum is being sought). Often, k is varied adaptively from step to step in
order to ensure that the linear approximation to predicted change ∆H ≈ ∂H

∂u ∆u
is accurate. Nonetheless, overshooting is a common problem for this first-order
gradient method when ~u is in close vicinity to the true minimum (or maximum).

3.2 Application of gradient methods to quan-
tum optimal control: GRAPE algorithm

Reference: N. Khaneja et al. Journal of Magnetic Resonance 172, 296–305
(2005).

The GRAPE algorithm is used in NMR, superconducting qubits, ion traps,
and other systems. In a system consisting of, for example, spins (or qubits)
described by the internal Hamiltonian, Ho, and a set of external control terms,
Hk, with amplitudes uk(t) that can be controlled, the total Hamiltonian is:

H(t) = Ho +
m∑
k=1

uk(t)Hk

where m is the total number of control terms acting on the qubits. In the case
of NMR, the external control terms are the RF fields applied to the spins.

The first problem to consider is that of steering some initial quantum state,
ψ(0), to a desired final state at time T , ψ(T ) = C.

ψ(0)→ ψ(T ) = C

In density matrix notation, this above transformation is ρ(0)→ ρ(T ) = ρc.
The overlap of ψ(T ) with C can be measured as the scalar product Φo =

〈C|ψ(T )〉, or in density matrix notation:

Φo = Tr
{
ρ†cρ(T )

}
.

The time evolution of the system is given by the Liouvill-von Neumann
equation:

ρ̇(t) = −i[H, ρ(t)] = −i(Hρ− ρH)

Assuming that the total evolution time T is discretized in N equal steps of
duration ∆t = T/N . The control amplitudes uk are constant during each step,
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and in the j-th step it is uk(j) for the k-th control Hamiltonian. During step j,
the propagator is:

Uj = e−i∆t(Ho+
Pm
k=1 uk(j)Hk) = e−i∆t H(j)

The final state density matrix is:

ρ(T ) = UN · · ·U1ρoU
†
1 · · ·U

†
N

The performance function is:

Φo = Tr
{
ρ†c

(
UN · · ·U1ρoU

†
1 · · ·U

†
N

)}
Since the trace of a product is invariant under cyclic permutations of factors

(c.f. first problem set), then

Φo = Tr
{
λ†jρj

}
where λj = U†j+1 · · ·U

†
NρcUN · · ·Uj+1 and ρj = Uj · · ·U1ρoU

†
1 · · ·U

†
j . ρj is the

density operator at time t = j∆t, and λ is the “backward propagated” target
state ρc at the same time t = j∆t.

How does the performance index Φo change when the control amplitude
uk(j) is perturbed at time step j to uk(j) + δuk(j)? From the equation for uj ,
the change to Uj can be calculated to first-order in δuk(j):

Uj = e−i∆t(Ho+
Pm
k=1 uk(j)Hk) = e−i∆t H(j).

Note the standard formula:

d
dx

e(A+xB)

∣∣∣∣
x=0

= eA
∫ 1

0

eAτβe−Aτ dτ

Let A = −i∆t H(j), B = −i∆t Hk, and x = δuk(j), then

δUj = δuk(j)e−i∆t H(j)

∫ 1

0

e−i∆t H(j)τ (−i∆t Hk)ei∆t H(j)τ d( τ∆t)
∆t

= Ujδuk(j) (−i∆t)
∫ ∆t

0

Uj(η)HkUj(−η)
dη
∆t

= −i∆t δuk(j) H̄kUj

where η ≡ τ∆t and H̄k =
∫∆t

0
Uj(η)HkUj(−η) dη /∆t when ∆t�

∥∥H†o∑uk(j)Hk
∥∥−1

and ∆t is small. Since H̄k ≈ Hk, therefore δUj ≈ −i∆t δuk(j) HkUj . Recall

that Φo = Tr
{
λ†jρj

}
to calculate δΦo

δuk(j) to first-order in ∆t.

δΦo = Tr
{
λ†jδρj

}
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Recall that ρj = Uj · · ·U1ρoU
†
1 · · ·U

†
j . If δuk(j) is varied, then Uj → U†j + δUj .

So:

ρj + δρj = (Uj + δUj)Uj−1 · · ·U1ρoU
†
1 · · ·U

†
j−1(U†j + δU†j )

= ρj + δUj · · ·U1ρoU
†
1 · · ·U

†
j + Uj · · ·U1ρoU

†
1 · · · δU

†
j +O

(
(δUj)2

)︸ ︷︷ ︸
O(∆t2)

to first order in ∆t,

δρj = δUj · · ·U1ρoU
†
1 · · ·U

†
j + Uj · · ·U1ρoU

†
1 · · · δU

†
j .

Since δUj ≈ −i∆tδuk(j)HkUj , then δρj = −i∆t[Hk, ρj ] = −i∆t(Hkρj−ρjHk).
Therefore,

δΦo
δuk(j)

= −i∆tTr
{
λ†j [HF , ρj ]

}
From the classical gradient method discussed above, the performance func-

tion can be increased by choosing an updated uk(j) such that

uk(j) −→ uk(j) + ε
δΦo
δuk(j)

which indicates the correct direction in which to improve Φo, where ε is a small
constant. This idea forms the basic tenet of the GRAPE algorithm:

1. Guess initial control amplitudes uk(j).

2. Calculate ρj = Uj · · ·U1ρoU
†
1 · · ·U

†
j for all j ≤ N .

3. Calculate λj = U†j+1 · · ·U
†
NρcUN · · ·Uj+1 for all j ≤ N .

4. Evaluate δΦo
δuk(j) and update the m×N control amplitudes

uk(j) −→ uk(j) + ε
δΦo
δuk(j)

.

5. Repeat steps 2 to 4 until the change in Φo is smaller than a chosen thresh-
old value.

3.3 Efficiency of GRAPE algorithm compared
to “brute force” difference methods

The GRAPE algorithm gives an analytical expression for finding the gradient
(i.e. the direction in which to move in u-space in order to improve Φ). How
would it be done otherwise? A brute force method in which each uk is randomly
varied and the resulting δΦ is calculated for each instance. On average, this
method would require m×N+1 evaluations of the time evolution of the density
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matrix from t = 0 to t = T simply in order to calculate one set of gradients
δΦ

δuk(j) ; a large number of iterations is additionally required to reach the set of
uk that optimize Φ. With GRAPE, calculating the gradient δΦ

δuk(j) only requires
two full time evolutions to be evaluated (i.e. ρo −→ ρ(t) and λN (T ) −→ λN (0)).
Therefore, GRAPE is O(m×N) more efficient.

While considerably better than the brute force method, note that GRAPE
still requires computational resources that scale exponentially with the number
of qubits (or coupled spins, etc.) If it were somehow more efficient than this,
then arbitrary quantum dynamics can be efficiently simulated on a classical
computer — but all indications are that this is not possible!

3.4 Single-photon absorption

Single-photon absorption:

ωo

|f〉

|g〉

6

?

Amplitude of the excited state starting from |g〉:

af (t) =
µfg
i~

∫ t

−∞
ε(t1)eiωot1 dt 1

where µfg is the dipole moment matrix element and ~ωo = Ef −Eg. The above
is simply the Fourier component of the pulse, ε(t), at the resonance frequency,
ωo. The probability of a single-photon transition only depends on the energy
content of the on-resonance frequency component — the phases or amplitudes
of other components does not matter!

3.5 Two-photon absorption

Two-photon absorption:

ω2

ω1

|f〉

|g〉

“n”: a fictional state
6
?

?6

ω
2
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The two-photon absorption peak is centered at ωo/2, but contains a distri-
bution of frequency components as well.

Amplitude of the excited state:

af (t) = − 1
~2

∑
n

µfnµng

∫ t2

−∞

∫ t1

−∞
ε(t1)ε(t2)

(En−Ef )/~︷ ︸︸ ︷
eiωfnt1 eiωngt2 dt 1 dt 2.

With some approximation, the transition probability is

P 2-photon
g→f ≈ 1

~4

〈f |µ2 |g〉
ω̄

∣∣∣∣∫ ∞
−∞

ε2(t)eiωot dt
∣∣∣∣2 .

The key property is:

Pf→g ∝
∣∣∣∣∫ ∞
−∞

ε2(t)eiωot dt
∣∣∣∣2 .

This integral can be rewritten in the spectral (frequency) domain, using ε̃(ω) =
A(ω)eiΦ(ω), which is the Fourier transform of ε(t), A(ω), which is the spectral
amplitude, and Φ(ω), which is the spectral phase.∣∣∣∣∫ ∞
−∞

ε2(t)eiωot dt
∣∣∣∣2 =

∣∣∣∣∫ ∞
−∞

ε̃
(ωo

2
+ Ω

)
ε̃
(ωo

2
− Ω

)
dΩ
∣∣∣∣2

=
∣∣∣∣∫ ∞
−∞

A
(ωo

2
+ Ω

)
A
(ωo

2
− Ω

)
ei(Φ(ωo2 +Ω)+Φ(ωo2 −Ω)) dΩ

∣∣∣∣2
Two-photon transitions occur for all pairs of photons with frequencies ωi and

ωj such that ωi +ωj = ωo when ωi and ωj lie within the spectrum of the pulse.
By manipulating the amplitude and phase information of the pulse, the two-
photon absorption probability can be maximized or minimized. Similar ideas
can be extended to exciting target molecular excitations — constructively inter-
fering a certain excitation (e.g. motional mode) while destructively interfering
with others.

3.6 Deterministic quantum computing with one
bit

Deterministic quantum computing with one bit (DQC1) uses one pure bit and
n mixed bits.

|0〉 〈0| H • ?> =<89 :;〈X〉

I
n /

n

U
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ρin = |0〉 〈0| ⊗ I
n

→ 1
2
(
|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0|+ |1〉 〈1|

)
⊗ I
n

→ 1
2
(
|0〉 〈0| I + |0〉 〈1| IU† + |1〉 〈0|UI + |1〉 〈1|UIU†

)
/n = ρf

The measurement is performed on the pure qubit, which traces over all the
mixed qubits.

ρ = Trn{ρf}

=
1
2
(
|0〉 〈0|+ |0〉 〈1|Tr(U†) + |1〉 〈0|Tr(U) + |1〉 〈1|

)
=

1
2

(
1 Tr(U†)

Tr(U) 1

)
Let Tr(U) = a+ ib where a = Re

(
Tr(U)

)
Tr(U†) = (Tr(U))† = a− ib b = Im

(
Tr(U)

)
ρ =

1
2

(
1 a− ib

a+ ib 1

)
=

1
2

(I + aX + bY)

The measured expectation value of X on a pure qubit:

〈X〉 = Tr(ρX) = a = Re
(

Tr(U)
)

〈Y〉 = Tr(ρY) = b = Im
(

Tr(U)
)

DQC1 can be applied to obtain the spectrum of a Hamiltonian. Let U(t) =

e−iHt. Assume thatH is diagonal, so that U =


e−iω1t

e−iω2t

. . .
e−iωN t


where ωk are the energy eigenvalues of H. (Recall the spectral decomposition
theorem, where H =

∑
k αk |k〉 〈k| in some basis |k〉.)

Now, the DQC1 algorithm can be run as a function of t:

|0〉 〈0| H • ?> =<89 :;〈X(t)〉

I
n /

n

e−iHt
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Re
(∑

k

(
e−iωkt

))
Im
(∑

k

(
e−iωkt

))
〈X

(t
)〉

t

〈Y
(t

)〉

t

Fourier transform of the energy spectrum of H

ω1 ω2 ω3 ω4


