Combination of SPME as non-invasive sample preparation technique and GCxGC-TOFMS for high resolution profiling of metabolites in apples: method development considerations and potential of new invivo SPME formats

Sanja Risticevic¹, Jennifer R. DeEll², Janusz Pawliszyn¹

¹ Department of Chemistry, University of Waterloo, Waterloo, Canada; ² Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe, Canada

GCxGC-TOFMS conditions: metabolomics samples

1.5 mL/min flow rate, 40 °C (5 min), 3 °C/min to 240 °C (10 min), 10 °C secondary oven offset, 30 °C modulator temperature offset, 5 sec modulation, 1 sec hot pulse time, m/z 33-550 acquisition range at 200 spectra/sec, 1700 V detector voltage

exvivo vs	invivo
<i>metabolism quenching</i> auid nitrogen;	i) 1 hr DI-SPME se
aturated NaCl solution) <i>homogenization</i> i) 1 hr HS-SPME & DI-SPME	ii) wash step in was sampling & l desorption
sampling) desorption & GCXGC-TOFMS analysis	iii) desorption & GCXGC- TOFMS and

SUPELCO; NSERC