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DO EIGHT questions, at least ONE from each of the FOUR sections.

Real Analysis

1. Fix p ∈ R. Let fn(x) = npx(1− x2)n for 0 ≤ x ≤ 1.
For which values of p does this converge (i) pointwise? (ii) uniformly?

2. Consider F =
{
F (x) =

∫ x

0

f(t) dt : f ∈ C[0, 1], ||f ||∞ ≤ 1
}

as a subset of

C[0, 1] with the sup norm.

(a) Show that F is not closed. Describe the closure F .
Hint: h has Lipschitz constant C if |h(x)− h(y)| ≤ C|x− y| for all x, y.

(b) Is F compact?

3. (a) If f ∈ Cn[a, b] has n ≥ 1 continuous derivatives, prove that there is a

sequence pk of polynomials such that p
(i)
k converges uniformly to f (i) for

0 ≤ i ≤ n.

(b) Let Pk denote the vector space of polynomials of degree at most k.
If f ∈ C[a, b], prove that there exists a polynomial p ∈ Pk which is closest
in the sup norm on [a, b] among all polynomials in Pk.

Complex Variables

4. (a) Show that there is no function f which is analytic in a neighbourhood of
z0 such that f (n)(z0) = (n!)2 for all n ≥ 0.

(b) Let f be an entire function such that lim
z→∞

f(z)

z
= 0. Show that f is a

constant.

5. (a) Evaluate

∫ ∞
0

sin2 x

x2
dx. Hint: 2 sin2 x = 1− cos 2x.

(b) Define a polynomial p(z) = z65 + 1234z55 + 987654321z4 + 10001.
Determine the number of zeros of p in the disk {z ∈ C : |z| ≤ 2}.

6. Find an explicit conformal map of D\(−1, 0] =
{
z ∈ C : |z| < 1, z 6∈ (−1, 0]

}
onto the unit disk D.
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Topology and Set Theory

7. (a) Let A and B be subsets of a topological space X. If B is open, prove
that B ∩ A = ∅ if and only if B ∩ A = ∅.

(b) Let X be a topological space. Show that G ⊆ X is open if and only if

G ∩ A = G ∩ A for every A ⊆ X.

(c) Let A and B be dense subsets of X.
Prove that if A and B are open, then A ∩B is dense.
Is this still true if neither A nor B is open? (Prove or disprove.)

8. Let ω1 be the first uncountable ordinal. The long line is defined as X =
[0, 1)× ω1 with the topology generated by the sets

[0, b)× {0}, (a, b)× {α} 0 ≤ a < b ≤ 1 and α ∈ ω1

(a, 1)×{α} ∪ [0, 1)×(α, β) ∪ [0, b)×{β} a, b ∈ [0, 1] and α < β ∈ ω1.

(a) Prove that X is not compact.

(b) If µ is a Borel probability measure supported on X, prove that supp(µ)
is compact.

More Real Analysis

9. Let f(x) =

{
1 if 0 ≤ x ≤ π

−1 if − π < x < 0

(a) Find the Fourier series of f .

(b) Explain as much as you know about the convergence of this Fourier series.
Consider (i) pointwise convergence, (ii) uniform convergence on subsets,
(iii) convergence in L2(−π, π) and (iv) convergence in L1(−π, π).

10. (a) Let fn, f ∈ L1(0, 1) such that fn converges to f almost everywhere.
Prove that fn converges to f in L1(0, 1) if and only if lim

n→∞
||fn||1 = ||f ||1.

(b) Conversely, if fn converges to f in L1(0, 1), does fn converge to f almost
everywhere? (Prove or disprove.)


