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Abstract: Metal ions, including copper and zinc, have been implicated in the pathogenesis 

of Alzheimer’s disease through a variety of mechanisms including increased amyloid-β 

affinity and redox effects. Recent reports have demonstrated that the amyloid-β monomer 

does not necessarily travel through a definitive intermediary en-route to a stable amyloid 

fibril structure. Rather, amyloid-β misfolding may follow a variety of pathways resulting in 

a fibrillar end-product or a variety of oligomeric end-products with a diversity of structures 

and sizes. The presence of metal ions has been demonstrated to alter the kinetic pathway of 

the amyloid-β peptide which may lead to more toxic oligomeric end-products. In this work, 

we review the contemporary literature supporting the hypothesis that metal ions alter the 

reaction pathway of amyloid-β misfolding leading to more neurotoxic species. 

Keywords: amyloid-metal effects; amyloid aggregation; multiple pathways kinetics; 

Alzheimer’s disease 

 

1. Introduction 

Amyloid-β (Aβ), the protein implicated in Alzheimer’s disease (AD) has been demonstrated to form 

a wide variety of structures including fibrils and a subset of smaller structures generically termed as 

amyloid oligomers [1]. Earlier research defined the term “oligomer” as a smaller pre-fibrillar structure 

lying on the kinetic pathway en-route to a mature fibril, however recent reports provide increasing 
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evidence that these structures lie on independent and distinct kinetic pathways [2–4]. In addition, some 

species of oligomers, an end-product in and of themselves, have been demonstrated to convert to 

mature amyloid fibrils in the presence of small molecular catalysts [5]. 

An extensive amount of literature has been published on the effects of metal ions such as copper, 

zinc and iron, on Aβ aggregation and AD symptoms [6–12]. Metal ions have been demonstrated to 

alter the structure of amyloid aggregates and to inhibit fibril formation in some cases [13–17]. In 

addition, higher than physiological concentrations of metal ions have been found within the brain 

parenchyma and isolated from amyloid plaques [18]. 

An increasing amount of evidence indicates that the presence of metal ions alters the kinetic 

pathway of amyloid-β directing its aggregation away from a more stable fibrillar structure and towards 

a pathway resulting in more neurotoxic structures. This field of research is imperative to furthering 

pharmaceutical therapies which may, if not inhibit aggregation, at least direct aggregation along a less 

toxic pathway.  

In this review, we cover the effect of metal ions on amyloid aggregate structure and the kinetics of 

aggregation and address how metal ions affect the reaction pathway of the amyloid aggregation process.  

2. Fibrillar and Oligomeric Structures 

2.1. The Amyloid Fibril 

The amyloid fibril is intrinsic to the protein backbone accessible to all polypeptides: no primary 

sequence encodes for the fibril structure [1]. Despite early difficulties with solubility and crystallization, 

a number of groups have been able to determine the fibril structure using NMR and x-ray  

diffraction [19,20]. Mature fibrils of all proteins have been shown to be unbranched, approximately  

10 nm in diameter composed of 2–4 nm wide protofilaments which wrap around one another to form 

the mature fibril [21]. Fibrils are composed of β-sheets which stack in a parallel or antiparallel form 

with the β-sheets perpendicular to the fibril axis [22] with hydrogen bonds parallel to the fibril axis 

holding the β-sheets together as shown in Figure 1 [21,23].  

Figure 1. Cartoon of β-sheet amyloid structure based on NMR spectra. Notice the two beta-

sheets folding upon one another and stacked in a parallel manner. Figure reprinted with 

permission from Luhrs, et al. 2005). Copyright 2005, National Academy of Sciences, USA. 

 



Biomolecules 2014, 4 103 

 

 

Nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations have 

detected a salt bridge between Asp23 and Lys28 which is imperative for the self-dimerization of 

amyloid-β unto itself and an important element of fibril structure and further aggregation [24–27]. All 

fibrils have been shown to form a left-handed helix [28,29]. An increasing body of evidence has shown 

that the β-sheets within fibrils are arranged in a parallel conformation [30,31] although metastable  

anti-parallel stacking can occur as well [24]. These anti-parallel sheets may, however, eventually 

evolve towards a parallel conformation when in the presence of other parallel protofibrils [32]. 

2.2. The Amyloid Oligomer 

Recent research has shown that oligomers are the neurotoxic species in a variety of neurodegenerative 

amyloid diseases [33,34]. The term “oligomer” is a broad term used to denote some form of non-fibrillar 

aggregates. The observed species identified as oligomers include disordered aggregates [33], micelles [35], 

protofibrils [36,37], prefibrillar aggregates [34], toxic amyloid-beta fibrillar oligomers (TABFO’s) [38], 

amyloid diffusible ligands [39], prefibrillar oligomers (PFO’s) [40], globulomers [41] and annular 

protofibrils (APF’s) [42]. Perhaps the most interesting of these oligomeric structures is the membrane-

associated ion channel referred to by Glabe as the APF which provides a direct biophysical mechanism 

explaining many AD symptoms. The APF has been demonstrated to act as a calcium ion channel 

affecting cellular homeostasis [43–46].  

While this ever expanding list of amyloid species is fascinating, the discovery of new amyloid 

species has not been without criticism. Benilova et al. have argued that these species may in fact be  

“a way to explain inconsistencies in existing models without applying the scientific rigor needed to 

make real progress” [47]. In addition, it is very likely that many of these species, synthesized in vitro 

under very controlled conditions are not physiologically present and therefore hold little relevance for 

clinical Alzheimer’s disease research. 

Recently, Gu et al. were able to determine further details about the molecular structure of an 

amyloid-β oligomer using spin labeling [48]. Results from their work demonstrated that the amyloid 

hairpin can arrange itself in a variety of conformations (side-by-side and top-and-bottom) which may 

begin to explain the variety of oligomeric species that have been observed.  

While an NMR or x-ray diffraction atomic level structure of amyloid-β has yet to be determined, 

Eisenberg and colleagues were recently able to obtain an x-ray diffraction structure of cylindrin which 

is similar to amyloid-β [49]. Their diffraction studies indicated that the cylindrin oligomer resembles a 

beta-barrel. While this work was conducted in solution, their observations tend to support the amyloid 

ion channels in lipid bilayers observed by Lal’s group [44,46,50–52].  

It has been also reported that the structure of oligomers and fibril formation itself is greatly affected 

by surfaces [53] as well as lipid membranes [54–56]. For example, protofibrils [53] (Figure 2), are 

unstable in solutions but can be stabilized by surfaces. Moores and others, [53,57,58] demonstrated 

that hydrophobic surface promotes the aggregation of amorphous structures, while charged surfaces 

promote the formation of protofibrils and fibrils. Hane and others [54,55,59,60] demonstrated that 

amyloid-β interactions with lipid membrane are defined by the lipid composition and charge and 

induce various defects in the membrane itself. Jang et al. demonstrated that multiple sub-units of 
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amyloid-β fragments can form ion pores in the membrane which allow the passage of calcium ions 

leading to neuronal degeneration [61]. 

Figure 2. Diagram summarizing known amyloid-β aggregation pathways. The aggregation 

begins as an amyloid- β (Aβ) monomer which dimerizes eventually forming OC+ fibrillar 

oligomers (black pathway) [62]. The fibrillar oligomers polymerize to form mature amyloid 

fibrils [13]. Alternatively, the amyloid dimer can form A11+ prefibrillar oligomers (PFO) 

forming protofibrils (red pathway) [63,64]. These protofibrils may undergo an en-bloc 

conformational change to form amyloid fibrils [63]. The monomer may also travel along a 

pathway ending in amylospheriods (blue pathways) [4,65]. The pathways has a trimeric 

intermediate [66]. In the presence of copper (green pathway), amyloid dimerization is 

mediated by a copper ion forming small amyloid-copper oligomers [67] and eventually 

leading to larger amyloid-copper aggregates [13]. In the pathway mediated by lipid 

membranes (purple pathway), the amyloid dimer forms a hexameric ion pore [46] which 

may be identical to the annular protofibrils (APF) identified by the Glabe group [42] or the 

recent atomic structure of the amyloid oligomer [49]. These hexameric ion pores may stack 

to form deeper dodecameric structures [43]. This diagram was created using images  

from [4,13,40–43,49,62,63,66,67]. Images are reproduced with permission from the Nature 

Publishing Group, National Academy of Sciences, Public Library of Science, and the 

American Chemical Society. 
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2.3. Metal-Induced Amyloid Structures 

A considerable number of reports have provided empirical data showing aggregation structures of 

amyloid-β under the influence of metal ions, but a detailed NMR or x-ray diffraction atomic structure 

has yet to be reported [13,14]. However, Azimi et al. were able to use MD simulations to show that 

amyloid-β-copper coordinated structures can form in both an anti-parallel and parallel conformation. 

Copper ions have been shown to form an intramolecular complex while zinc ions tend to form 

intermolecular complexes cross linking multiple peptides [68–70]. The schematic in Figure 3 shows 

the details of amyloid-copper interactions [13]. Copper has been shown to coordinate with amyloid-β 

at the His13 and His14 site on one peptide with the His6 residue on the other peptide [11].  

Figure 3. Cartoon of most probable amyloid-copper coordination. Notice the coordination 

sites at His6 from one peptide together with His13 and His14 from the second peptide. 

Figure reproduced with permission from [71]. Copyright American Chemical Society. 

 

3. Aggregation Kinetics, Thermodynamics and Aggregation Pathways 

Early amyloid research assumed that the kinetic pathway of the amyloid started as a monomer and 

progressed through the oligomer and protofibrillar structure en-route to a mature amyloid fibril. 

However, an increasing body of evidence suggests that these “intermediates” do not lie on the reaction 

pathway of the amyloid fibril but rather lie along a separate pathway. Demonstrating the complexity of 

amyloid kinetic pathways, we summarized the known pathways of amyloid-β as shown in Figure 2. 

The monomeric structure begins the aggregation pathway by dimerizing. The dimer can then follow a 

number of pathways. The dimer can follow a fibrillar oligomer pathway which is positive for the OC 

antibody leading to an amyloid fibril [62]. Alternatively, the dimer may be directed along the 

prefibrillar oligomer (PFO) pathway which is OC- but positive for the anti-oligomer antibody A11 [40] 

which leads to the production of protofibrils. The protofibrils may then undergo an “enbloc” 
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conformational change to form amyloid fibrils [63]. In the presence of membrane lipids, the amyloid 

dimer may also form a hexameric ion pore which has been predicted and observed by  

Lal [46]. This structure may be identical to the hexameric structures observed by NMR by 

Laganowsky et al. [49] and observed by mass spectrometry by Bernstein et al. [43]. In the presence  

of copper, the amyloid-β dimerizes coordinated with copper ions and forms amyloid-copper  

aggregates [13,67]. Lastly, the amyloid monomer can form a trimer leading to amylospheroids [4,65].  

Despite the apparent complexity in the aggregation pathways of amyloid-β, many of these 

oligomeric species were artificially induced in vitro under the influence of a variety of aggregation 

promoters or inhibitors. The precise aggregation pathway of amyloid-β in its physiological environment 

has yet to be elucidated.  

3.1. In Vitro Environment 

Work by the Glabe laboratory has used unique antibodies to study the divergence of these 

pathways. The antibodies OC and A11 have been used to study amyloid structures because they 

selectively bind different amyloid structures [72]. The fibrils have been shown to be OC+ and A11-, 

while the oligomers are OC- and A11+. These antibody studies have shown that prefibrillar oligomers 

(PFO) are A11+ while for fibrillar oligomer’s (FO), the immediate precursors to mature fibrils are 

OC+ [40]. The difference in antibody binding is evidences of a structural difference between the two 

species. In an earlier study, Kayed et al. showed that some oligomers do not lie on the pathway to fibril 

formation [2,42]. Work by Hoshi and colleagues demonstrated that amylospheroids (ASPDs) lie off 

the pathway to fibrils and begin with trimerization as opposed to dimerization [4]. In addition, 

molecular dynamics simulations have revealed trimeric structures [11].  

Molecular dynamics studies by Shea and colleagues revealed a “rich diversity” of aggregation 

pathways via a variety of mechanisms [73,74]. These mechanisms include the ordered assembly of 

oligomers into fibrils, the aggregation of non-fibrillar aggregates and the reorganization of amorphous 

aggregates into fibrils. Structures with the highest proportion of beta-sheet rich structures resulted in 

fibrils or barrel type structures, perhaps identical to those observed by Connoly et al. [46] and 

Lagonowky et al. [49]. Despite the higher beta-sheet content of barrel type structures, these never 

evolved into fibrils providing evidence that this structure lies on an alternate pathway to the amyloid 

fibril. In addition, an increase in the beta-sheet content of aggregates yielded fewer aggregation pathways 

indicating that beta-sheet structures stabilize the peptide and reduce the propensity for the peptide to 

fold into a disordered amorphous “glassy” state.  

The pathway of amyloid-β aggregation appears to be concentration dependent displaying first order 

kinetics [75]. Lower concentrations tend to form PFO’s while higher concentrations yield oligomers 

with lower membrane disruption and associated neurotoxicity, likely the result of increased hydrophobic 

segments [76].  

3.2. Copper Environment 

Metal ions, such as copper and zinc, have been demonstrated to modulate amyloid-β aggregation 

directing the aggregation pathways along different pathways [77,78]. Extensive work has been 

conducted on the effect of metals on the aggregation of amyloid-β all of which has shown that both 
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Cu(II) and Zn(II) accelerate aggregation by shortening or eliminating the lag phase associated with the 

amyloid fibrillization process [8,69,79,80]. In the specific case of a copper rich environment, amyloid 

aggregation starts instantly [67]. Both copper and zinc ions have been shown to abolish the formation 

of fibrillar forms of amyloid-β in favour of amorphous precipitates especially at higher peptide 

concentrations [10,13,14] even though substoichiometric concentrations of amyloid-β have been 

shown to induce and accelerate the formation of amyloid fibrils [70]. However, other groups have 

reported an increase in the nucleation and elongation rates of fibril formation. These amyloid-copper 

fibril seeds have also been shown to initiate aggregation in non-copper solutions of amyloid-β [70]. It 

is unclear whether amorphous copper-amyloid-β fibril seeding complexes would still seed fibrils under 

previously studied experimental conditions or would seed amorphous aggregates. If the former is the 

case, that fibrils would be seeded by amorphous aggregates, it would likely provide evidence that an 

interconversion of the non-fibrillar to the fibrillar pathway can occur.  

It is likely that the discrepancy between amorphous and fibrillar forms of the amyloid-complex can 

be attributed to the peptide and metal concentrations or preparation protocols. Work by Pedersen et al. 

showed that the Cu:Aβ ratio is a major determinant of the aggregation pathway [67]. Pedersen, 

together with other researchers identified three different kinetic pathways that amyloid-β may travel 

while under the influence of Cu(II) ions. The first pathway, where [Cu]<<[Aβ], occurs by the complex 

rapidly forming a critical nucleus with the slow elongation of the fibril as peptide-metal complexes are 

added to the nucleus [67,70,81]. At equimolar concentrations, a fast irreversible process dominates 

where peptide-copper oligomers slowly bind together to form amorphous aggregates and eventually 

spherical oligomers [67,80]. The third pathway where [Cu] > [Aβ] results in both fibrillar and oligomeric 

formation with higher copper concentrations resulting in higher proportions of oligomeric forms of 

amyloid-β likely the result of a destabilizing effect of copper on the amyloid-β structure [67]. It is 

believed that the aggregation of the copper-amyloid complex is rate limiting as opposed to the 

formation of the amyloid-copper nucleus which is the opposite of the nucleus formation rate limiting 

step in non-metallic amyloid-β aggregation [67]. 

3.3. Zinc Environment 

Work by Bush et al. demonstrated that zinc destabilizes amyloid-β monomers and rapidly increased 

the rate of amorphous aggregates [81]. Further, Maggio and colleagues observed an approximate 40 fold 

increase in aggregation rate in zinc-amyloid-β solutions compared to solutions absent of zinc [82]. 

Similar to copper, zinc has been shown to coordinate with His13 and His14 which may drastically 

reduce the lag period allowing the aggregation process to essentially “bypass” the critical nucleation 

phase, which is often considered the rate limiting step in aggregation in non-metallic solutions [67]. 

Similar to copper, amyloid-β only forms amorphous aggregates in zinc environments [83]. The 

observation that these structures never convert to amyloid fibrils, even when providing conditions to 

overcome any possible kinetic barrier, provides evidence that amorphous aggregates lie on a separate 

kinetic pathway to amyloid fibrils.  

Similar to copper and zinc, iron has also been shown to increase the aggregation rate of amyloid-β 

but not to the extent that zinc does [82].  
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3.4. Physiological Environment 

Physiologically, the concentration of copper ions in the cerebrospinal fluid (CSF) is of a micromolar 

concentration which is far greater than the nanomolar CSF concentration of amyloid-β [84,85]. In 

extracellular fluid (ECF), amyloid-β concentrations decrease by an order of magnitude while copper 

concentrations are up to 100 times higher than in the CSF [86,87]. This difference in concentration 

results in fibrils tending to form in the ECF as opposed to the CSF [6]. These micromolar 

concentrations of copper are sufficient to induce amyloid-β aggregation providing an incentive for 

metal chelation therapies which attack the metallic mechanism for aggregation [10,80].  

In contrast to copper, zinc ions are believed to promote aggregation, but the aggregates may not be 

neurotoxic leading some researchers to comment that some aggregation may in fact be a neuroprotective 

mechanism [88].  

The aggregation process is driven by thermodynamics: once aggregation begins, there is no 

thermodynamic reason for the aggregation process to cease [89]. However, the aggregation of 

amyloid-β requires energy for the peptide to escape its energy well to add additional peptide to the 

fibril chain. As the peptide folds and aggregates, it travels along its free energy landscape along its 

kinetic pathway with oligomers or fibrils occupying local or global minima [90]. The dimerization of a 

monomer results in a significant reduction in the free energy of the system [91]. Parallel and 

antiparallel conformations result in different free energies [92]. The amyloid fibril has been shown to 

occupy the global free energy minima and is the most stable structure in most environments [89,93] 

with double- and triple-stranded structures being the most stable. Shea and colleagues demonstrated 

that barrel-like aggregates have similar potential energies as mature fibrils [74]. 

The equilibrium between oligomers and monomers has been shown to be a function of the peptide 

concentration to the power of the number of monomers per oligomer [94]. The addition of metals to 

amyloid solutions results in a higher proportion of antiparallel structure resulting in an approximately 

25% decrease in potential energy compared to the parallel conformation [92]. The previously discussed 

change in aggregation behavior of amyloid-β in metal environments is likely caused by kinetic factors, 

not thermodynamic ones [95,96]. While a number of groups have reported copper-amyloid-β affinity 

and zinc-amyloid-β affinity [97–99], to our knowledge no group has yet reported amyloid-amyloid 

affinity in the presence of copper or zinc.  

4. Neurotoxicity of Metals 

In addition to their effect of increasing the aggregation rate of amyloid-β, metal ions have been 

universally acknowledged to contribute to oxidative stress and inflammation of the brain of Alzheimer’s 

patients [6]. However oxidative stress also plays a role in normal aging [100,101]. Oxidative stress is 

one of the initial signs of AD [102] preceding the presence of inflammation and amyloid plaques. 

Oxidative stress is mediated by H2O2, which, via a Fenton reaction, produces the OH radical which is 

highly reactive and initiates a variety of reactions including post-translational protein modification, 

DNA damage and lipid peroxidation [18]. The brain does have natural defense mechanisms for 

neutralizing excess H2O2, but these become overwhelmed with the excessive amount of H2O2 and the 

highly reactive OH radical [103,104].  
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A number of reports have shown that both the lipid peroxidation and copper at the neuronal synapse 

promoting amyloid-β aggregation are a contributing factor of copper toxicity[78,105,106]. It would be 

expected that neurotoxicity would be a function of copper concentration. In fact, amyloid-β combined 

with nanomolar concentrations of copper is more toxic than amyloid-β with copper solutions which are 

50 times more concentrated [70]. While Cu(II) ions have been shown to increase amyloid toxicity [107], 

there is some controversy in the literature as to whether Zn ions are neurotoxic or neuroprotective [83]. 

Upon review of the literature, it appears that at higher concentrations, Zn appears to have a neurotoxic 

effect whereas it has a neuroprotective effect at lower concentrations [83,107–109].  

5. Conclusions 

An overwhelming body of evidence demonstrates that the addition of trace metals considerably 

accelerates the kinetics of amyloid-β aggregation and may contribute to neurotoxicity as is the case of 

excess levels of copper ions. The diversity of amyloid stable structures which never evolve into amyloid 

fibrils, even when conditions to overcome a kinetic barrier is evidence that the amyloid aggregation 

process is not a single pathway with a variety of intermediaries, but rather many different pathways. 

Where these pathways diverge is still a matter of contemporary debate, but it likely occurs very early 

in the aggregation process, possibly even occurring at the initial dimerization of two monomers.  

Future research will need to focus on characterizing these oligomers and determining where these 

structures diverge. 
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