

What we Know about Prolonged Sitting and Standing – Implications for Wellness and MSDs

Importance and Role of Training: Effects and Benefits in Office and Computer Work Environments

> Michelle M. Robertson, PhD., CPE October 3, 2016

LMRIS

generating knowledge to help people live safer and more secure lives

Vision:

To be the premier research organization in the world dedicated to the reduction of injuries and disability

Mission:

To conduct innovative scientific research to help reduce injuries and disability at home, at work, in the community and on the road.

Overview

Creating Safe, Healthy, and Productive Office Environments

- Complexities of office & computer environments and their impact
- Holistic Macroergonomics/Socio-technical systems approaches to prevention
- Conceptual model
- Use of Instructional System Design (ISD) approach
- Effects of training and sit/stand workstation intervention
- Take-aways

Problem: Unsafe Work Environments and Poor Performance

 Computer and office work is associated with an increase in Work-Related Musculoskeletal Disorders (WMSDs) and Visual Discomfort

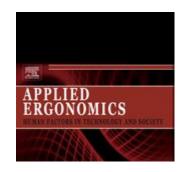
Multiple contributing factors:

- Physical workspace design
 - Prolonged mouse use related to increased risk of upper extremity MSD
 - Related physical exposure: non-neutral posture and static muscle loading; lack of movement and posture variation
 - Low level of usage of sit-stand function
- Work organization and psychosocial factors
 - Lack of job control, high work pace, and low supervisory support
- Technology design
 - Poor software interface design

Liberty Mutual. RESEARCH INSTITUTE FOR SAFETY Bernard, et al., 1994; Bongers, 1993; 2009 ljmker et al., 2007; Geer, et al., 2006, Aaras, et al., 2001; Katz 2000; Schlossberg, 2004; Burgess-Limerick 1999, Fagarasanu 2004, Hagg 2000; Wilks et al., 2006

Purpose of Research: Computerized Office Environment

- Study the effects of ergonomic training and adjustable/flexible workspace design on:
 - Musculoskeletal and visual discomfort
 - Computing behavior (sit-stand behaviors; work arrangement; postures)
 - Workspace satisfaction and comfort
 - Job & environmental control
 - Group effectiveness
 - Ergonomics climate (management support of ergonomics needs)
 - Performance: Business Process Efficiency; Quality


Studied cumulative effects of performing computer work

Work System Model: A Macroergonomics Framework

Extended Laboratory Intervention Study: Training and Sit/Stand Workstation Design Published: Robertson, Ciriello, & Garabet, Applied Ergonomics 44 (2013) 73-85

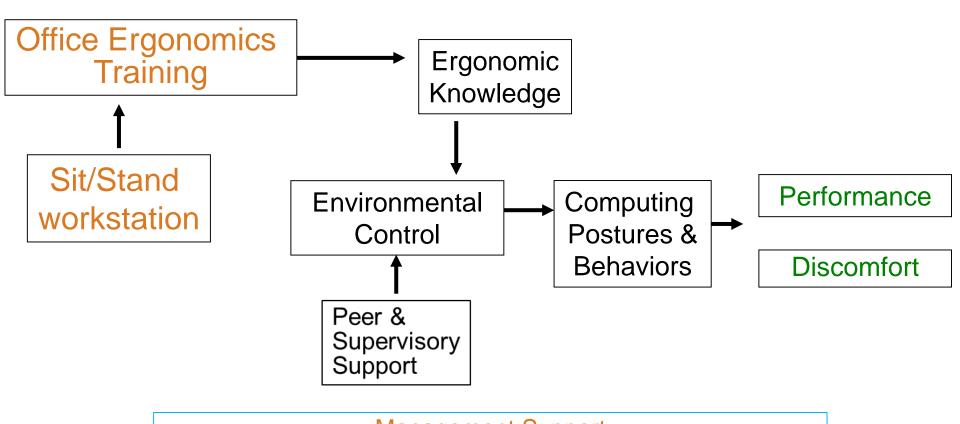
Studied cumulative effects of performing computer work

Research Focus: Environmental Control

Training and Flexible Workplace Design → Control over Environment and Job

Control as a function of:

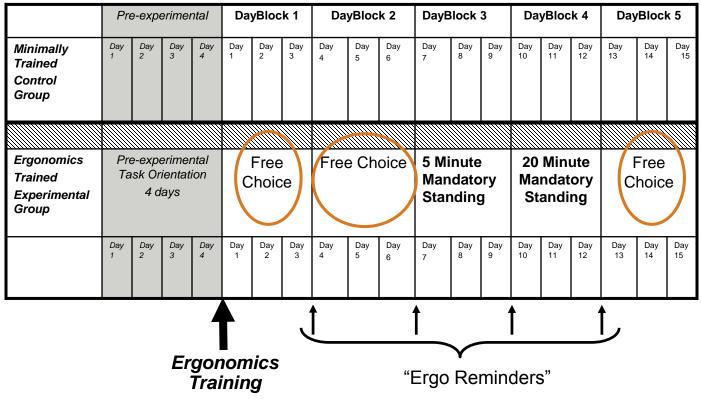
- 1. <u>Training</u> to enhance opportunities for control
 - Exert knowledgeable control over one's workspace
- 2. <u>Availability</u> of adjustable and flexible workspaces
- 3. Combination allows for frequent varied postures, movement, and pauses
 - 1. Vary distribution of static load by frequent posture changes


Conceptual underpinnings:

Job Control & Job Demand (Karasek & Theorell, 1990)

Job stress (McLaney & Hurrell, 1998)

Conceptual Model

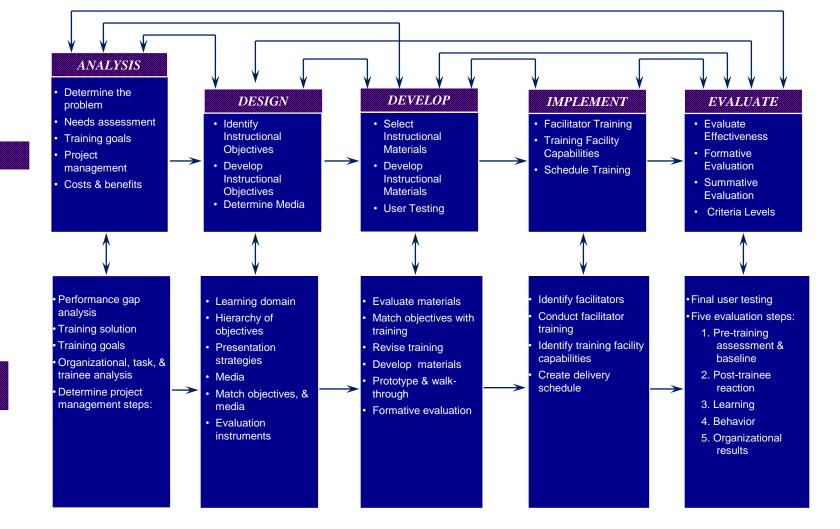


Research Questions

- Will musculoskeletal and visual discomfort be <u>minimal</u> as a function of training and workspace adjustability for the Trained group?
- Will performance be <u>higher</u> for the Trained group?
- Will office ergonomics knowledge and intent to arrange office workstation set-up <u>increase</u> for the Trained group?
- Will alternating between sitting and standing computing postures and the amount of time standing be <u>higher</u> for the Trained group?

Study Design: Randomized Control Trial

Liberty Mutual.


Randomized schedule of 3 cognitive demand levels

Methods

Participants and Tasks

- Participants:
 - 22 females without pre-existing musculoskeletal and visual symptoms
 - Basic administration computing skills
 - No significant difference between groups for age and BMI (p>.05)
- Experimental task and cognitive demand levels:
 - Simulated customer service representative job
 - Based on a job analysis, the following were determined:
 - Task complexity (cognitive demands)
 - Quality control and proficiency
 - 7 hour day; 15 days

Method

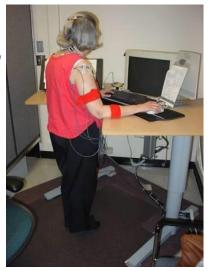
Task Activities

Ergonomic Training Objectives:

	Bocognizing work-related musculoskeletal
	Recognizing work-related musculoskeletal
	disorders and risk factors
	 Understanding the importance of varying work
	postures
Training	Knowing how to rearrange the workstation to
Objectives	maximize the "comfort zone",
	 Recognizing and understanding visual issues in
	the office environment and reducing visual
	discomfort
	 Understanding computing habits (rest breaks) and
	knowing how in to change work-rest patterns
	• Knowing how to use the various workspaces for
	individual and group work
	• Being aware of the company's existing health and
	ergonomic programs
	Knowing how to obtain ergonomic accessories
	through the company's programs

Ergonomic Training & Experimental Set-up

Trained Group received two-phase ergonomic training and practice periods


Phase I:

- 1.5 hr. workshop
 - Slide and video presentation
 - Case studies & de-briefing
 - · Hands-on practice periods with "ergo buddies"
- Phase II:
 - Practice period of standing
 - Ergonomics reminders
 - Vary work postures; ergo breaks

Minimally Trained Group received:

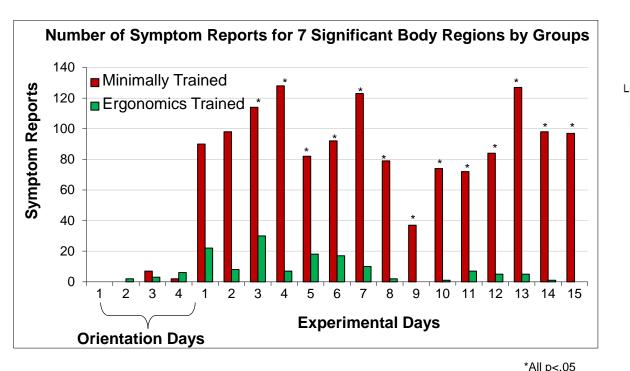
- Brief, standard orientation of work setting
- Manufacturer pamphlet of chair adjustments

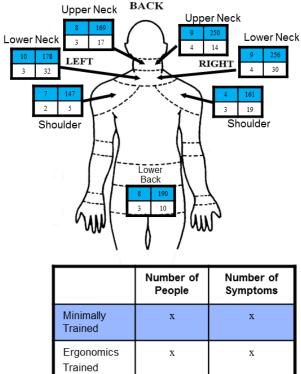
Participant Workstation

Data Collection

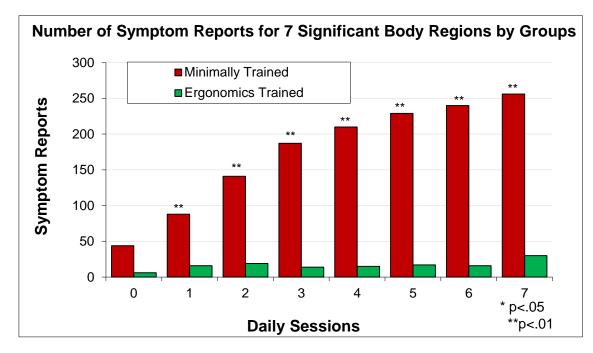
Data Collection and Outcomes

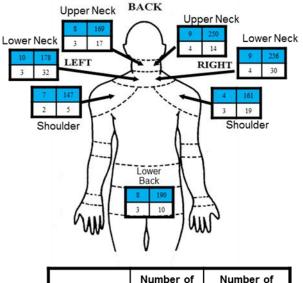
- Musculoskeletal symptoms:
 - Scale Range: 0-10 anchored by 8 descriptors
 - » No Pain/Discomfort, Just Noticeable Pain/Discomfort, Very Little Pain/Discomfort,Extreme Pain/discomfort
- Visual discomfort/pain rating:
 - Yes/No response
 - 6 symptoms (blurry, difficulty focusing, itching, aching, sensitive, & burning)
- Performance Data:
 - Quantity
 - Number of faxes completed daily
 - Quality Control
 - Daily accuracy score
- Administered:


iberty Mutual


- Baseline
- Hourly; 7 sessions per day
- 15 days

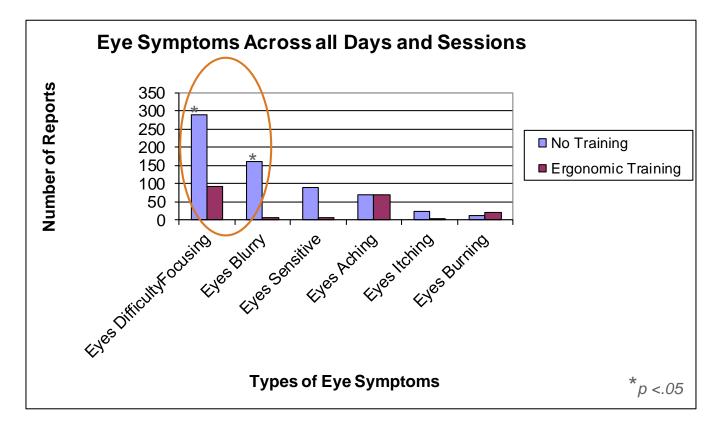
Results


Number of Reported Musculoskeletal Discomfort for Top 7 Body Parts across All 15 Days



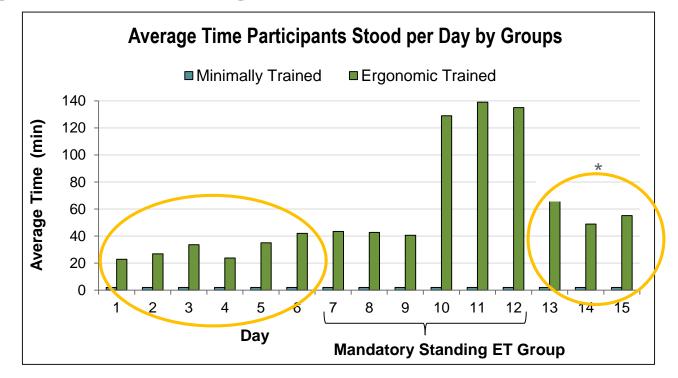
Liberty Mutual. RESEARCH INSTITUTE FOR SAFETY

Reported Musculoskeletal Discomfort for Top 7 Body Parts across all 7 Daily Sessions



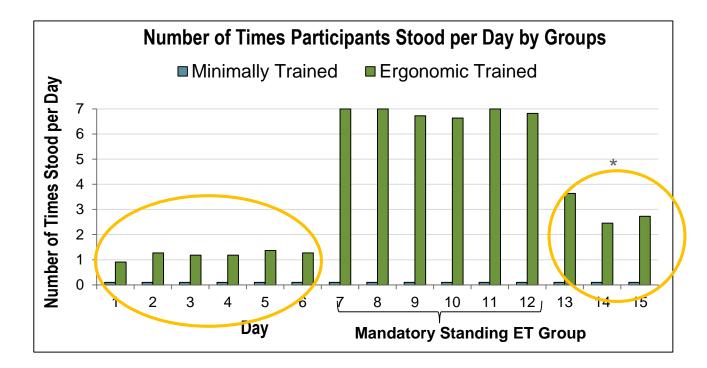
	Number of People	Number of Symptoms
Minimally Trained	х	х
Ergonomics Trained	х	Х

Visual Discomfort

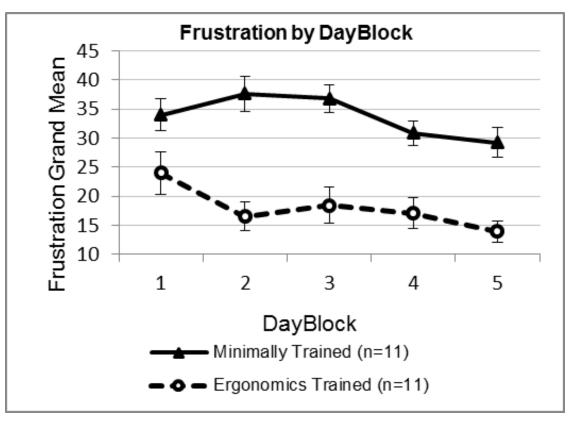

Performance Results: Quantity and Quality

 <u>No</u> significant difference found between groups for the <u>number</u> of faxes completed

- <u>Significant</u> difference found between groups for <u>accuracy</u> across all 15 days
 - Trained group exhibited higher quality scores


Behavioral Changes: Varying Computing Postures of Sitting and Standing

Minimally Trained group did not stand at all during the experiment


Behavioral Changes: Varying Computing Postures of Sitting and Standing

Minimally Trained group did not stand at all during the experiment

Subjective Ratings of Cognitive Demands

Liberty Mutual.

Minimally Trained group experienced significantly higher frustration compared to the Ergonomics Trained group in the afternoon periods during DayBlock 5 (p=.011).

Summary

Research Findings Summary

- Musculoskeletal and Visual Discomfort:
 - Significantly *greater* reporting of musculoskeletal and visual symptoms for Minimally Trained Group
 - Musculoskeletal and visual symptoms were minimal for Trained Group
- Workload: Number of faxes completed
 - Equal, no-significant difference between groups
- Performance accuracy (quality control)
 - Significantly *higher* for the Trained group
 - Consistent results with Chair + Training; 17.7% productivity increase—accuracy (Amick, Robertson et al., 2008; Robertson, Amick et al., 2009)
- Varying work postures
 - Significant changes in behaviors for the Trained group as reflected in standing <u>more often</u> and for <u>longer</u> <u>amounts of time</u>
- Greater <u>sense of control</u> over the work environment due to ergonomic knowledge for the Trained group
 - Consistent results with workspace + training field intervention (Robertson et al., 2008; Green & Briggs, 1989)

Concluding Remarks

Take-aways: Designing Office Ergonomics & Safety Programs

- Use a systems-based approach
 - Comprehensive training and practice linked to business goals
 - Management commitment to create a sustainable and supportive culture
 - Being responsive to workers expressed ergonomics needs
- Leverage the concept of environmental control
 - Training allows employees to <u>knowledgeably</u> exert control over their adjustable/flexible physical environment
 - Providing flexible/adjustable work equipment, while important, is not sufficient
- Training is necessary for employees to optimize safety and effectiveness in their workspace
 - Training allows for the integration of ergonomics into the organization
 - Plays a key role in linking corporate goals to ergonomics practices

2016 Staff -MRIS

