
University of Waterloo
Department of Pure Mathematics

Analysis and Topology Comprehensive Examination
February, 2009

Instructions:

1. There are four parts to the Exam, labeled Part A, Part B, Part C and Part D. You are
required to answer a minimum of one question for each part, and a total of 8 questions.

2. No books, notes, calculators are permitted.

3. Good Luck!

Part A. Set theory and topology

Question A1.
Let X be a non-empty set, and denote by P(X) the power set of X. That is,

P(X) = {A : A ⊆ X}. The cardinality of X is denoted by |X|. Finally, ℵ0 denotes the car-
dinality of the set N of natural numbers, while c denotes the cardinality of the set R of real
numbers.

(a) Prove that |X| < |P(X)|.

(b) Find a cardinal number α so that |C([0, 1],R)| = 2α, where C([0, 1],R) = {f : [0, 1] → R :
f is continuous}.

(c) A function ϕ : P(X) → P(X) is said to be increasing if A,B ∈ P(X) and A ⊆ B implies
ϕ(A) ⊆ ϕ(B). Prove that if ϕ : P(X)→ P(X) is increasing, then there exists a set T ∈ P(X)
so that ϕ(T ) = T .

Question A2.

(a) Let {Xλ}λ∈Λ denote a family of non-empty connected topological spaces. Let X =
∏
λ∈ΛXλ,

equipped with the product topology. Prove that X is connected.

(b) Recall that if (Xn, Tn) is a non-empty topological space for each n ≥ 1, then the box topology
on X =

∏
n∈N Xn has as a base all sets of the form

∏
n∈N Un where Un ∈ Tn, n ≥ 1. Show

that the countable product RN, equipped with the box topology, is not connected.



Part B. Measure theory

Question B1. Let f : [0, 1]→ R be a function.

(a) Define what it means to say that

(i) f is absolutely continuous, and

(ii) f is of bounded variation.

(b) Prove that if f is absolutely continuous, then f is of bounded variation.

(c) Prove that if f : [0, 1] → R is absolutely continuous and E ⊆ [0, 1] has Lebesgue measure
zero, then f(E) ⊆ R has Lebesgue measure zero.

Question B2.

(a) Suppose that fn : [0, 1] → R and f : [0, 1] → R are Lebesgue integrable and
limn→∞ ||fn − f ||1 = 0. Show that for every ε > 0 there exists δ > 0 such that for all
A ⊂ [0, 1] with m(A) < δ,

∫
A
|fn| < ε for all n.

Note: You may assume without proof that given a single Lebesgue integrable function
g : [0, 1] → R and ε > 0, there exists δ > 0 such that for all A ⊂ [0, 1] with m(A) < δ,∫
A
|g| < ε.

(b) Is the statement in (a) true when the assumption limn→∞ ||fn − f ||1 = 0 is replaced by
limn→∞ fn(x) = f(x) for each x ∈ [0, 1]? Justify your answer.

Question B3. A function f : R→ R is called additive if it satisfies

f(x+ y) = f(x) + f(y) (∀x, y ∈ R).

A function f : R → R is called locally Lebesgue integrable if it is Lebesgue integrable over every
finite interval.

(a) Show that a locally Lebesgue integrable additive function f must be linear, i.e.,

f(x) = cx (∀x ∈ R)

for some real constant c.

(b) Assuming the fact stated in (a), prove that there are additive functions which are not locally
Lebesgue integrable. [Hint: you may assume the Axiom of Choice.]



Part C. Complex analysis

Question C1. Find a conformal map taking the set

A := {z ∈ C : 0 < arg z <
π

2
, 0 < |z| < 1}

onto the set D := {z ∈ C : |z| < 1}.
Question C2.

(a) State Rouché’s Theorem.

(b) Show that the equation
zea−z = 1, a > 1

has exactly one root in the open unit disc |z| < 1.

(c) Suppose that f is entire and that the image of the unit circle eiθ, θ ∈ [0, 2π], under f is the
following curve γ - (it is assumed that the curve γ is traced only once):

For given w whose relative position to γ is as indicated in the above figure, determine the
number of solutions to the equation

f(z) = w

for z in the open unit disc.

Question C3.

(a) Evaluate the residue of the function
π cot(πz)
(z − 1

2 )2

at the point z = 1
2 .

(b) By using part (a) or by any other means, show that

∞∑
n=−∞

1
(n− 1

2 )2
= π2.



Part D. Real analysis - Functional Analysis

Question D1. Let f : [0, 1]→ R be a function. For z ∈ [0, 1] and r > 0, we define the oscillation
of f on (z − r, z + r) ∩ [0, 1] to be

osc[f, z, r] = sup{|f(x)− f(y)| : x, y ∈ (z − r, z + r) ∩ [0, 1]}.

(a) Prove that f is continuous at z ∈ [0, 1] if and only if

lim
r→0

osc[f, z, r] = 0.

(b) Let g : [0, 1] → R be an arbitrary function. Prove that the set of points at which g is
continuous is a Gδ set.

(c) Prove that there is no function h : [0, 1]→ R that is continuous precisely on the set of rational
numbers in [0, 1].

Question D2. Let X be a normed linear space and M be a closed subspace of X.

(a) Prove that if X and M are complete, then so is X/M.

(b) Prove that if M and X/M are complete, then so is X.

Question D3. Recall that `2 denotes the Hilbert space of square summable sequences of real
numbers. Recall also that a net (xλ)λ∈Λ of vectors in `2 is said to converge in the weak topology
to the vector x ∈ `2 if for each y ∈ `2, limλ∈Λ〈xλ,y〉 = 〈x,y〉.

(a) Let (xn)∞n=1 be a sequence in `2 converging in the weak topology to x ∈ `2. Prove that if
‖xn‖2 converges to ‖x‖2 as n tends to ∞, then ‖xn − x‖2 → 0.

(b) Prove that if a sequence (xn)∞n=1 of vectors in `2 converges in the weak topology to x ∈ `2,
then (xn)∞n=1 is bounded.

(c) Let {en}∞n=1 denote the standard basis of `2 and let

A = {em +m en : 1 ≤ m < n}.

Prove that 0 is in the closure (in the weak topology) of A, but that no sequence in A converges
in the weak topology to 0.


