
When does a relation code an isomorphism?

Barbara F. Csima∗, Michael Deveau†, and Jonathan Stephenson‡

Department of Pure Mathematics

University of Waterloo

Waterloo, ON N2L 3G1, Canada

November 20, 2017

Abstract

For A and B computable copies of the same structure, if U is a

computable subset of the domain of A and f : A ∼= B, then certainly

f(U) ≤T f . When we know something about the structure, we can of-

ten find a computable U such that f(U) ≡T f . Indeed, the method of

the artfully chosen U is how Turing degrees of isomorphisms between

particular copies of a structure are normally computed. This paper

examines the question, to what extent is this possible? We focus on

the linear orders (ω,<) and (ω2, <) as our examples.

∗csima@uwaterloo.ca
†m2deveau@uwaterloo.ca
‡jonny.stephenson@valpo.edu

1

1 Introduction

In computable structure theory, we are interested in studying mathematical

structures from a computable point of view, so it is natural to regard two

computable copies of the same structure are being equivalent if they are

isomorphic via some computable isomorphism. However, there are many

examples of very standard structures for which there are computable copies

which are not computably isomorphic. For example, consider (ω,<), the

linear order with order type ω. We let N denote the usual decidable copy.

One can readily construct another computable copy A of (ω,<) such that

the unique isomorphism between N and A is of Turing degree 0′. In fact, in

the case of (ω,<), it is easy to show that 0′ can compute the isomorphism

between any two computable copies. So there is a sense in which 0′ is the

degree of difficulty of computing isomorphisms between copies of (ω,<). This

is made precise in the following definition.

Definition 1.1.

Let A be a computable structure, and suppose that d is a Turing degree

which can compute an isomorphism between any two computable copies

of A. Then we say that A is d-computably categorical.

If {c | A is c-computably categorical } = {c | c ≥ d}, then we say that

d is the degree of categoricity of A.

If A has degree of categoricity d and there exist computable copies A1

and A2 of A such that every isomorphism f : A1
∼= A2 computes d, we

say A has strong degree of categoricity d.

Finally, we say d is a (strong) degree of categoricty if there exists a

computable structure with (strong) degree of categoricity d.

Degrees of categoricity were introduced by Fokina, Kalimullin and Miller

[FKM10], who showed that every degree d which is 2-c.e. in and above 0(n)

2

for some n ∈ ω is a strong degree of categoricity. This was extended by

Csima, Franklin and Shore [CFS13] to 0(α) for any computable ordinal α,

and degrees 2-c.e. in and above 0(α) for computable successor ordinals α.

Bazhenov, Kalimullin, and Yamaleev [BKY] as well as Csima and Stephenson

[CS] constructed structures that have a degree of categoricity, but no strong

degree of categoricity.

All of the above papers use the same approach for computing the degree of

categoricity of the structures constructed. The structures are built in such

a way that there is a computable unary relation U on one of the copies of

the structure, so that if f is the isomorphism between the copies, then the

isomorphism has degree f(U).

This raises the natural question: To what extent is this possible?

The reader may note that we are restricting attention to computable subsets

of the domain A of a structure A, rather than, for instance, working within

An for arbitrary n, or even in A<ω. Apart from our original motivating

observations, there is a very straightforward reason for this restriction: if

we work with tuples instead, then we can trivially recover the degree of an

isomorphism f from f(R), where R is chosen entirely independently of the

structure we are working with:

Observation 1.2.

If A is a computable structure and f : A → B is an isomorphism to

another computable copy B, let R := {(n, n + 1)}n∈ω. Then f(R) =

{(f(n), f(n+ 1))} computes f .

Let us first examine the situation for unary relations on the linear order

(ω,<). We begin with the following proposition.

Proposition 1.3.

Let A be any computable copy of (ω,<), and let N denote the standard

3

decidable copy. Let f : A → N be the isomorphism between the two

copies. Let U := {m | (∃n)[n <N m ∧m <A n]}. Then f(U) ≡T f .

Proof Sketch:

Suppose we are given f(U). We show how to build the isomorphism f .

First, find the least member of f(U), say n0. Then we know there are

exactly n0-many numbers that are <A-below 0. We reveal the order <A

until we find a0 <
A a1 <

A · · · <A an0−1 <
A an0 = 0 and define f(ai) = i.

We have now defined f on an initial segment, and proceed inductively.

However, there is an asymmetry with (ω,<), as we will see that there exists a

computable copy A of (ω,<) such that for f : N ∼= A there is no computable

U with f(U) ≡T f . Indeed, this will follow from an easy modification to the

proof of the following Theorem.

Theorem 1.4.

There are two computable copiesA and B of (ω,<) such that if f : A → B
is the isomorphism between them, then f is of Turing degree 0′, and there

is no computable set U such that f(U) ≡T f or f−1(U) ≡T f .

Note that Proposition 1.3 implies that for any computable copy A of ω, if

f : A → N is the isomorphism between A and the usual decidable copy of

the order, there is a computable set U such that f(U) ≡T f ; this exposes a

fundamental distinction between effectiveness of isomorphisms mapping into

and out of the standard copy N of ω.

One might wonder whether this phenomenon is somehow more about map-

ping into and out of decidable structures, rather than about the particular

choice of the structure (ω,<). This raises the question:

Question 1.5.

Suppose A is a computable structure and that B is a decidable copy

isomorphic to A. Suppose that the structures are rigid and that f : A →

4

B is the isomorphism between them. Must there be a computable U such

that f(U) ≡T f?

This conjecture turns out to be rather easy to dismiss; indeed, all we need

to do is to look at (ω2, <) rather than (ω,<).

Theorem 1.6.

Let N 2 be a decidable copy of (ω2, <). There is a computable copy A of

(ω2, <) such that if f : A → N 2, then for no computable unary relation

U on A do we have f(U) ≡T f .

We follow standard notation for computability theory, as found in Soare

[Soa16]. Section 2 is devoted to the proof of Theorem 1.4, Section 3 to proof

of Theorem 1.6, and we close with further thoughts on future directions in

Section 4.

2 Isomorphisms on copies of (ω,<)

This section is devoted to the proof of Theorem 1.4, which we restate here.

Theorem 2.1.

There are two computable copiesA and B of (ω,<) such that if f : A → B
is the isomorphism between them, then f is of Turing degree 0′, and there

is no computable set U such that f(U) ≡T f or f−1(U) ≡T f .

Proof :

We aim to meet, for all e, j ∈ ω, the following requirements:

R〈e,j〉: If ϕe = χU for some set U , then (∃x)[Φ
f(U)
j (x) 6= f(x)], and

S〈e,j〉: If ϕe = χU for some set U , then (∃x)[Φ
f−1(U)
j (x) 6= f−1(x)].

To do this, we will build A and B by stages, enumerating the least un-

used element into the domains of A and B, and perhaps more, at each

5

stage. We will enforce that there are only finitely many enumerations at

any given position, so that A and B are isomorphic to (ω,<). At each

stage s, we let As and Bs denote the partially constructed portions of

their respective structures at that stage, and fs the partial isomorphism

between As and Bs. Note that by enumerating into A and B at differ-

ent positions, we can force that fs(x) 6= fs+1(x) or f−1s (y) 6= f−1s+1(y), so

f := lims→∞ fs need not extend any fs. Nevertheless, since any given

position will change at most finitely often, f will be computably approx-

imable by this sequence of partial isomorphisms. That is, f will extend

longer and longer initial segments of the partial isomorphisms, so that for

a fixed initial segment of f , there is eventually some stage after which all

partial isomorphisms extend that initial segment.

An important note: although we aim to explicitly meet all requirements

through the construction, we will only implicitly meet some of them. If

ϕe is the characteristic function of some set U which is finite or cofinite,

then we do not need to meet R〈e,j〉 or S〈e,j〉 explicitly for any j — that is,

declaring a witness x or y during the construction that eventually shows

the requirement is met. Instead, since f(U) and f−1(U) will be finite or

cofinite (hence computable), we will automatically have that f(U) 6≡T f
or f−1(U) 6≡T f , provided we make f non-computable. We will make

f ≡T ∅′, so in particular, f will be non-computable. However, we cannot

know which indices e correspond to the finite or cofinite sets, so we must

still ensure that they do not stall the construction, even if the actions

that they take do not explicitly ever meet their requirements.

Because we are working with partial approximations to computable sets,

we set the following notation. At stage s for index e, we let σe,s be the

string defined by the longest segment of ϕe,s that looks like a characteristic

function. Thus |σe,s| ≤ s by conventions on convergence. Hence if ϕe =

χU , then lims→∞ σe,s = χU .

6

The plan for meeting a single R〈e,j〉 is to choose a witness x and wait

for Φ
f(σe,s)
j,s (x) ↓= f(x). If this happens, we place an immediate <B-

predecessor to f(x). However, this may have the unfortunate side-effect

of also causing the use of the computation Φ
f(σe,s)
j,s (x) to be damaged,

since it may be the case that fs(σe,s) no longer agrees with fs+1(σe,s+1).

This is because the enumeration of this predecessor value will change the

alignment of all values above it in Bs+1. Thus, after such an enumeration

– which attempts to diagonalize against some computation – we may wish

to restore that computation if it was damaged by aligning the values used

in the computation so that they are again either in or out of f(U) in the

limit.

Notice that we do not have to re-align these values with the exact same

values as the ones they were aligned with when the computation first

existed. For example, if at stage s the use of a computation contained

5 with fs(3) = 5 and ϕe,s(3) ↓= 1, (that is, 5 ∈ fs(σe,s)) then if we

wish to restore this computation, we only need to find a value n such

that n ∈ U and arrange for f(n) = 5, since then 5 ∈ f(U). So, as long

as U is both infinite and co-infinite, we can always wait for a sequence

of values in the correct order to appear and then arrange for them to

be aligned with the use that we wish to restore. We cannot stall the

computation waiting for these values, however, since we do not know if

ϕe determines an infinite, co-infinite set, so we shall instead wait for such

a configuration to appear. If one does not, then we shall show that ϕe

does not determine an infinite, co-infinite set and therefore we do not

have to satisfy the requirement directly, as noted above.

Additionally, we shall have markers {γi}i∈ω that will code ∅′. We shall

arrange these markers so that if γi eventually comes to rest on x, then i ∈
∅′ if and only if i ∈ Kf(x), where here {Ks}s∈ω is a standard enumeration

of ∅′. To show that f ≥T ∅′, we will show that f allows us to additionally

compute these final resting places of each γi. Since any isomorphism

7

between two copies of (ω,<) is ∅′-computable, this is all we need to show

that f ≡T ∅′. For each marker, we have the following requirement, which

we aim to meet:

Γi: Each γi eventually comes to rest on some value zi such that i ∈ ∅′

if and only if i ∈ Kf(zi).

To enable f to compute the final resting places of each marker, we shall

take certain actions to leave a trace of when each Γi is injured. Since

a given Γi can only be injured by higher priority requirements, we will

have these higher priority requirements leave the trace when they act,

which allows us to use f to determine a stage where all requirements of

priority higher than a given Γi have finished acting. By simulating the

construction to this stage and then waiting – if we need to – for a stage

where Γi is (re-)initialized, we can then determine the final position of γi,

since it will never be injured after this stage.

We arrange the requirements according to the priority order R0 < S0 <

Γ0 < R1 < S1 < Γ1 < · · · and proceed via a finite injury construction.

At any stage s+1, each requirement of index less than s will have a witness

value. For the requirement R〈e,j〉, we denote this witness by x〈e,j〉, and

similar for S〈e,j〉, we write y〈e,j〉.

Additionally, during the course of the construction, we might associate

(the graph of) a finite characteristic partial function, say g, with a re-

quirement. When we do this, we say that the requirement has assigned

function g. At certain stages, we may also declare a requirement to be

satisfied. This means that at such stages the requirement believes that

it has no more action to take and will be met. This is reset by injury,

however, since the requirement may be forced to abandon its witness by

higher priority requirements.

We will enumerate the least value not in the domain of As at the end of

stage s, to ensure that A eventually has domain ω. This also serves a

8

second purpose: any value enumerated during stage s must be at least s.

This value will be enumerated at the end of As, i.e. we will enumerate it

and declare it to be <As-larger than any other value in the domain of As.
This entire procedure is repeated for B.

At each stage s, each requirement may require attention and then pos-

sibly receive it. We say that a requirement that is not satisfied requires

attention under the following conditions. We only list the Ri require-

ments and the Γi requirements, as the conditions and actions for the Si

requirements are similar to the Ri requirements once the obvious changes

have been made.

• R〈e,j〉 requires attention for diagonalization if Φ
fs(σe,s)
j,s (x〈e,j〉) ↓=

fs(x〈e,j〉) and it has no assigned function.

If this requirement receives attention for this reason, then enumer-

ate the least value not in the domain of Bs so that it is just below

fs(x〈e,j〉), so that we have that fs+1(x〈e,j〉) 6= fs(x〈e,j〉). Let g denote

the characteristic function of the use segment of the computation

Φ
fs(σe,s)
j,s (x〈e,j〉). That is, the domain of g is the set of values in the

domain of Bs used in this computation. Assign g to this require-

ment.

• R〈e,j〉 requires attention for restoration if it has assigned function

g and for the elements of the domain of g exceeding fs(x〈e,j〉), say

fs(x〈e,j〉) <
Bs d1 <

Bs d2 <
Bs · · · <Bs dk, there are elements in the

domain of As say, a1 <
As a2 <

As · · · <As ak such that σe,s(ai) ↓=

g(di) and such that d1 <
Bs fs(a1). (This last condition ensures that

the dis and ais are not already aligned, which is important since

we must make an enumeration no matter what for coding a trace

of injury, and this enumeration would mis-align them if they were

already so.)

9

If this requirement receives attention for this reason, then enumer-

ate the least value not in the domain of Bs so that it is just below

fs(x〈e,j〉). Next enumerate unused values under each di in <Bs-

increasing order so that fs+1(ai) = di. We may assume that this

is always possible by noting that the values d1, . . . , dk were orig-

inally <Bs-consecutive, as they were the tail of the use segment

for a computation, and we will enforce that enumerations between

these values (by a higher priority requirement) would re-initialize

this requirement, so the values must still be <Bs-consecutive. Hence

with the correct pattern of enumerations, we can align each di with

its corresponding ai. Furthermore, the first enumeration just be-

low fs(x〈e,j〉) will not inhibit our ability to do this, because d1 <
Bs

fs(a1). Declare that R〈e,j〉 is satisfied.

• Γi requires attention if i ∈ Ks.

If this requirement receives attention for this reason, then enumerate

the least value not in the domain of Bs so that it is just below fs(zi),

where zi is the value currently marked by γi. Declare that Γi is

satisfied.

Note that if Ri receives attention at stage s and has witness x, then

fs+1(x) ≥ s since we enumerate a fresh value in this spot in both cases.

Similarly, if Si receives attention at stage s and has witness y, then

f−1s+1(y) ≥ s, and if Γi receives attention at stage s and γi marking zi,

then fs+1(zi) ≥ s. In this way, the witness / marked values of each re-

quirement codes the stage where it has caused injury most recently (if at

all).

Construction:

Stage s: For the highest priority active requirement that requires

attention at stage s, perform the action indicated above and injure

10

all lower priority requirements, de-activating them. For the highest

priority requirement that is not active, (re-)initialize it, assigning it

a fresh large witness / marked value as needed. These values are

chosen larger than the use of any computation seen so far and larger

than any values ever used as witnesses or marked values.

Enumerate the least value not in the domain of As as the final,

largest element. Proceed similarly for Bs.

Let A :=
⋃
sAs, B :=

⋃
s Bs and f := lims→∞ fs. This completes the

construction.

Note that since witnesses are always chosen larger than any existing wit-

ness, and enumerations always occur (for that witness) at most just below

it, any given position can only be enumerated into finitely often, provided

we show that each requirement receives attention at most finitely often.

Claim: Each requirement receives attention at most finitely often.

Proof of Claim: We proceed by induction on the priority order. Suppose

that we have requirement R〈e,j〉 (the case for S〈e,j〉 is similar) and that all

higher priority requirements receive attention at most finitely often. So

there exists a stage s after which all higher priority requirements never

again receive attention, and hence after stage s, R〈e,j〉 will permanently

choose a witness, x. We may assume that this stage is also s. If R〈e,j〉

never receives attention after stage s, then we are done. Since R〈e,j〉 has

no assigned function when it is re-initialized, the first stage t ≥ s where

R〈e,j〉 requires attention (and receives it, since it is of highest priority by

choice of s) must be for diagonalization, and R〈e,j〉 will be assigned some

function g.

As R〈e,j〉 will never be re-initialized by choice of s, if R〈e,j〉 requires

attention after stage t, it must be for restoration. Receiving attention

for restoration causes R〈e,j〉 to be declared satisfied, and this will never

change. So R〈e,j〉 cannot receive attention again.

11

Now suppose that we have requirement Γi, and that again all higher

priority requirements receive attention at most finitely often, finishing by

stage s. If Γi never receives attention after stage s, then we are done, and

if it does require attention, it must receive it (as it is of highest priority)

and will be declared satisfied, and this will never change. So Γi cannot

receive attention again. �

Claim: For each infinite, coinfinite, computable set U and index j, there

is some x such that Φ
f(U)
j (x) 6= f(x). That is, if ϕe is the characteristic

function for U , then requirement R〈e,j〉 is met.

Proof of Claim: Fix a computable set U with ϕe = χU and index j. Sup-

pose otherwise, so that Φ
f(U)
j = f . By the previous claim, there is some

stage s after which R〈e,j〉 never receives attention and has permanent wit-

ness x. Choose t ≥ s large enough so that Φ
f(U)
j,t (x) = f(x), and also large

enough so that after stage t, any partial isomorphism ft′ extends the ini-

tial segment of f given by the use of this computation. That is, if n is in

the use of this computation, and f−1(n) = m, then m is in the domain of

σe,t and ft′(m) = f(m) for all t′ ≥ t. Such a stage exists eventually since

ϕe really is a characteristic function so σe,t can be chosen to be arbitrarily

long, and f is the limit of the sequence {fs}s.

Since R〈e,j〉 is not re-initialized after stage s, all requirements that are

not of lower priority must have stopped enumerating values, and all lower

priority requirements only enumerate values above the witness x of R〈e,j〉.

Hence at stage t, we have that ft(x) = f(x), and also by choice of t we

have that Φ
ft(U)
j,t (x)↓= Φ

f(U)
j (x)↓ .

So, at stage t, we have that Φ
ft(σe,t)
j,t (x) = Φ

f(U)
j (x)↓= f(x) = ft(x). Then

R〈e,j〉 should receive attention for diagonalization, but this is impossible

since we are beyond stage s. So it must be the case that R〈e,j〉 has an

assigned function g.

12

We claim that R〈e,j〉 cannot permanently have a function assigned without

eventually requiring attention for restoration. Let the elements of the

domain of g exceeding f(x) = ft(x) be f(x) <B d1 <
B d2 <

B · · · <B dk.
Since U is infinite and coinfinite, there must be values a1 < a2 < · · · < ak

such that χU(ai) = g(di) for all i ≤ k. So wait for a stage t′ ≥ t where

σe,t′(ai)↓ . Then at stage t′, R〈e,j〉 would receive attention for restoration

at stage t′. But this is impossible, since t′ ≥ t ≥ s.

So it must have been that at stage t, R〈e,j〉 is already declared satisfied.

This implies that there was a stage t1 where R〈e,j〉 received attention for

diagonalization and was assigned some function g, then at some later

stage t2 received attention for restoration, and was marked as satisfied,

and then was never re-initialized.

At stage t1, it must be that Φ
ft1 (σe,t1)

j,t1
(x)↓= ft1(x). A value was enumer-

ated into B so that ft1+1(x) 6= ft1(x), and R〈e,j〉 was assigned the function

g whose domain is the set of values in Bt1 used in this computation, with

g(ai) = σe,t1(ai) = ϕe(ai) = χU(ai). Since no higher priority require-

ments receive attention and enumerate values, all the values in Bt1 that

are <B-below ft1(x) are never enumerated below, and all the values in At1
that are <A-below x are never enumerated below. So at all future stages

t̂ > t1, we have that these values are in σe,t̂ if and only if they are in σe,t1 .

Hence for these di, we have that di ∈ ft̂(σe,t̂) if and only if di ∈ ft1(σe,t1).

At stage t2, values are enumerated into B so that ft2+1(ai) = di where di

are the values in the domain of g not considered above, and ai is chosen

so that χU(ai) = σe,t2(ai) = g(di). As no values are then ever enumerated

into A or B to destroy this, we have that for any stage t̂ > t2, these values

di have that di ∈ ft̂(σe,t̂) if and only if σe,t̂(ai) = g(di) = 1, and g(di) = 1

exactly when di ∈ ft1(σe,t1).

13

Hence we must have that for all such stages t̂ > t2 > t1 we have that

Φ
ft̂(σe,t̂)

j,t̂
(x)↓= Φ

ft1 (σe,t1)

j,t1
(x)↓= ft1(x) 6= ft̂(x). Therefore this holds in the

limit, so Φ
f(U)
j (x)↓ 6= f(x), and so the requirement is met. �

An extremely similar argument shows that the following claim holds:

Claim: For each infinite, coinfinite, computable set U and index j, there is

some y such that Φ
f−1(U)
j (y) 6= f−1(y). That is, if ϕe is the characteristic

function for U , then requirement S〈e,j〉 is met.

Therefore, as noted above, all Ri requirements and Si requirements are

met, since the remaining requirements are automatically met once f is

non-computable, and this must be the case, for the previous claims could

not be true if f were computable.

Claim: Given f , we can compute the final resting position of each γi.

Furthermore, f can compute ∅′.

Proof of Claim: To determine the final marked value of some γi, notice

that it suffices to determine a stage after which no requirement of higher

priority than Γi ever receives attention. Once we know such a stage,

we can run the construction to that stage and then wait for Γi to be

initialized and mark some value z. Since no higher priority requirement

will ever receive attention after this initialization, Γi cannot be injured,

and must mark z forever after. That is, z is the final resting position of

γi.

This then allows us to decide if i ∈ ∅′: Note that if i ever enters ∅′, Γi will

require attention and receive it at some point once it has marked z, since

no higher priority requirement ever receives attention after z has been

marked. Say this occurs at stage t. In this case, we will enumerate a fresh

large value into the domain of B just below ft(z), so that ft(z) ≥ t – since

values enumerated at stage t must be at least t. Since no enumeration

can take place below this point, we must have f(z) ≥ t. So if i enters ∅′

14

by stage t, then f(z) ≥ t. Hence to decide if i ∈ ∅′, compute s := f(z)

and then determine if i ∈ Ks.

It remains to show that, given f , we can determine a stage after which no

higher priority requirement ever receives attention. Proceed by induction

on the priority order. Note: We need to include all types of requirements

in this induction, not just Γjs. Suppose we have a requirement Q of some

type and using f we can determine a stage s after which no requirement

of priority higher than Q receives attention. Run the construction to

stage s and then wait for Q to be (re-)initialized. We need to determine

a stage t after which Q never receives attention.

If Q = Rj for some j, then notice that if such a requirement recevies

attention at stage t, then it enumerates a value into the domain of B such

that ft(xj) ≥ t. Since no higher priority requirement can disrupt this, we

would have f(xj) ≥ t. Hence, we use f to compute t := f(xj). We need

to wait for Rj to be initialized above so that we can determine what its

witness xj is.

Similarly, if Q = Sj for some j, then we can compute t := f−1(yj), where

yj is the witness chosen for Sj when it is (re-)initialized for the final time

after stage s.

Finally, if Q = Γj for some j, then again notice that if such a requirement

receives attention at stage t, it enumerates a value into the domain of B
such that ft(zj) ≥ t, where zj is the value marked by Γj. So again, we

use f to compute t := f(zj).

This concludes the induction. We can use f to determine up to what

stage to run the construction for the highest priority requirement to stop

receiving attention, run the construction until the next requirement is

(re-)initialized and then repeat this for each successive requirement under

the priority ordering until we can determine when a given Γi marks its

15

final value, which, as noted above, allows us to decide if i ∈ ∅′ using f

once again.

So f ≥T ∅′, and hence f ≡T ∅′. �

Since A, B and f are as claimed, this completes the proof.

Note that if we remove the Si requirements, then no enumerations occur into

A except for the ones that occur at the end of each stage, which always occur

at the end of the current segment As, and so A will be the standard copy of

(ω,<). Hence we also have the following:

Corollary 2.2.

There is a computable copy B of (ω,<) such that if f : N → B is the

isomorphism between the standard copy of (ω,<) and B, then f ≡T ∅′

and no computable set U exists such that f(U) ≡T f .

3 Isomorphisms on copies of (ω2, <)

This section is devoted to the proof of Theorem 1.4, which we restate here.

Theorem 3.1.

There is a computable copy A of ω2 such that if f : A → N 2, then for

no computable unary relation U on A do we have f(U) ≡T f .

Proof :

To build A, we will meet the following requirements:

R〈e,j〉: If ϕe = χU for some set U , then (∃x)[Φ
f(U)
j (x) 6= f(x)].

We build A by stages, enumerating finitely many values into the domain

of A. Since at any stage s, As will be isomorphic to some n < ω, we shall

guarantee A := ∪sAs is isomorphic to ω2 by having an infinite sequence

of markers that are promised to be the limit points. Although a marker

16

may occasionally change its value, we will ensure that this occurs at

most finitely often (in fact, at most twice) so that eventually each marker

settles. We will also ensure that all limit points in A arise in this way, by

ensuring that only marked values have new values enumerated into the

domain of A directly below them infinitely often. This allows us to make

strong claims about uses of computations that occur in the limit.

At the end of every stage s, we enumerate new values into the domain

of As, As in a way to eventually forced the marked values to become

limit points, provided the markers do not change. We refer to this action

as “upkeep”, since it maintains the guarantee that the marked values

become limit points. For a marked value x, we define the tail of x to

be the set {y ≥A x | (∀z)[x <A z ≤A y ⇒ z is not marked]}. That is,

the tail of x is the smallest set containing x and closed under unmarked

successors. The upkeep action consists of enumerating a single new value

into As at the end of every marker’s tail.

For example, if at the end of stage s we have As as

0 1 3 2 5 4 6 7

where the marked values are boxed, then when we perform this step, we

enumerate four new values into the domain of A – 8, 9, 10 and 11 – so

that As becomes

0 1 3 8 2 5 4 9 6 10 7 11

It is clear that if the markers eventually settle, then A will be isomorphic

to ω2 through this procedure, provided that there are infinitely many

markers, and provided we do not disrupt this as mentioned above, by

building non-marked limit points, or by a more obviously destructive

action, such as building an ω∗ somewhere, for example.

17

In light of this, we will think of each marker as corresponding to a poten-

tial ω-chain in A consisting of the marked value and its eventual infinite

tail.

To meet a single requirement R〈e,j〉 in isolation, we employ the following

strategy. Choose some witness value, say x0, and mark it, so that it is

associated with some limit point, and choose some other value ` to the

left of x0 and mark it as well. For simplicity, we shall suppose for this

single requirement that ` is associated with the limit point 0 and x0 is

associated with the limit point ω. (We also mark infinitely many values

to the right of x0 so that we build a structure isomorphic to ω2, but

those values are unimportant for now.) If no other action is taken, then

the upkeep action detailed above will build A isomorphic to ω2 via f ,

such that f(`) = 0 and f(x0) = ω. If the requirement is not met, then

ϕe = χU and (∀x)[Φ
f(U)
j (x) = f(x)], and so in particular, we would have

Φ
f(U)
j (x0) = ω = f(x0). So, if we see a computation of this form at some

stage s, we seek to diagonalize against it, by introducing a new value x1

to the immediate right of x1, and moving the marker from x0 to x1. This

has the effect of making x1 the value associated with ω, and pushes x0

into the tail of `, so that x0 is now associated with some m ∈ ω.

Unfortunately, this action may destroy the use of the original computa-

tion that we were diagonalizing against. Notice, however, that the only

affected value is ω. So, if ϕe(x0) = ϕe(x1), then x0 ∈ U if and only if

x1 ∈ U . Hence the computation will be restored, as then ω ∈ f(U) ⇔
x1 ∈ U ⇔ x0 ∈ U ⇔ ω ∈ f(U)[s]. Then we will have Φ

f(U)
j (x0) = ω, but

f(x0) = m 6= ω, a win.

In the case where ϕe(x0) 6= ϕe(x1), we perform the same trick, but this

time using x1 in place of x0. So, we wait for a stage where Φ
f(U)
j (x1) = ω =

f(x1) and then introduce a new value x2 to the immediate right of x1 and

move the marker from x1 to x2. This pushes x1 also into the tail of `, and

we now win automatically: If ϕe(x1) = ϕe(x2), then the argument above

18

works with x0 and x1 replaced by x1 and x2, respectively. On the other

hand, if ϕe(x1) 6= ϕe(x2), then ϕe(x0) = ϕe(x2), since ϕe would be {0, 1}-
valued, and so this restores the original computation we diagonalized

against when introducing x1, so Φ
f(U)
j (x0) = ω, but f(x0) = m 6= ω.

In this way, through at most two actions, we can always diagonalize

against a computation, or wait forever for such a computation, which

is also a win. Notice that in meeting this single requirement, we only

needed to consider two marked values, ` and one of x0, x1 or x2. So, we

can satisfy a single requirement in a ω + ω inside ω2.

So we group the limit points of ω2 into consecutive pairs, as (0, ω), (ω ·
2, ω · 3), . . . and use these pairs as locations to satisfy each requirement.

When a requirement is injured, it abandons its associated pair and is

assigned a fresh large pair. Of course, this may require enumerating new

values at the end of As and marking them, so as to “create” a new pair

of potential limit points. Since each pair of marked values and their tails

will eventually correspond to an ω · 2 inside A, we refer to the pair of

marked values itself as an ω · 2, and so we may speak of “creating a fresh

large ω · 2 at stage s”, for instance, even though this only truly refers to

enumerating two values at the end of As and marking them.

As we can see above, each requirement will also have a state: it is ei-

ther waiting for a computation involving x0, waiting for a computation

involving x1 or has won. When computations are (re-)initialized, they

will always be waiting for x0.

For a given requirement R〈e,j〉, we will say that R〈e,j〉 requires attention

at stage s under the following conditions:

• If R〈e,j〉 is waiting for x0, then its ω · 2 has the form

` x0 .

19

The requirement requires attention if Φ
f(U)
j (x0)[s] ↓= fs(x0), and

if it receives attention, then enumerate a new value, x1, directly to

the right of x0, and move the marker from x0 to x1. The ω · 2 for

the requirement will then have the form

` x0 x1 ,

and it will be waiting for x1.

• If R〈e,j〉 is waiting for x1, then its ω · 2 has the form

` x0 x1 .

The requirement requires attention if either ϕe,s(x0)↓= ϕe,s(x1)↓ ,

or if ϕe,s(x0)↓ 6= ϕe,s(x1)↓ and Φ
f(U)
j (x1)[s]↓= fs(x1). In the former

case, no further action is needed, and the requirement is met (unless

it is later injured).

In the latter case, if the requirement receives attention then enu-

merate a new value, x2, directly to the right of x1, and move the

marker from x1 to x2. The ω · 2 for the requirement will then have

the form

` x0 x1 x2

and the requirement will be met (again, unless it is later injured).

Here, when we write something like Φ
f(U)
j (x0)[s], we think of this com-

putation as converging if each value y in the use is verifiably in fs(U)

or verifiably not in fs(U). That is, if x is such that fs(x) = y, then

ϕe,s(x)↓∈ {0, 1}.

We arrange the requirements according to the priority ordering R0 >

R1 > · · · , and proceed by a finite injury argument.

Construction:

20

Stage s: For the highest priority active Ri that requires attention

at stage s, perform the action indicated above and injure all lower

priority requirements, de-activating them. Perform the upkeep as

mentioned above, where new values are enumerated into As at the

end of the tail associated to each marker. Finally, for the highest

priority requirement that is not active, assign to it a fresh large ω ·2,

beyond the use of any computation seen so far in the construction.

Verification:

Claim: Every requirement receives attention at most finitely often and is

met.

Proof of Claim: It is clear from the construction that each requirement

can only be injured by higher priority requirements, and each requirement

can receive attention at most twice if it is never injured. Because of this,

it is clear that each requirement receives attention at most finitely often.

Indeed, Ri receives attention at most 2i+2 − 2 times.

Consider the requirement R〈e,j〉. By induction on the priority ordering,

we may assume that there is a stage after which no requirement of higher

priority than R〈e,j〉 receives attention, and a least stage s after that where

R〈e,j〉 was (re-)initialized for the final time, and permanently associated

with an ω · 2, say with limit points ω · n and ω · (n+ 1).

Suppose for a contradiction that ϕe = χU for some set U (i.e. ϕe is total

and {0, 1}-valued) and for all x we have Φ
f(U)
j (x)↓= f(x).

First, R〈e,j〉 cannot permanently be waiting for x0. To see why, note that

if no action takes place, then ft(x0) = ω · (n + 1) for all t > s, and so

f(x0) = ω · (n+ 1). Since Φ
f(U)
j (x0)↓= f(x0) by assumption, there must

be some stage s′ > s where Φ
f(U)
j (x0)[s

′] ↓= ω · (n + 1) = fs′(x0). But

then at stage s′, R〈e,j〉 would require attention and receive it, since it is

of highest priority. So at some stage s′, R〈e,j〉 must receive attention and

wait for x1.

21

Recall that while waiting for x1, requirements can require attention for

two reasons, which we refer to as condition (1) and condition (2). We

will first show that if a requirement that is waiting for x1 never requires

attention via condition (2), then it must require attention via condition

(1). Since R〈e,j〉 will be of highest priority, if it requires attention for

either of these reasons, it will receive it. We will therefore show that in

either case, the action taken contradicts the supposition above, which will

complete the proof of the claim.

So, suppose the requirement never requires attention via condition (2).

By similar reasoning as in the previous case, we can find some stage

s′′ > s′ > s where Φ
f(U)
j (x1)[s

′′]↓= ω · (n + 1) = fs′′(x1). So at no stage

t ≥ s′′ can we have ϕe,t(x0)↓ 6= ϕe,t(x1)↓ . Since ϕe is total by assumption,

there must be some stage t′ ≥ s′′ where ϕe,t′(x0)↓= ϕe,t′(x1)↓ . But this

is exactly condition (1), so R〈e,j〉 would require attention via condition

(1) at stage t′.

Suppose first that R〈e,j〉 receives attention via condition (1). Note that at

stage s′, it must have been the case that Φ
f(U)
j (x0)[s

′]↓= ω ·(n+1). Since

all higher priority requirements do not act after s < s′′ and lower priority

requirements were injured at stage s′ and then later re-initialized beyond

the use of this computation, we know that f(U)[s′] = f(U)[s′′] on the use

of this computation, except for possibly at x0 since fs′(x0) = ω · (n + 1)

and fs′+1(x0) = ω · n+m for some m ∈ ω.

Hence, at stage t′, we have ft′(x1) = ω ·(n+1) and ϕe,t′(x0)↓= ϕe,t′(x1)↓ ,

so x0 ∈ f(U)[s′] if and only if x1 ∈ f(U)[t′], and so Φ
f(U)
j (x0)[t

′] ↓=

ω · (n+ 1). Now note that x0 is never again marked after we stop waiting

for x0, so f(x0) = ω · n + m 6= ω · (n + 1), and so Φ
f(U)
j (x0) 6= f(x0), a

contradiction. Hence R〈e,j〉 is met in this case.

Suppose second that R〈e,j〉 receives attention via condition (2). Hence

ϕe(x0)↓ 6= ϕe(x1)↓ , and so x0 ∈ U if and only if x1 /∈ U . Wait for some

22

stage where ϕe(x2), which exists since ϕe is total. If ϕe(x2)↓= ϕe(x1)↓ ,

then similar reasoning as before gives that Φ
f(U)
j (x1) ↓= ω · (n + 1) 6=

ω · n+m′ = f(x1), where m′ ∈ ω. If ϕe(x2)↓ 6= ϕe(x1)↓ , then since ϕe is

{0, 1}-valued by assumption, it must be the case that ϕe(x2)↓= ϕe(x0)↓ ,

and so Φ
f(U)
j (x0)↓= ω · (n+ 1) 6= ω · n+m = f(x0). So again, we have a

contradiction and R〈e,j〉 is met.

Thus R〈e,j〉 is met in all cases, as desired. �

Note that in any given ω · 2, enumerations only take place twice when

the associated requirement (if there is any) receives attention and also

during the upkeep at the end of each stage. The latter clearly preserves

the ordinal structure, since it occurs at the end of the two tails, and the

former occurs only twice. The marker moves at most twice. Hence it is

clear that each pair of marked values really does build an ω · 2 and so

A ∼= ω2, since infinitely many ω ·2 will be created during the construction,

as a new ω · 2 is created each time a requirement is newly initialized.

Note that in Theorem 1.4, the isomorphism constructed has degree 0′, which

is the degree of categoricity of the structure in question, (ω,<). However,

the isomorphism f we construct above is clearly limit computable, so it does

not have degree 0′′, the degree of categoricity of (ω2, <). So in this sense,

Theorem 1.6 is a weak analogue of Theorem 1.4. However, it is possible to

modify the construction above to combine it with the method of the theorem

for the (ω,<) case to code ∅′′ into the isomorphism. We proceed similarly

to the previous theorem, with R-type requirements that serve to force the

isomorphism to be of higher degree than f(U) for any computable U . In

addition, we also code ∅′′ into f by using the marking strategy involving Γ-

type requirements. However, these requirements are now more complicated

than requiring a single marked value, since they must code ∅′′ rather than ∅′.
To do so, we assign each Γ an entire ω · 2 block and arrange for it to code

whether, say i, is in Fin, by modifying the elements that correspond to limit

23

points in this block. However, since this possibly causes infinite action to be

taken – if i is not in Fin – we must arrange the requirements on a tree and

use an infinite injury priority argument. The exact details are technical, and

deferred to Deveau’s thesis.

4 Conclusion

We close by mentioning related questions of interest.

Our analysis in this paper shows that between computable copies of a rigid

structure that realize the strong degree of categoricity of the structure, there

need not be a computable set whose image codes the degree of the isomor-

phism, even if we assume one of the copies is decidable. However, we were

working with the structures (ω,<) and (ω2, <), which each do have some

copies between which a unary relation coding the degree of the isomorphism

exists.

Question 4.1.

Let A be rigid and computable, with strong degree of categoricity d. Are

there computable copies B, C of A with isomorphism f : B → C and a

computable U such that f(U) is of Turing degree d?

If the answer to Question 4.1 is positive, can the assumption about rigidity

be dropped?

Is there a rigid structure such that two non-computably isomorphic com-

putable copies exist and are isomorphic via f so that for any computable

set U , f(U) is not only strictly below f in degree, but is in fact always

computable? Does there exist a structure where this is true for all pairs of

computable copies of that structure?

24

References

[BKY] Nikolay A. Bazhenov, Iskander Sh. Kalimullin, and Mars M. Ya-

maleev. Degrees of categoricity and spectral dimension.

[CFS13] Barbara F. Csima, Johanna N. Y. Franklin, and Richard A. Shore.

Degrees of categoricity and the hyperarithmetic hierarchy. Notre

Dame J. Form. Log., 54(2):215–231, 2013.

[CS] Barbara Csima and Jonathan Stephenson. Finite computable di-

mension and degrees of categoricity.

[FKM10] Ekaterina B. Fokina, Iskander Kalimullin, and Russell Miller. De-

grees of categoricity of computable structures. Arch. Math. Logic,

49(1):51–67, 2010.

[Soa16] Robert I. Soare. Turing computability. Theory and Applications

of Computability. Springer-Verlag, Berlin, 2016. Theory and ap-

plications.

B. Csima was partially supported by Canadian NSERC Discovery Grant

312501. M. Deveau was partially supported by Canadian NSERC Postgrad-

uate Scholarship PGSD1-234567-2017. J. Stephenson is now a Visiting As-

sistant Professor at Valparaiso University, Indiana.

25

	Introduction
	Isomorphisms on copies of (omega, <)
	Isomorphisms on copies of (omega squared, <))
	Conclusion

