The Cardiovascular Effects of Prolonged Sitting or Standing & The Effects of Sit-Stand Workstations

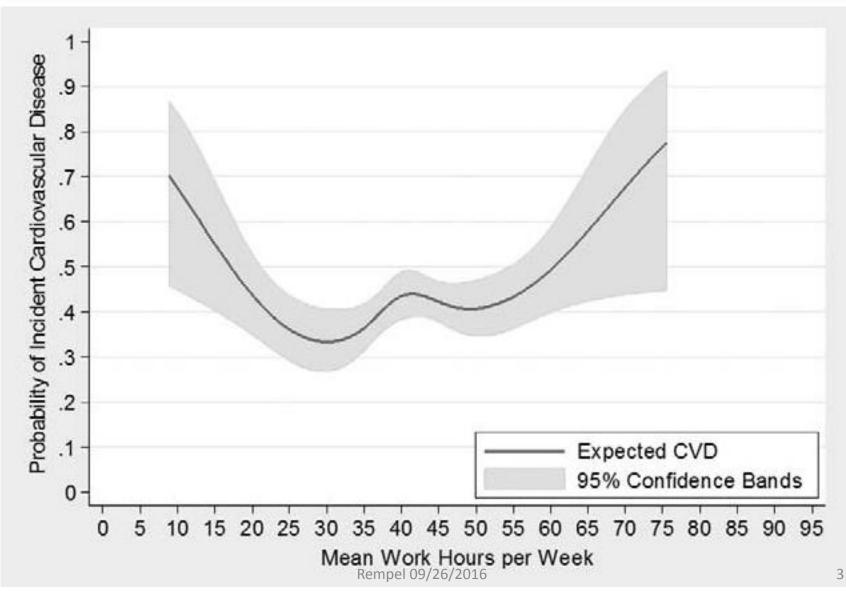
David Rempel, MD, MPH, CPE

Professor Emeritus, Department of Medicine University of California San Francisco

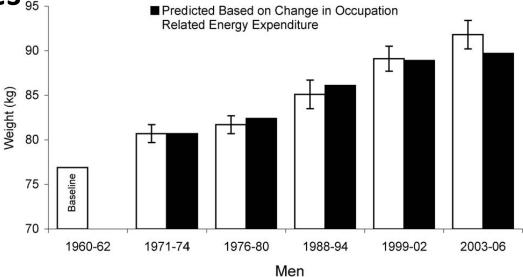
Professor, Department of Bioengineering University of California, Berkeley

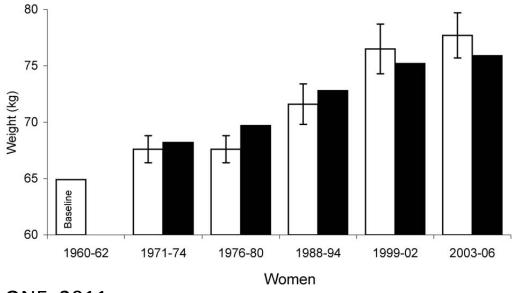
[I have no financial interests]

Sit – Stand and Health


- Reduces back-neck pain.
- <u>Reduces cardiovascular risk?</u>

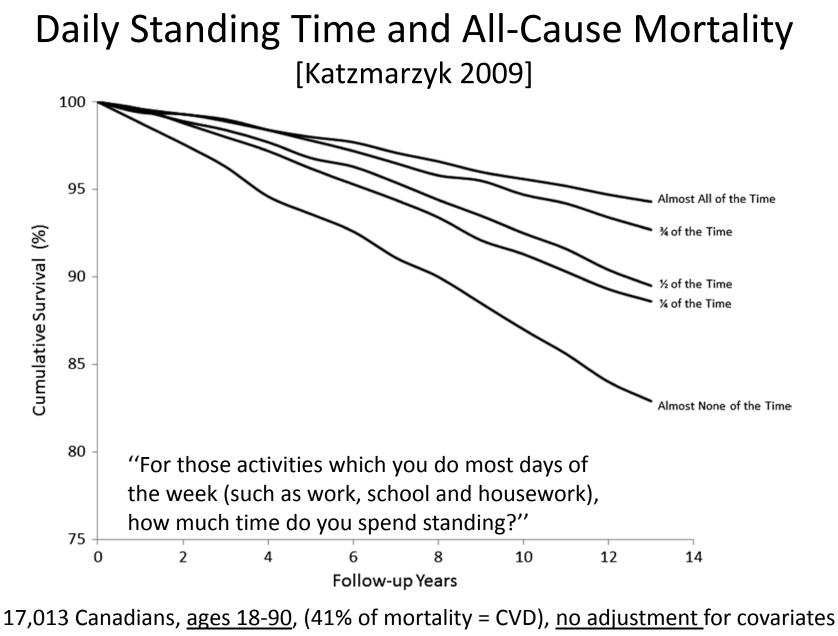
"You were right-I do feel more productive standing up"


Work hours and CVD


US Prospective PSID Population Survey 1986-2011, N=22,000; adjusted for age, sex, industry, occupation. [Conway et al. JOEM 2016; 58(3):221]

Predicted Weight Changes

DNHANES



Church, Thomas, Tudor-Locke, et al. PLoS ONE, 2011

Rempel 09/26/2016

Do sit-stand workstations reduce CVD risk?

- Does occupational sitting increase CVD?
- Does occupational physical activity decrease CVD?
- Can sit-stand reduce BMI?
- Can sit-stand reduce blood pressure?

Daily Standing Time and All-Cause Mortality [Katzmarzyk 2014]

Daily Standing Time

Adjusted for age, smoking, alcohol, LTPA, physical activity readiness

Rempel 09/26/2016

Total Sitting Time & CVD

- Borodulin 2014: N= 4,516 x 8.6 yrs; 25-74 yo, <u>HR 1.06</u> (1.01-1.11) (h/d)
- Matthews 2015: N=154,614 x 6.8 yrs; 59-82 yo
 - Male HR =1.10 (5-7h) =1.18 (7-9h) =1.29 (9-12h) =1.42 (>12h)
 - Female: HR =1.07 (5-7h) =0.99 (7-9h) =1.36 (9-12h) =1.47 (>12h)
- Petersen 2014: N= 71,363 x 5.4 yrs; 18-99 yo; HR= 0.97 (6-10h); =<u>1.27</u> (>10h)
- Chau 2015: N= 50,817x 3.3 yrs; <u>HR 2.15 (1.34-3.44) (>10h vs < 4h)</u>
 - Occupational sitting time does not increase risk

Occupational Sitting Time & CVD

- Stamatakis 2013:N= 11,168x12.9 yrs; >40 yo<u>; **HR=0.94**</u> [sit v stand-walk]
- Moller 2016: N= 11,996x19.0 yrs; 21-69 yo; HR=0.98 (0.88-1.09)
- Kikuchi 2015 (all cause mortality)

office

M N= 15,863x10.0 yrs; 57 yo; <u>HR=0.87</u> (0.75-1.01) [>3h/d)

F N= 12,005x10.2 yrs; 57 yo; <u>HR=1.03</u> (0.77-1.39) [>3h/d]

Adjustment: gender, age, employment, education, smoking, LTPA, BMI, diet, alcohol, serum cholesterol, hypertension

London Bus Drivers Study

Morris J et al., Lancet 1953.

Drivers at increased risk for incident CHD compared to conductors: 2.7 v 1.9/1000.

"Differences due to differences in physical activity"

Rempel 09/26/2016

London Bus Drivers Study

Morris J et al., Lancet 1953.

Drivers at increased risk for incident CHD compared to conductors: 2.7/1000 vs 1.9.

"Differences due to differences in physical activity"

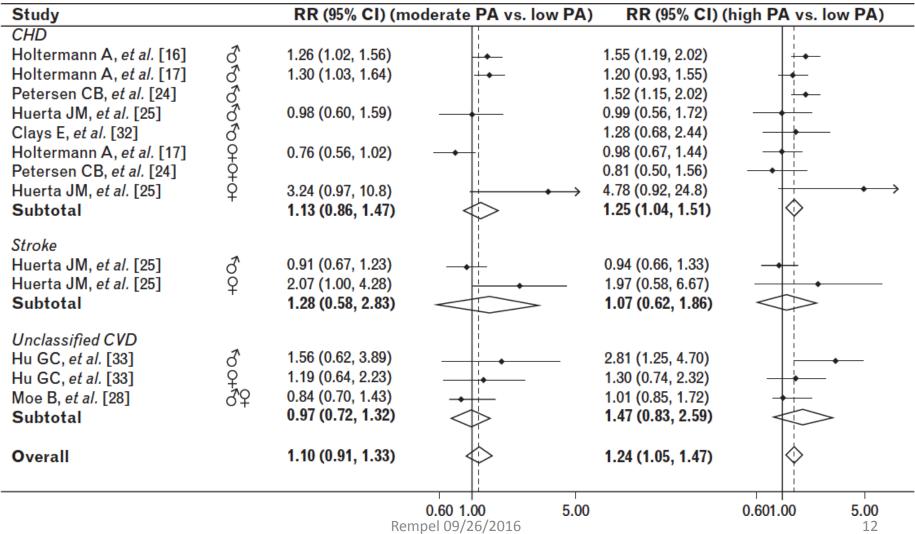
No control for stress, BP, smoking, or BMI

Urban bus drivers have elevated BP.

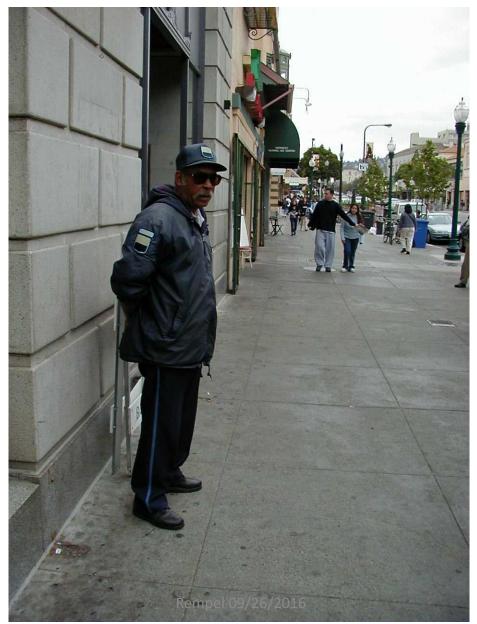
Leisure Time Physical Activity (LTPA) Reduces CVD

Study		RR (95% CI) (mod	erate PA vs. low PA)	RR (95% CI) (high	n PA vs. Iow PA)
CHD					
Holtermann A, <i>et al.</i> [16]	ð	0.72 (0.58, 0.88)		0.59 (0.41, 0.85)	
Petersen CB, et al. [18]*	0,0,10 10 10 10 0,0,0,0,0,0,0,0,0,0,0,0,	0.77 (0.61, 0.98)		0.57 (0.50, 0.81)	
Petersen CB, <i>et al.</i> [24]	ð		1	0.73 (0.56, 0.95)	
Huerta JM, <i>et al.</i> [25]	ð	0.84 (0.50, 1.40)		0.86 (0.49, 1.53)	
Clays E, <i>et al.</i> [32]	2	0.04 (0.00, 1.40)		0.76 (0.43, 1.32)	
Petersen CB, <i>et al.</i> [18]*	0	0.82 (0.62, 1.09)		0.74 (0.57, 0.96)	
	Ť	0.02 (0.02, 1.09)	- <u>i</u> •	-	
Petersen CB, et al. [24]	¥	0.77 (0.45 (.00)	1	0.98 (0.61, 1.58)	+ +
Huerta JM, <i>et al.</i> [25]	¥	0.77 (0.45, 1.32)		0.70 (0.31, 1.62)	
Chomistek AK, <i>et al.</i> [30]	Ŷ	0.58 (0.42, 0.78)		0.56 (0.41, 0.77)	+
Wen CP, <i>et al.</i> [13]	ďΫ	0.65 (0.48, 0.86)		0.57 (0.41, 0.80)	
Gulsvik AK, et al. [19]	55	0.77 (0.66, 0.90)		0.66 (0.52, 0.83)	
Bell EJ, <i>et al.</i> [31]	đģ	0.59 (0.47, 0.75)		0.66 (0.50, 0.86)	_ -
Subtotal		0.72 (0.66, 0.78)	\diamond	0.66 (0.60, 0.72)	\diamond
			× .		
Stroke	7	0.00 (0.00 4.40)		4 40 (0 70 4 00)	
Huerta JM, <i>et al.</i> [25]	5	0.83 (0.60, 1.16)	+	- 1.12 (0.78, 1.60)	
Autenrieth CS, et al. [26]	0,0,10 t0 0, 10 t0	0.80 (0.61, 1.05)		0.76 (0.56, 1.02)	
Huerta JM, <i>et al.</i> [25]	ę	0.64 (0.44, 0.96)		0.45 (0.22, 0.90)	
Autenrieth CS, et al. [26]	9	0.98 (0.75, 1.29)	i 🛉	— 0.94 (0.67, 1.33)	· · · · · · · · · · · · · · · · · · ·
Wen CP, <i>et al.</i> [13]	37	0.79 (0.63, 0.99)		0.48 (0.35, 0.65)	_ _
Gulsvik AK, et al. [19]	39	0.83 (0.67, 1.03)		0.66 (0.47, 0.93)	_
Bell EJ, <i>et al.</i> [31]	3°P	0.65 (0.50, 0.83)	+ _	0.72 (0.53, 0.98)	
Subtotal	01	0.79 (0.72, 0.88)	\diamond	0.72 (0.58, 0.90)	\diamond
Unclassified CVD	7		1	0.04 (0.40, 0.40)	
Cicero AF, et al. [22]	50	0.00 (0.00, 4.40)		0.34 (0.19, 0.48)	
Chomistek AK, et al. [23]	O.	0.98 (0.80, 1.19)		- 0.80 (0.66, 0.97)	
Hu GC, <i>et al.</i> [33]	0,0,0,0,0,0,+0+0+0+0,0,0,	0.82 (0.51, 1.31)		- 0.61 (0.38, 0.95)	
Shortreed SM, <i>et al.</i> [34]#	ð			0.67 (0.52, 0.88)	- *
Borch KB, et al. [12]	Ŷ	0.45 (0.29, 0.58)	-	0.35 (0.13, 0.50)	
Park S, <i>et al.</i> [15]	Ŷ	0.78 (0.60, 1.01)		0.53 (0.40, 0.71)	
Cicero AF, et al. [22]	Ŷ			0.25 (0.15, 0.42)	-
Hu GC, et al. [33]	Ý	1.00 (0.58, 1.65)		0.94 (0.58, 1.60)	
Shortreed SM, et al. [34]#	ģ			1.00 (0.75, 1.33)	
Reddigan JI, et al. [14]	Å9	0.72 (0.62, 0.84)		0.72 (0.62, 0.85)	
Mathieu RA 4th, <i>et al.</i> [20]	25	,,		0.56 (0.32, 0.97)	
Hamer M, <i>et al.</i> [21]	20	0.74 (0.43, 1.25)		- 0.63 (0.40, 0.99)	
de Munter JS, <i>et al.</i> [27]	20	011 (0140, 1120)		0.53 (0.35, 0.81)	•
Moe B, <i>et al.</i> [29]	20	0.83 (0.70, 0.97)			
Subtotal	ΟŦ	0.83 (0.70, 0.97) 0.77 (0.67, 0.90)		0.66 (0.53, 0.81)	$\overset{i}{\diamond}$
Sublotai		0.11 (0.01, 0.90)	$\mathbf{Y}_{\mathbf{r}}$	0.61 (0.52, 0.72)	Y
Overall		0.76 (0.71, 0.81)	\$	0.66 (0.60, 0.72)	\diamond
		,,		Rempel 09/26/2016	
			0.20 1.0	00 1.60	0.20 1.00 1.60

LTPA and CVD: Meta-analysis [Li et al., 2013]

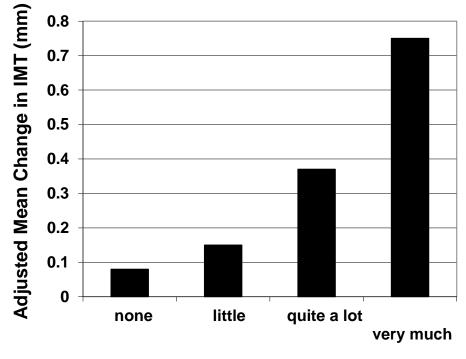

- 23 prospective studies
- 790,000 adults
- 22,000 incidents
- Confounders controlled
- Moderate level LTPA reduced CVD risk 20-30%
- High level LTPH reduced CVD risk 30-40%

11 5


Occupational Physical Activity (OPA) Does Not

[Li et al. Current Opinion in Cardiology. 28(5):575-583, 2013]

- 7 prospective studies with adjustment for covariates
- Moderate OPA increased risk 5-15%
- High OPA increased risk 10-30%

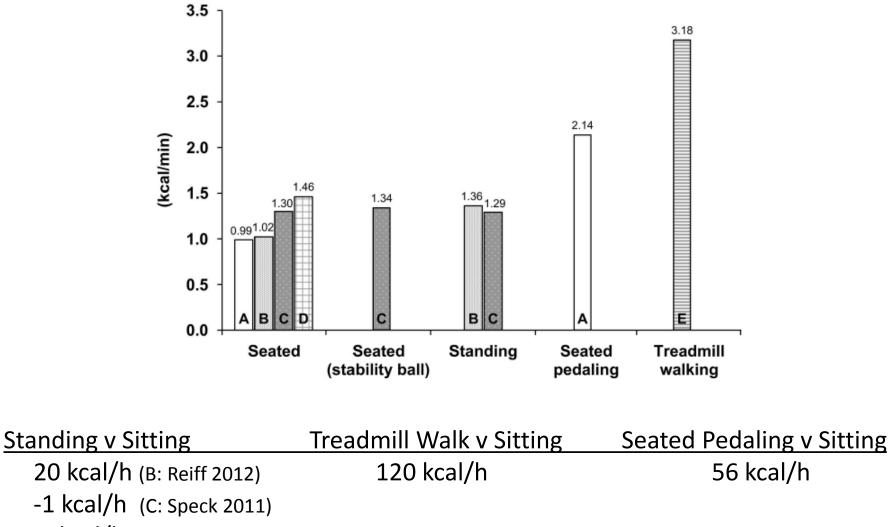


Standing at Work Increases CVD

Standing Increases Carotid Atherosclerosis

4-year Change of Carotid Intima Media Thickness (IMT), adjusted for Age, Technical, Physical and Psychosocial Job Factors, Income, Biological and Behavioral Factors: Men with IHD

Standing at Work


Krause et al., Scand J Work Environ Health, 2000

Standing compared to Smoking

Krause et al., Scand J Work Environ Health, 2000

NEPA: Non-exercise physical activity Tudor-Locke C et al, Int J Obesity 2014

4 kcal/h (Beers 2008)

Use of Sit-Stand Workstations

• Increases standing 50-70 minutes per day.

Does Work NEPA reduce Blood Pressure? 8 week RCT [Graves et al, 2015]

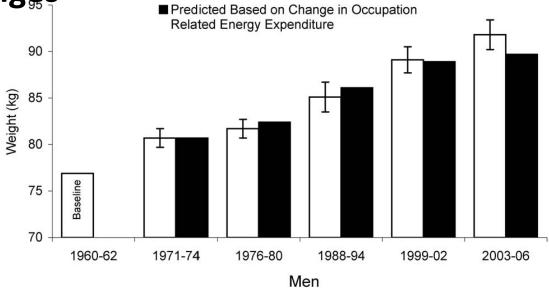
Control	(N=21)

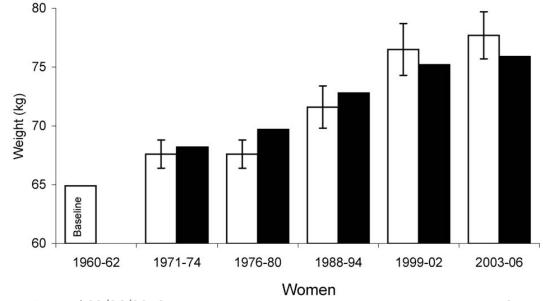
Sitting Standing Walking 402 min/d 44 min/d 34 min/d

	Sit-Stand Desk (N=23)					
Δ	Sitting	-87.6	min/d			
Δ	Standing	72.9	min/d			
Δ	Walking	7.1	min/d			

Δ Glucose -0.09 mmol/L
Δ Triglycerides 0.11 mmol/L
Δ Cholesterol -0.40 mmol/L
Δ SBP -1.6 mmHg
Δ DBP -2.5 mmHg
[All differences NS]

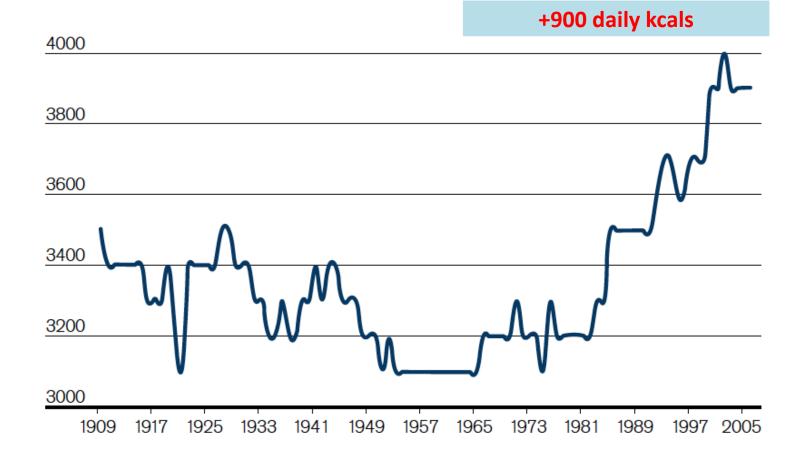
Sitting and Lipid Profiles [Saidj 2013]


- Danish working adults; N=2544; 18-69 yr
- <u>Leisure time</u> sitting (3.1h) assoc with increased TGs, cholesterol, body fat, BMI, waist circumference. (no assoc with Hgb A1c, Plasma glucose)
- <u>Occupational time</u> sitting (4.1h) no associations
- Adjusted: sex, age, ed, smoking, alcohol, diet, PA


Does Work NEPA reduce Blood Pressure? 4 month RCT [Mainsbridge, JOEM 2014]

- Every hour software prompt to <u>stand up and move</u>
- NEPA of 8 minutes/day reduced resting mean arterial pressure (MAP) by 10 mmHg after 4 months.
- Strength: RCT
- Limitations:
 - small samples (N=11+18)
 - randomization not successful (controls 5.5 years older)
 - no blinding
 - no age-adjustment
 - no between group-effects analyzed, only pre-post

Predicted Weight Changes


DNHANES

Church, Thomas, Tudor-Locke, et al. PLoS ONE, 2011

US Caloric Consumption per Day

USDA, Credit Suisse

Conclusions

- No convincing epidemiologic evidence that sitting at work increases CVD.
- Standing at work increases CVD.
- Occupational physical activity does not decrease CVD.
- No epidemiologic evidence that sit-stand workstations decrease CVD.
- Sit-stand used standing only 50-70 minutes per day inadequate to decrease BMI.
- Standing NEPA effects on BP uncertain.

References: Sit-Stand

- Borodulin et al. Daily sedentary time and risk of cardiovascular disease: the National FINRISK 2002 Study. J Phys Act Health 2014; 12(7):904-8.
- Chau JY et al. Cross-sectional associations of total sitting and leisure screen time with cardiometabolic risk in adults, Results from the HUNT Study. J Sci Med Sport 2015; 17:78-84.
- Church TS et al. Trends over 5 decades in US occupational-related physical activity and their associations with obesity. PLoS ONE 2011; 6(5):e19657.
- Graves LEF et al. Evaluation of sit-stand workstations in an office setting: a randomized controlled trial. BMC Pub Health 2015; 15:1145.
- Katzmarzyk P. Standing and mortality in a prospective cohort of Canadian adults. Med & Sci Sports Exerc. 2014; 46(5):940-946.
- Kikuchi et al. Occupational sitting time and risk of all-cause mortality among Japanese workers. SJWEH 2015; 41(6):519-528.
- Korshøj et al., Does aerobic exercise improve or impair cardiorespiratory fitness and health among cleaners? A cluster randomized controlled trial. SJWEH 2015; 41(2):140-152.
- Krause et al., Occupational physical activity and 20-year incidence of acute myocardial infarction: results from the Kuopio Ischemic Heart Disease Risk Factor Study. Scand J Work Environ Health 2015; 41(2):124-139.
- Krause et al. Standing at work and progression of carotid atherosclerosis. SJWEH 2000; 26(3):227-236.
- Levine JA et al. Energy expenditure of nonexercise activity. Am J Clin Nutr 2000; 72:1451-4.

References: Sit-Stand

- Li et al. Physical activity and risk of cardiovascular disease: what does the new epidemiological evidence show? Curr Opin Cardiol 2013; 28(5):575-583.
- Mainsbridge CP et al. The effect of an e-Health intervention designed to reduce prolonged occupational siting on mean arterial pressure. JOEM 2014; 56(11):1189-1194.
- Matthews CE et al. Mortality benefits for replacing sitting time with different physical activities. Med Sci Sports Exer 2015; 47(9):1833-40.
- Moller SV et al. Multi-wave cohort study of sedentary work and risk of ischemic heart disease. SJWEH 2016; 42(1):43-51.
- Morris J et al., Coronary heart-disease and physical activity of work. Lancet 1953; 28: 1053-7 and 1111-20.
- Petersen CB et al. Total sitting time and risk of myocardial infarction, coronary heart disease and all-cause mortality in a prospective cohort of Danish adults. Int J Behav Nutr Phys Act 2014; 11:13.
- Saidj M et al. Separate and joint associations of occupational and leisure-time sitting with cardiometabolic risk factors. PLOS One 2013; 8(8):e70213.
- Stamatakis E et al. Are sitting occupations associated with increased all-cause, canceter, and cardiovascular disease mortality risk? A pooled analysis of seven British Population cohorts. PLOS One 2013; 8(9):e73753.
- Tudor-Locke C et al. Changing the way we work: elevating energy expenditure with workstation alternatives. Int J Obesity 2014; 38:755-765.
- Wang A, Arah OA, Kauhanen J, Krause N. Effects of leisure-time and occupational physical activities on 20-year of acute myocardial infarction: mediation and interaction. SJWEH 2016; 42:423-434.