
The Effect of Q-function Reuse on the Total Regret of Tabular,
Model-Free, Reinforcement Learning

Volodymyr Tkachuk

University of Waterloo

Waterloo, Ontario

vtkachuk@uwaterloo.ca

Sriram Ganapathi

Subramanian

University of Waterloo

Waterloo, Ontario

s2ganapa@uwaterloo.ca

Matthew E. Taylor

University of Alberta

Alberta Machine Intelligence Institute

(Amii)

Edmonton, Alberta

matthew.e.taylor@ualberta.ca

ABSTRACT
Some reinforcement learning methods suffer from high sample

complexity causing them to not be practical in real-world situa-

tions. 𝑄-function reuse, a transfer learning method, is one way

to reduce the sample complexity of learning, potentially improv-

ing usefulness of existing algorithms. Prior work has shown the

empirical effectiveness of 𝑄-function reuse for various environ-

ments when applied to model-free algorithms. To the best of our

knowledge, there has been no theoretical work showing the regret

of 𝑄-function reuse when applied to the tabular, model-free set-

ting. We aim to bridge the gap between theoretical and empirical

work in 𝑄-function reuse by providing some theoretical insights

on the effectiveness of 𝑄-function reuse when applied to the 𝑄-

learning with UCB-Hoeffding algorithm. Our main contribution is

showing that in a specific case if 𝑄-function reuse is applied to the

𝑄-learning with UCB-Hoeffding algorithm it has a regret that is

independent of the state or action space. We also provide empirical

results supporting our theoretical findings.

KEYWORDS
Reinforcement Learning, Transfer Learning

1 INTRODUCTION
In reinforcement learning (RL), an agent interacts with an envi-

ronment and tries to maximize its expected sum of rewards. Many

algorithms, such as Q-learning with 𝜖-greedy exploration [5], can

suffer from poor sample complexity [4]. This is a problem in real-

world situations where an agent may receive a limited amount

of samples to learn an optimal policy. Such real-world environ-

ments serve as motivation to reduce the sample complexity of RL

algorithms.

Transfer learning (TL) is a method used in RL as one way to

reduce an agent’s training time [6]. The key idea is that an agent

can learn a target task faster by transferring information from a

previously learned source task, similar to how humans can learn

algebra more quickly by transferring knowledge from previous

tasks that require addition andmultiplication. Although the concept

of TL is intuitively appealing, its effectiveness has been mostly

shown through empirical studies [7]. As such, we aim to provide

new theoretical results for one TL method in RL, 𝑄-function reuse.

𝑄-function reuse is the process of training an agent on a simple

source Markov decision process (MDP)M𝑆 and then transferring

its learned 𝑄-function to a more complex, yet related target MDP

M𝑇 . The goal is to improve the sample complexity when compared

to just training inM𝑇 from the start. Sample complexity is loosely

defined as how much data an agent must collect in order to learn a

good policy [3]. If the agent was trained inM𝑆 until convergence to

the optimal policy, transferring the𝑄-function fromM𝑆 toM𝑇 can

sometimes be thought of as a near-optimal𝑄-function initialization

inM𝑇 , sinceM𝑆 is related toM𝑇 . Therefore, we propose that one

method to study 𝑄-function reuse is to study the effectiveness of

near-optimal 𝑄-function initialization.

Since the effectiveness of 𝑄-function reuse has been mostly

shown in the model-free setting [7], and it is easier to perform

a theoretical analysis in the tabular domain, we choose to study the

effects of 𝑄-function reuse on a tabular, model-free algorithm that

is provably efficient, 𝑄-learning with UCB-Hoeffding [2]. In this

work we study the setting where we are given the 𝑄-function from

some agent that has previously been trained on a simple MDPM𝑆 .

We refer to this𝑄-function as the pre-trained𝑄-function fromM𝑆 .

We will answer the following question:

Will the total regret of the 𝑄-learning with UCB-Hoeffding

algorithm be lower in a complex (target) MDP M𝑇 , if it is

initialized with a pre-trained 𝑄-function from a related, but

simpler (source) MDPM𝑆?

For our analysis, we assume the 𝑄-function initialization is op-

timal for all but one value. Although this is a rather strong as-

sumption, we believe it provides useful insights and a promising

starting point for future work. In general, the 𝑄-function initial-

ization in a target MDP after 𝑄-function reuse has some nearly

optimal 𝑄-values and some 𝑄-values that are far from optimal.

Therefore, to address the general case of 𝑄-function reuse, future

work might include increasing the number of not optimal𝑄-values

to more than one and relaxing the optimal 𝑄-function initializa-

tion for the remaining 𝑄-values to some notion of sub-optimality.

To the best of our knowledge, there has not been any theoretical

work showing the total regret of 𝑄-function reuse applied on a

tabular, model-free algorithm. We perform a regret analysis, show-

ing that the 𝑄-learning with the UCB-Hoeffding algorithm [2],

along with our initialization assumptions achieves a total regret

of only 𝑂 (
√
𝐻2𝑇𝜄 ′) (independent of the state and action space),

while regular 𝑄-learning with UCB-Hoeffding suffers a regret of

𝑂 (
√
𝐻4𝑆𝐴𝑇𝜄) [2]. Empirical results are presented to support these

theoretical claims.

ar
X

iv
:2

10
3.

04
41

6v
1

 [
cs

.L
G

]
 7

 M
ar

 2
02

1

2 PRELIMINARIES
Weborrow standard notations from Jin et al. [2], that wewill include

in this section for quick reference. To provide a fair comparison be-

tween our algorithm and the 𝑄-learning with UCB-Hoeffding algo-

rithm, proposed by Jin et al. [2], we maintain a similar problem set-

ting. Extending this work to other settings (e.g., stochastic reward,

terminating states, discounting, etc.) is left for future work. We be-

gin by describing the Markov decision process, MDP(S,A, 𝐻, P, 𝑟).
The set of states is S, with |S| = 𝑆 . The set of actions is A, with

|A| = 𝐴. The number of steps per episode (horizon) is 𝐻 . The tran-

sition dynamics are given by P, where Pℎ (·|𝑥, 𝑎) gives the next state
distribution if action 𝑎 was taken in state 𝑥 at step ℎ ∈ [𝐻]. The
deterministic reward function is 𝑟ℎ (𝑥, 𝑎), which provides a reward

in the range [0, 1] for taking action 𝑎 in state 𝑥 at step ℎ. The agent

acts in this MDP for 𝐾 episodes. We let 𝑇 = 𝐾𝐻 denote the total

number of steps the agent takes in the MDP.

For each episode 𝑘 ∈ [𝐾] an initial state 𝑥𝑘
1
is chosen randomly.

At each step ℎ and episode 𝑘 the agent observes a state 𝑥𝑘
ℎ
, takes

action 𝑎𝑘
ℎ
, receives reward 𝑟ℎ (𝑥𝑘ℎ , 𝑎

𝑘
ℎ
), and then transitions to its

next state drawn from the distribution Pℎ (·|𝑥𝑘ℎ , 𝑎
𝑘
ℎ
). The transition

dynamics and reward function were chosen to depend on the step

ℎ for generality and to remain consistent with prior work [2]. Note

that if dependence onℎ is not required then the transition dynamics

and reward function can be set the same for all ℎ and all the results

shown in this work will still hold. The episode ends when 𝑥𝑘
𝐻+1 is

reached.

There is a separate policy 𝜋ℎ for each step {𝜋ℎ : S → A}ℎ∈[𝐻] .
We use 𝑉 𝜋

ℎ
: S → R to denote the value function at step ℎ under

policy 𝜋 . The expected sum of rewards under policy 𝜋 , from 𝑥ℎ = 𝑥

until the end of the episode is given by 𝑉 𝜋
ℎ
(𝑥). This is represented

as:

𝑉 𝜋
ℎ
(𝑥) := E

[
𝐻∑︁
ℎ′=ℎ

𝑟ℎ′ (𝑥ℎ′, 𝜋ℎ′ (𝑥ℎ′)) |𝑥ℎ = 𝑥

]
Similarly, we define the state-action value function as 𝑄𝜋

ℎ
: S ×

A → R. The expected sum of rewards under policy 𝜋 , from state

𝑥ℎ = 𝑥 after taking action 𝑎ℎ = 𝑎 until the end of the episode is

given by 𝑄𝜋
ℎ
(𝑥, 𝑎). This is represented as:

𝑄𝜋
ℎ
(𝑥, 𝑎) := 𝑟ℎ (𝑥, 𝑎) + E

[
𝐻∑︁

ℎ′=ℎ+1
𝑟ℎ′ (𝑥ℎ′, 𝜋ℎ′ (𝑥ℎ′)) |𝑥ℎ = 𝑥, 𝑎ℎ = 𝑎

]
Since the state space, action space, and horizon are all finite, there

always exists an optimal policy 𝜋∗ which gives the optimal value

𝑉 ∗
ℎ
(𝑥) := sup𝜋𝑉

𝜋
ℎ
(𝑥), for all 𝑥 ∈ S and ℎ ∈ [𝐻] [1]. To simplify no-

tation we will denote [Pℎ𝑉ℎ+1] (𝑥, 𝑎) := E𝑥 ′∼P(· |𝑥,𝑎)𝑉ℎ+1 (𝑥 ′). Using
this notation we have the Bellman equations and Bellman optimal-

ity equations as follows:


𝑉 𝜋
ℎ
(𝑥) = 𝑄𝜋

ℎ
(𝑥, 𝜋ℎ (𝑥))

𝑄𝜋
ℎ
(𝑥, 𝑎) = (𝑟ℎ + Pℎ𝑉 𝜋ℎ+1) (𝑥, 𝑎)

𝑉 𝜋
𝐻+1 (𝑥) = 0 ∀𝑥 ∈ S


𝑉 ∗
ℎ
(𝑥) = max𝑎∈A𝑄∗ℎ (𝑥, 𝑎)

𝑄∗
ℎ
(𝑥, 𝑎) := (𝑟ℎ + Pℎ𝑉 ∗ℎ+1) (𝑥, 𝑎)

𝑉 ∗
𝐻+1 (𝑥) = 0 ∀𝑥 ∈ S

(1)

We will use 𝜋𝑘
ℎ
to denote the agent’s policy at episode 𝑘 . Finally,

the performance metric of interest is the total regret, defined as:

Regret(𝐾) =
𝐾∑︁
𝑘=1

[𝑉 ∗
1
(𝑥𝑘

1
) −𝑉 𝜋

𝑘
ℎ

1
(𝑥𝑘

1
)]

3 RESULTS
In this section we present our algorithm, 𝑄-learning with UCB-

Hoeffding and Max-Optimal Initialization, a modified version of

Algorithm 1 from Jin et al. [2]. We also introduce a theorem that

shows the total regret of our algorithm is 𝑂 (
√
𝐻2𝑇𝜄 ′).

As a starting point to answering our question, presented in the

introduction, we propose using an ideal𝑄-function initialization to

model a possible pre-trained 𝑄-function we might receive. We call

this Max-Optimal Initialization because it is the maximum number

of assumptions that can bemade before the𝑄-function initialization

becomes the optimal𝑄-function for all states, actions, and steps. In

words, we initialize the𝑄-function to the optimal𝑄-function for all

(𝑥, 𝑎, ℎ) ∈ S ×A× [𝐻] except for state 𝑥1, action 𝑎1 and step ℎ = 1,

which is initialized to𝐻 (as per the𝑄-learning with UCB-Hoeffding

algorithm). Since updating the 𝑄-function at any of the optimal

states, actions, and steps could potentially make it sub-optimal,

we make the additional assumption that the 𝑄-function is only

updated for (𝑥1, 𝑎1, ℎ = 1). We only keep track of how many times

(𝑥1, 𝑎1, ℎ = 1) was visited using a counter 𝑁1 (𝑥1, 𝑎1) initialized to

0. Since the 𝑄-function is not updated for any other (𝑥, 𝑎, ℎ), there
is no need to keep track of how many times any other (𝑥, 𝑎, ℎ) is
visited. In mathematical notation the initialization can be stated as

follows:

𝑄1 (𝑥1, 𝑎1) ← 𝐻 and 𝑁1 (𝑥1, 𝑎1) ← 0

𝑄ℎ (𝑥, 𝑎) ← 𝑄∗
ℎ
(𝑥, 𝑎) for all (𝑥, 𝑎, ℎ) ∈ S × A × [𝐻]\(𝑥1, 𝑎1, ℎ = 1)

(2)

The Max-Optimal initialization can model the scenario where

an agent is trained on some simple MDPM0 until convergence,

but then a new action 𝑎1 is introduced at state 𝑥1 and step ℎ = 1

(MDPM𝐹). InM𝐹 the agent is essentially initialized with an op-

timal 𝑄-function for all (𝑥, 𝑎, ℎ), except (𝑥1, 𝑎1, ℎ = 1). We would

like to highlight that in this scenarioM0 is considered related to

MDPM𝐹 since it has the same transition dynamics and reward

function for all but one state, action, and step. M0 is also con-

sidered simpler thanM𝐹 since it is exactlyM𝐹 , except without

(𝑥1, 𝑎1, ℎ = 1). We present Algorithm 1, 𝑄-learning with UCB-

Hoeffding and Max-Optimal Initialization, which combines the

𝑄-learning with UCB-Hoeffding algorithm with the Max-Optimal

Initialization assumptions. The modifications we made to the 𝑄-

learning with UCB-Hoeffding algorithm are shown in blue in Algo-

rithm 1.

We now describe the steps performed in our algorithm. The

𝑄-function and step counter 𝑁1 (𝑥1, 𝑎1) are initialized using Max-

Optimal initialization. For each episode 𝑘 ∈ [𝐾] the agent starts in
a random state 𝑥𝑘

1
. Then, for each stepℎ ∈ [𝐻] and state 𝑥𝑘

ℎ
∈ S the

agent selects the action 𝑎 ∈ A that maximizes its current estimate

of 𝑄ℎ (𝑥, 𝑎). The next state 𝑥𝑘ℎ+1 ∈ S is sampled from Pℎ (·|𝑥, 𝑎). If
the current state, action and step (𝑥𝑘

ℎ
, 𝑎𝑘
ℎ
, ℎ) is (𝑥1, 𝑎1, ℎ = 1), the

agent updates its 𝑄-function using the following rule:

𝑄ℎ (𝑥𝑘ℎ , 𝑎
𝑘
ℎ
) ← (1−𝛼𝑡)𝑄ℎ (𝑥𝑘ℎ , 𝑎

𝑘
ℎ
) +𝛼𝑡 [𝑟ℎ (𝑥𝑘ℎ , 𝑎

𝑘
ℎ
) +𝑉ℎ+1 (𝑥𝑘ℎ+1) +𝑏𝑡]

(3)

where 𝑡 is the step counter for how many times the agent has

visited (𝑥1, 𝑎1) at step ℎ = 1, 𝑏𝑡 is the confidence bonus indicating

the agents confidence in its 𝑄-value at (𝑥1, 𝑎1, ℎ = 1), and the

learning rate 𝛼 is 𝛼𝑡 := 𝐻+1
𝐻+𝑡 . This choice of learning rate 𝛼𝑡 is

crucial to obtain a total regret that is not exponential in 𝐻 [2].

We removed the update𝑉ℎ (𝑥ℎ) ← min{𝐻,max𝑎′∈A 𝑄ℎ (𝑥ℎ, 𝑎′)}
since the𝑄-function in our algorithm is only updated for (𝑥1, 𝑎1, ℎ =

1), which requires knowledge of 𝑉𝑘
ℎ+1 (𝑥

𝑘
ℎ+1). But 𝑉

𝑘
ℎ+1 (𝑥

𝑘
ℎ+1) =

𝑉 ∗
ℎ+1 (𝑥

𝑘
ℎ+1) for ℎ ≥ 1 due to the Max-Optimal initialization, mean-

ing we never need to update 𝑉𝑘
ℎ+1 (𝑥

𝑘
ℎ+1).

We present the following theorem for the 𝑄-learning with UCB-

Hoeffding and Max-Optimal Initialization algorithm:

Theorem 1 (Hoeffding Max-Optimal). There exists an absolute
constant 𝑐 > 0 such that, for any 𝑝 ∈ (0, 1), if we choose 𝑏𝑡 =

𝑐
√︁
𝐻3𝜄 ′/𝑡 , then with probability 1 − 𝑝 the total regret of 𝑄-learning

with UCB-Hoeffding and Max-Optimal Initialization (Algorithm 1) is
at most 𝑂 (

√
𝐻2𝑇𝜄 ′), where 𝜄 ′ := 𝑙𝑜𝑔(𝐾/𝑝).

Note that we reserve 𝜄 for when we refer to the 𝑄-learning with

UCB-Hoeffding algorithm, where 𝜄 := 𝑙𝑜𝑔(𝑆𝐴𝑇 /𝑝). In our algorithm
this term is reduced to 𝜄 ′ := 𝑙𝑜𝑔(𝐾/𝑝) due to our added assumptions.

Algorithm 1: 𝑄-learning with UCB-Hoeffding and Max-

Optimal Initialization

1 Initialize 𝑄1 (𝑥1, 𝑎1) ← 𝐻 and 𝑁1 (𝑥1, 𝑎1) ← 0

2 Initialize 𝑄ℎ (𝑥, 𝑎) ← 𝑄∗
ℎ
(𝑥, 𝑎) for all

(𝑥, 𝑎, ℎ) ∈ S × A × [𝐻]\(𝑥1, 𝑎1, ℎ = 1)
3 for episode 𝑘 = 1, ..., 𝐾 do
4 receive 𝑥𝑘

1

5 for step ℎ = 1, ..., 𝐻 do
6 Take action 𝑎𝑘

ℎ
← argmax𝑎′ 𝑄ℎ (𝑥𝑘ℎ , 𝑎

′), and observe

𝑥𝑘
ℎ+1

7 if 𝑥𝑘
ℎ
= 𝑥1 and 𝑎𝑘

ℎ
= 𝑎1 and ℎ = 1 then

8 𝑡 = 𝑁ℎ (𝑥𝑘ℎ , 𝑎
𝑘
ℎ
) ← 𝑁ℎ (𝑥𝑘ℎ , 𝑎

𝑘
ℎ
) + 1;

𝑏𝑡 ← 𝑐
√︁
𝐻3𝜄 ′/𝑡

9 𝑄ℎ (𝑥𝑘ℎ , 𝑎
𝑘
ℎ
) ← (1 − 𝛼𝑡)𝑄ℎ (𝑥𝑘ℎ , 𝑎

𝑘
ℎ
) +

𝛼𝑡 [𝑟ℎ (𝑥𝑘ℎ , 𝑎
𝑘
ℎ
) +𝑉ℎ+1 (𝑥𝑘ℎ+1) + 𝑏𝑡]

10 end
11 end
12 end

4 PROOF FOR Q-LEARNINGWITH
UCB-HOEFFING AND MAX-OPTIMAL
INITIALIZATION

We provide a full proof of Theorem 1, following similar steps and

notation to that mentioned in Jin et al. [2]. We first introduce some

notation for convenience.

We denote by I[𝐴] as the indicator function for an event𝐴. Recall
that [Pℎ𝑉ℎ+1] (𝑥, 𝑎) := E𝑥 ′∼Pℎ (· |𝑥,𝑎)𝑉ℎ+1 (𝑥

′). We now introduce

its empirical counterpart, [ˆP𝑘
ℎ
𝑉ℎ+1] (𝑥, 𝑎) := 𝑉ℎ+1 (𝑥𝑘ℎ+1), which is

defined only for (𝑥, 𝑎) = (𝑥𝑘
ℎ
, 𝑎𝑘
ℎ
). Recalling that 𝛼𝑡 = 𝐻+1

𝐻+𝑡 , we
introduce the following:

𝛼0𝑡 =

𝑡∏
𝑗=1

(1 − 𝛼 𝑗), 𝛼𝑖𝑡 = 𝛼𝑖

𝑡∏
𝑗=𝑖+1
(1 − 𝛼 𝑗) (4)

Recall that

∑𝑡< 𝑗
𝑗
(·) = 0 and

∏𝑡< 𝑗
𝑗
(·) = 1. Therefore, the following

properties hold:

𝑡∑︁
𝑖=1

𝛼𝑖𝑡 = 1 and 𝛼0𝑡 = 0 for 𝑡 ≥ 1,

𝑡∑︁
𝑖=1

𝛼𝑖𝑡 = 0 and 𝛼0𝑡 = 1 for 𝑡 = 0

The motivation for introducing this notation is to simplify the

recursive𝑄-function update formula (as seen in equation (3)). From

equation (3) and equation (4) we have:

𝑄𝑘
ℎ
(𝑥, 𝑎) = 𝛼0𝑡𝐻 +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡 [𝑟ℎ (𝑥, 𝑎) +𝑉 ∗ℎ+1 (𝑥
𝑘𝑖
ℎ+1) + 𝑏𝑖] (5)

which only applies for (𝑥1, 𝑎1, ℎ = 1), ∀𝑘 ∈ [𝐾], as discussed in

equation (3).

Proof Details
We now introduce some Lemmas that will help us in the proof of

Theorem 1. For completeness we repeat Lemme 4.1 exactly as stated

in Jin et al. [2].

Lemma 4.1. The following properties hold for 𝛼𝑖𝑡 :

(a)
1√
𝑡
≤ ∑𝑡

𝑖=1

𝛼𝑖𝑡√
𝑖
≤ 2√

𝑡
for every 𝑡 ≥ 1

(b) max𝑖∈[𝑡] 𝛼
𝑖
𝑡 ≤

2𝐻
𝑡 and

∑𝑡
𝑖=1 (𝛼𝑖𝑡)2 ≤

2𝐻
𝑡 for every 𝑡 ≥ 1

(c)

∑∞
𝑡=1 𝛼

𝑖
𝑡 = 1 + 1

𝐻
for every 𝑖 ≥ 1

Proof. See proof of Lemma 4.1 in Jin et al. [2] □

We now present modified versions of Lemma 4.2 and Lemma 4.3

from Jin et al. [2], which we will use in our proof of Theorem 1.

Lemma 4.2 (Difference in Q). For (𝑥1, 𝑎1, ℎ = 1) ∈ S×A× [𝐻]
and episode 𝑘 ∈ [𝐾], let 𝑡 = 𝑁𝑘

1
(𝑥1, 𝑎1) and suppose (𝑥1, 𝑎1) was

previously taken at step h=1 of episode 𝑘1, ..., 𝑘𝑡 < 𝑘 . Then:

(𝑄𝑘
1
−𝑄∗

1
) (𝑥1, 𝑎1) =𝛼0𝑡 (𝐻 −𝑄∗1 (𝑥1, 𝑎1))

+
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[
[(ˆP𝑘𝑖

1
− P1)𝑉 ∗2] (𝑥1, 𝑎1) + 𝑏𝑖

]
Proof of Lemma 4.2. From the Bellman optimality equation we

have𝑄∗
ℎ
(𝑥, 𝑎) = (𝑟ℎ+Pℎ𝑉 ∗ℎ+1) (𝑥, 𝑎). Recalling that [ˆP

𝑘
ℎ
𝑉ℎ+1] (𝑥, 𝑎) :=

𝑉ℎ+1 (𝑥𝑘ℎ+1), and the fact that

∑𝑡
𝑖=0 𝛼

𝑖
𝑡 = 1, we have:

𝑄∗
ℎ
(𝑥, 𝑎) = 𝑟ℎ (𝑥, 𝑎) + [Pℎ𝑉 ∗ℎ+1] (𝑥, 𝑎)

= 𝛼0𝑡𝑄
∗
ℎ
(𝑥, 𝑎) +

𝑡∑︁
𝑖=1

𝛼𝑖𝑡
[
𝑟ℎ (𝑥, 𝑎) + [Pℎ𝑉 ∗ℎ+1] (𝑥, 𝑎)

]
= 𝛼0𝑡𝑄

∗
ℎ
(𝑥, 𝑎)

+
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[
𝑟ℎ (𝑥, 𝑎) + [(Pℎ − ˆP𝑘𝑖

ℎ
)𝑉 ∗
ℎ+1] (𝑥, 𝑎) +𝑉

∗
ℎ+1 (𝑥

𝑘𝑖
ℎ+1)

]

which is true for all (𝑥, 𝑎, ℎ) ∈ S × A × [𝐻]. Subtracting the above
equation from formula (5) for (𝑥1, 𝑎1, ℎ = 1), we obtain Lemma 4.2:

(𝑄𝑘
1
−𝑄∗

1
) (𝑥1, 𝑎1)

= 𝛼0𝑡 (𝐻 −𝑄∗1 (𝑥1, 𝑎1))

+
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[
(𝑉𝑘𝑖

2
−𝑉 ∗

2
) (𝑥𝑘𝑖

2
) + [(ˆP𝑘𝑖

1
− P1)𝑉 ∗2] (𝑥1, 𝑎1) + 𝑏𝑖

]
1

= 𝛼0𝑡 (𝐻 −𝑄∗1 (𝑥1, 𝑎1))

+
𝑡∑︁
𝑖=1

𝛼𝑖𝑡

[
[(ˆP𝑘𝑖

1
− P1)𝑉 ∗2] (𝑥1, 𝑎1) + 𝑏𝑖

]
Where 1○ holds because 𝑉𝑘

ℎ
(𝑥𝑘
ℎ
) = 𝑉 ∗

ℎ
(𝑥𝑘
ℎ
) for ℎ ≥ 2,∀𝑘 ∈ [𝐾] □

Next, we present a modified version of Lemma 4.3 from Jin et al.

[2], for (𝑥1, 𝑎1, ℎ = 1), which shows that 𝑄𝑘
1
is an upper bound on

𝑄∗
1
with high probability.

Lemma 4.3 (bound on (𝑄𝑘
1
− 𝑄∗

1
) (𝑥1, 𝑎1)). There exists an ab-

solute constant 𝑐 > 0 such that, for any 𝑝 ∈ (0, 1), letting 𝑏𝑡 =

𝑐
√︁
𝐻3𝜄 ′/𝑡 , we have 𝛽𝑡 = 2

∑𝑡
𝑖=1 𝛼

𝑖
𝑡𝑏𝑖 ≤ 4𝑐

√︁
𝐻3𝜄 ′/𝑡 , where 𝜄 ′ =

𝑙𝑜𝑔(𝐾/𝑝), and with probability at least 1 − 𝑝 , the following holds for
(𝑥1, 𝑎1, ℎ = 1), ∀𝑘 ∈ [𝐾]:

0 ≤ (𝑄𝑘
1
−𝑄∗

1
) (𝑥1, 𝑎1) ≤ 𝛼0𝑡𝐻 + 𝛽𝑡

where 𝑡 = 𝑁𝑘
1
(𝑥1, 𝑎1) and 𝑘1, ..., 𝑘𝑡 < 𝑘 are the episodes where

(𝑥1, 𝑎1) was taken at step ℎ = 1.

Proof of Lemma 4.3. For (𝑥1, 𝑎1, ℎ = 1), let us denote 𝑘0 = 0

and denote

𝑘𝑖 = min

(
{𝑘 ∈ [𝐾] | 𝑘 ≥ 𝑘𝑖−1 ∧ (𝑥𝑘1 , 𝑎

𝑘
1
) = (𝑥1, 𝑎1)} ∪ {𝐾 + 1}

)
In words, this means that 𝑘𝑖 is the episode when (𝑥1, 𝑎1) was taken
at step ℎ = 1 for the 𝑖th time, and 𝑘𝑖 equals 𝐾 + 1 if (𝑥1, 𝑎1) was
taken for fewer than 𝑖 times. The random variable 𝑘𝑖 can be thought

of as a stopping time. If we let F𝑖 (filtration) be the 𝜎-algebra gen-
erated by all the random variables until episode 𝑘𝑖 , and step ℎ = 1.

Then,

(
I[𝑘𝑖 ≤ 𝐾] · [(ˆP𝑘𝑖

1
−P1)𝑉 ∗

2
] (𝑥1, 𝑎1)

)𝜏
𝑖=1 is a Martingale differ-

ence sequence w.r.t. the filtration {F𝑖 }𝑖≥0. In words, the filtration

{F𝑖 }𝑖≥0 can be thought of as a sequence of increasing information

about state 𝑥1, action 𝑎1 at step ℎ = 1, where the filtration satisfies

F1 ⊆ F2 ... ⊆ F𝑖 and the three properties that define a 𝜎-algebra.

By Azuma-Hoeffding and a union bound, we have with probability

at least 1 − 𝑝:

∀𝜏 ∈ [𝐾] :
����� 𝜏∑︁
𝑖=1

𝛼𝑖𝜏 · I[𝑘𝑖 ≤ 𝐾] · [(ˆP
𝑘𝑖
1
− P1)𝑉 ∗2] (𝑥1, 𝑎1)

�����
≤ 𝑐𝐻

2

√√
𝜏∑︁
𝑖=1

(𝛼𝑖𝜏)2 · 𝜄 ′ ≤ 𝑐
√︂
𝐻3𝜄 ′

𝜏
(6)

for some absolute constant c. Because inequality (6) holds for all

fixed 𝜏 ∈ [𝐾] uniformly, it also holds for 𝜏 = 𝑡 = 𝑁𝑘
1
(𝑥1, 𝑎1) ≤ 𝐾 ,

which is a random variable, where 𝑘 ∈ [𝐾]. Also note I[𝑘𝑖 ≤ 𝐾] = 1

for all 𝑖 ≤ 𝑁𝑘
1
(𝑥1, 𝑎1). We now have:

����� 𝑡∑︁
𝑖=1

𝛼𝑖𝜏 · [(ˆP
𝑘𝑖
1
− P1)𝑉 ∗2] (𝑥1, 𝑎1)

����� ≤ 𝑐
√︂
𝐻3𝜄 ′

𝜏
where 𝑡 = 𝑁𝑘

1
(𝑥1, 𝑎1)

(7)

If we choose 𝑏𝑡 = 𝑐
√︁
𝐻3𝜄 ′/𝑡 for the same constant 𝑐 as in inequality

(7), we have 𝛽𝑡/2 =
∑𝑡
𝑖=1 𝛼

𝑖
𝑡𝑏𝑖 ∈ [𝑐

√︁
𝐻3𝜄 ′/𝑡, 2𝑐

√︁
𝐻3𝜄 ′/𝑡] according

to Lemma 4.1.a. Then the right-hand side of Lemma 4.3 follows

immediately from Lemma 4.2 and inequality (7). The left-hand side

also follows from Lemma 4.2. □

We are now ready to prove Theorem 1.

Proof of Theorem 1. We follow a similar procedure to Jin et al.

[2], except we do not have to decompose the regret into a recursive

form in ℎ since we are interested in a fixed ℎ = 1. We denote

𝛿𝑘
1
:= (𝑉𝑘

1
−𝑉 𝜋

𝑘
1

1
) (𝑥1).

By Lemma 4.3, we have that with at least 1 − 𝑝 probability,

𝑄𝑘
1
(𝑥1, 𝑎1) ≥ 𝑄∗

1
(𝑥1, 𝑎1) and thus 𝑉𝑘

1
(𝑥1) ≥ 𝑉 ∗

1
(𝑥1). We also

know that 𝑄𝑘
1
(𝑥, 𝑎) = 𝑄∗

1
(𝑥, 𝑎), ∀(𝑥, 𝑎) ∈ S × A\(𝑥1, 𝑎1) and thus

𝑉𝑘
1
(𝑥) = 𝑉 ∗

1
(𝑥), ∀𝑥 ∈ S\𝑥1. The regret can be upper bounded:

Regret(𝐾) =
𝐾∑︁
𝑘=1

(𝑉 ∗
1
−𝑉 𝜋

𝑘
1

1
) (𝑥𝑘

1
) ≤

𝐾∑︁
𝑘=1

(𝑉𝑘
1
−𝑉 𝜋

𝑘
1

1
) (𝑥𝑘

1
)

1

≤
𝐾∑︁
𝑘=1

(𝑉𝑘
1
−𝑉 𝜋

𝑘
1

1
) (𝑥1) =

𝐾∑︁
𝑘=1

𝛿𝑘
1

(8)

where inequality 1○ holds because

∑𝐾
𝑘=1
(𝑉𝑘

1
−𝑉 𝜋

𝑘
1

1
) (𝑥𝑘

1
) = 0, ∀𝑥 ∈

S\𝑥1.
For any fixed 𝑘, ∈ [𝐾], let 𝑡 = 𝑁𝑘

1
(𝑥1, 𝑎1) and suppose (𝑥1, 𝑎1)

was previously taken at step ℎ = 1 of episode 𝑘1, ..., 𝑘𝑡 < 𝑘 , Then

we have:

𝛿𝑘
1
= (𝑉𝑘

1
−𝑉 𝜋

𝑘
1

1
) (𝑥1)

1

= (𝑄𝑘
1
−𝑄𝜋

𝑘
1

1
) (𝑥1, 𝑎𝑘

1
)

= (𝑄𝑘
1
−𝑄∗

1
) (𝑥1, 𝑎𝑘

1
) + (𝑄∗

1
−𝑄𝜋

𝑘
1

1
) (𝑥1, 𝑎𝑘

1
)

2

= (𝑄𝑘
1
−𝑄∗

1
) (𝑥1, 𝑎1) + (𝑄∗

1
−𝑄𝜋

𝑘
1

1
) (𝑥1, 𝑎1)

3

≤ 𝛼0𝑡𝐻 + 𝛽𝑡 + [P1 (𝑉 ∗2 −𝑉
𝜋𝑘
1

2
)] (𝑥1, 𝑎1)

4

= 𝛼0𝑡𝐻 + 𝛽𝑡 (9)

where 𝛽 = 2

∑
𝛼𝑖𝑡𝑏𝑖 ≤ 𝑂 (1)

√︁
𝐻3𝜄 ′/𝑡 . Equality 1○ holds because

𝑉𝑘
1
(𝑥1) = max𝑎′∈A𝑄𝑘1 (𝑥1, 𝑎

′) = 𝑄𝑘
1
(𝑥1, 𝑎𝑘

1
). Equality 2○ holds

because 𝑄𝑘
1
(𝑥1, 𝑎𝑘

1
) = 𝑄∗

1
(𝑥1, 𝑎𝑘

1
), ∀𝑎𝑘

1
∈ A\𝑎1 and 𝑄∗

1
(𝑥1, 𝑎𝑘

1
) =

𝑄
𝜋𝑘
ℎ

1
(𝑥1, 𝑎𝑘

1
), ∀𝑎𝑘

1
∈ A\𝑎1. Inequality 3○ holds with at least 1 − 𝑝

probability by Lemma 4.3 and the Bellman equations (1). Finally,

equality 4○ holds since [Pℎ (𝑉
𝜋𝑘
ℎ

ℎ+1 − 𝑉
∗
ℎ+1)] (𝑥1, 𝑎1) = 0 for ℎ ≥

1,∀𝑘 ∈ [𝐾]. We now compute the summation

∑𝐾
𝑘=1

𝛿𝑘
1
. Denoting

𝑛𝑘
1
= 𝑁𝑘

1
(𝑥1, 𝑎1), we have:

𝐾∑︁
𝑘=1

𝛼0
𝑛𝑘
1

𝐻 =

𝐾∑︁
𝑘=1

𝐻 · I[𝑛𝑘
1
= 0] ≤ 𝐻 (10)

Figure 1: The environment the agent was trained in can be
seen in (a). For the purpose of simplifying the image we use
the notation 𝑟 (𝑥1) = 0, 𝑟 (𝑥2) = 0, and 𝑟 (𝑥3) = 1 to represent
the reward the agent receives for transitioning into states
𝑥1, 𝑥2, 𝑥3 respectively. The optimal policy is shown in (b).

We also have:

𝐾∑︁
𝑘=1

𝛽
𝑛𝑘
1

≤ 𝑂 (1)·
𝐾∑︁
𝑘=1

√︄
𝐻3𝜄 ′

𝑛𝑘
1

= 𝑂 (1)
𝑁𝐾
1
(𝑥1,𝑎1)∑︁
𝑛=1

√︂
𝐻3𝜄 ′

𝑛

1

≤ 𝑂 (
√︁
𝐻2𝑇𝜄 ′)

(11)

where inequality 1○ is true because the left-hand side of 1○ is

maximized when 𝑁𝑘
1
(𝑥1, 𝑎1) = 𝐾 , and ∑𝐾

𝑛=1

√︃
1

𝑛 can be bounded

by 𝑂 (
√
𝐾). Taking the sum from 𝑘 = 1 to 𝐾 for (9) and plugging in

(10) and (11) we have:

𝐾∑︁
𝑘=1

𝛿𝑘
1
≤ 𝑂 (𝐻 +

√︁
𝐻2𝑇𝜄 ′)

1

= 𝑂 (
√︁
𝐻2𝑇𝜄 ′)

where 1○ is true since

√
𝐻2𝑇𝜄 ′ ≥ 𝐻 .

Recall that Lemma 4.3 was applied twice in this proof (once in

equation (8) and once in 3○ in equation (9)). Note that (1 − 𝑝)2 =
1−2𝑝 +𝑝2 ≥ 1−2𝑝 , where the last inequality is applied because the
𝑝2 term is small when compared to 2𝑝 . In summary, we have that∑𝐾
𝑘=1

𝛿𝑘
1
≤ 𝑂 (

√
𝐻2𝑇𝜄 ′) holds with probability at least 1 − 2𝑝 . Note

the term 𝑝 cannot be greater than 1/2 to ensure the probability

1− 2𝑝 is non-negative. This can be achieved by re-scaling 𝑝 → 𝑝/2
to reduce it’s range from [0, 1] to [0, 1/2]. As such, re-scaling 𝑝 to

𝑝/2 finishes the proof. □

5 EXPERIMENTAL SETUP
In the previous section we proved the theoretical total regret of the

𝑄-learning with Max-Optimal Initialization algorithm is bounded

by 𝑂 (
√
𝐻2𝑇𝜄 ′), while the total regret of the 𝑄-learning with UCB-

Hoeffding algorithm is bounded by 𝑂 (
√
𝐻4𝑆𝐴𝑇𝜄) [2]. This result

implies that our statement of interest holds true theoretically. In

this section our goal is to empirically show that results are con-

sistent with our theoretical findings. We do this by choosing a

simple tabular environment to compare both algorithms. The sim-

ple environment will allow for easier interpretation of results. We

expect the empirical results to hold for larger and more complex

environments.

The environment used is a 1-dimensional gridworld, with 3 states,

and 2 actions (see Figure 1 (a)). The actions are left and right, and

when the agent takes an action that causes it to hit a wall it remains

in the same state. All transitions and rewards are deterministic.

The agent receives a reward of 1 if its next state is the right most

state and a reward of 0 otherwise. The agent interacts with the

environment for exactly 3 steps each episode. The optimal policy is

to go right (𝑎2) in all states for all steps (See Figure 1 (b)). Formally

this setting can be represented by aMDP(S,A, 𝐻, P, 𝑟), where there
are 3 states S = {𝑥1, 𝑥2, 𝑥3}, 2 actions A = {𝑎1, 𝑎2}, the horizon
is 𝐻 = 3, and the transition dynamics and reward function are as

follows for all ℎ ∈ [𝐻] = {1, 2, 3}:

Pℎ (𝑥1|𝑥1, 𝑎1) = 1

Pℎ (𝑥2|𝑥1, 𝑎2) = 1

Pℎ (𝑥1|𝑥2, 𝑎1) = 1

Pℎ (𝑥3|𝑥2, 𝑎2) = 1

Pℎ (𝑥2|𝑥3, 𝑎1) = 1

Pℎ (𝑥3|𝑥3, 𝑎2) = 1

and



𝑟ℎ (𝑥1, 𝑎1) = 0

𝑟ℎ (𝑥1, 𝑎2) = 0

𝑟ℎ (𝑥2, 𝑎1) = 0

𝑟ℎ (𝑥2, 𝑎2) = 1

𝑟ℎ (𝑥3, 𝑎1) = 0

𝑟ℎ (𝑥3, 𝑎2) = 1

Recall that our algorithm makes two important changes to the𝑄-

learning with UCB-Hoeffding algorithm from Jin et al. [2]. Namely,

the initialization is changed according to equation (2) and the 𝑄-

function is only updated if the current state, action, and step is

(𝑥1, 𝑎1, ℎ = 1). We refer to these two changes as assumption 1 (A1)

and assumption 2 (A2) respectively. We train an agent using three

different algorithms:

(1) 𝑄-learning with UCB-Hoeffding [2]

(2) 𝑄-learning with UCB-Hoeffding and Max-Optimal Initializa-

tion without A2

(3) 𝑄-learning with UCB-Hoeffding and Max-Optimal Initializa-

tion (Algorithm 1)

From the above enumeration, points 1 and 3 have already been

discussed in detail and are shown explicitly as Algorithm 1 and

Algorithm 1 in Jin et al. [2] respectively. The goal of point 2 is

to show that A2 is crucial for our theoretical regret bound (as

seen in Theorem 1). Since A2 is removed in point 2, we expect the

total regret to be greater than that of our algorithm. An important

detail is that the𝑄-learning with UCB-Hoeffding and Max-Optimal

Initialization without A2 algorithm is the same as our algorithm

except with A2 removed, but also with 𝑁ℎ (𝑥, 𝑎) initialized to 0 for

all (𝑥, 𝑎, ℎ) ∈ S × A × [𝐻]. Since now the 𝑄-function is updated

for all states, actions, and steps, a visit count 𝑁ℎ (𝑥, 𝑎) must be kept

for all (𝑥, 𝑎, ℎ).
An agent was trained using each algorithm for 500 episodes,

𝐾 = 500. We set the probability term 𝑝 = 0.05, corresponding to

a probability of at least 1 − 𝑝 = 0.95 of obtaining a total regret of

𝑂 (
√
𝐻2𝑇𝜄 ′) as mentioned in Theorem 1. The constant used for the

bonus 𝑏𝑡 was set to 𝑐 = 0.1. For the𝑄-learning with UCB-Hoeffding

and Max-Optimal initialization algorithm we set (𝑥1, 𝑎1, ℎ = 1) as
the non-optimal 𝑄-value.

Recall that going left (𝑎1) in the left-most state 𝑥1 causes the

agent to hit a wall and remain in state 𝑥1. Action 𝑎1 is not the

optimal action in state 𝑥1, since the agent will only receive a reward

of 1 for transitioning into the right-most state, which going left,

𝑎1 does not help achieve. The optimal action is for the agent to go

right (𝑎2) from state 𝑥1. Intuitively, the above initialization causes

the agent to have low confidence in (𝑥1, 𝑎1, ℎ = 1) and therefore

the agent will explore (𝑥1, 𝑎1, ℎ = 1) until it is confident enough

Figure 2: A Per Episode Regret plot of algorithm UCB-H,
UCB-H MO, and UCB-H MO A2 averaged over 50 indepen-
dent runs. The shaded regions represent a 95% confidence
interval.

that (𝑥1, 𝑎1) actually provides it with less total reward than (𝑥1, 𝑎2)
at step ℎ = 1.

As a way to measure performance per episode we introduce:

Per Episode Regret = PER(𝑘) = 𝑉 ∗
1
(𝑥𝑘

1
) −𝑉 𝜋

𝑘
ℎ

1
(𝑥𝑘

1
)

When the PER is summed over all episodes it gives the total regret.

In our experiments, the PER was averaged over 50 independent

runs for each algorithm.

6 EXPERIMENTAL RESULTS
Figure 2 shows the results of training an agent in the setting men-

tioned in the previous section. For convenience, we will refer to the

𝑄-learning with UCB-Hoeffding and Max-Optimal Initialization

algorithm as UCB-H MO, and the 𝑄-learning with UCB-Hoeffding

and Max-Optimal Initialization without A2 algorithm as UCB-H

MO A2, and to the 𝑄-learning with UCB-Hoeffding as UCB-H. In

Figure 2 we observe that the per episode regret converges to zero

fastest for UCB-H MO. A faster convergence to zero implies that

the total regret of UCB-H MO is lower than that of UCB-H MO

A2 and UCB-H, since the total regret is just the sum of the PER

over all episodes. Recall from the theoretical results that the total

regret of UCB-H MO is 𝑂 (
√
𝐻2𝑇𝜄 ′), while UCB-H has a total re-

gret of 𝑂 (
√
𝐻4𝑆𝐴𝑇𝜄). Therefore, this is the expected behaviour of

UCB-H MO when compared to UCB-H based on our theoretical

results. Since UCB-H MO also converges faster than UCB-H MO

A2 it supports our earlier claim that A2 is crucial to the theoretical

regret bound we obtain (see Theorem 1).

7 DISCUSSION AND FUTUREWORK
In summary, we showed that the total regret of 𝑄-learning with

UCB-Hoeffding and Max-Optimal Initialization is upper bounded

by 𝑂 (
√
𝐻2𝑇𝜄 ′). This total regret bound is tighter than that of the

𝑄-learning with UCB-Hoeffding algorithm, 𝑂 (
√
𝐻4𝑆𝐴𝑇𝜄) [2]. This

result provides theoretical justification for applying 𝑄-function

reuse on the 𝑄-function with UCB-Hoeffding algorithm. Although

we make the strong assumption that all but one of the Q-values

are optimal, we believe that this provides a solid starting point for

future work to build upon.

We believe some interesting future directions are:

(1) Increasing the number of non-optimal𝑄-values. In this work

it was assumed that the 𝑄-function was optimal for all but

one state, action, and step (𝑥1, 𝑎1, ℎ = 1). One possible next
step would be to assume that the 𝑄-values of two or more

states, actions, and steps are non-optimal. This might make

the analysis more complex because the proof of Lemma 4.2

assumed that 𝑉𝑘
ℎ
(𝑥𝑘
ℎ
) = 𝑉 ∗

ℎ
(𝑥𝑘
ℎ
) for ℎ ≥ 2,∀𝑘 ∈ [𝐾] which

would no longer be true if one of the non-optimal 𝑄-values

occurred for ℎ ≥ 2.

(2) Relaxing the 𝑄-function optimality assumption for some

(𝑥, 𝑎, ℎ) ∈ S × A × [𝐻]\(𝑥1, 𝑎1, ℎ = 1) to some notion of

near-optimality. This work assumes that the𝑄-functions was

optimal for all but one state, action, and step (𝑥1, 𝑎1, ℎ = 1).
This assumption is generally unrealistic for a transferred

𝑄-function because an agent rarely learns the optimal 𝑄-

function in an environment (instead, it often only reaches

a near-optimal one). Such cases can potentially be mod-

elled by assuming some sub-optimality of the 𝑄-function

initialization. For instance, for some subset of states, actions,

and steps it could be assumed that 𝑄ℎ (𝑥, 𝑎) ≥ 𝑄∗ℎ (𝑥, 𝑎) −
𝜖, ∀(𝑥, 𝑎, ℎ), 𝜖 ≥ 0

(3) Allowing the 𝑄-function to be updated for some (𝑥, 𝑎, ℎ) ∈
S × A × [𝐻]\(𝑥1, 𝑎1, ℎ = 1). In this work it was assumed

that we had prior knowledge of which states, actions, and

steps the𝑄-function was optimally initialized (i.e.𝑄ℎ (𝑥, 𝑎) =
𝑄∗
ℎ
(𝑥, 𝑎), ∀S × A × [𝐻]\(𝑥1, 𝑎1, ℎ = 1)) and therefore we

were able to explicitly choose to not perform 𝑄-function

updates at those states, actions and steps. It may not always

be the case that this information is known. As such, the

algorithm would not update the 𝑄-function for all states,

actions and steps. Modifications to the analysis done in this

work would have to be made to provide an upper bound

on the regret of such an algorithm because a 𝑄-function

update performed at an optimal state, action, and step might

depend on the𝑄-function at a non-optimal state, action, and

step. Such an update can potentially change the value of the

𝑄-function at the optimal state, action, and step, causing for

an increase in the number of non-optimal 𝑄-values.

ACKNOWLEDGMENTS
This work has taken place in the Intelligent Robot Learning (IRL)

Lab at the University of Alberta, which is supported in part by

research grants from the Alberta Machine Intelligence Institute

(Amii) and NSERC, as well as a Canada CIFAR AI Chair.

REFERENCES
[1] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. 2017. Minimax regret

bounds for reinforcement learning. arXiv preprint arXiv:1703.05449 (2017).
[2] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. 2018. Is Q-

learning provably efficient. In Advances in Neural Information Processing Systems.
4863–4873.

[3] ShamMachandranath Kakade et al. 2003. On the sample complexity of reinforcement
learning. Ph.D. Dissertation. University of London London, England.

[4] Michael Kearns and Satinder Singh. 2002. Near-optimal reinforcement learning in

polynomial time. Machine learning 49, 2-3 (2002), 209–232.

[5] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduc-
tion. MIT press.

[6] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement

learning domains: A survey. Journal of Machine Learning Research 10, 7 (2009).

[7] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. 2020. Transfer Learning in Deep

Reinforcement Learning: A Survey. arXiv preprint arXiv:2009.07888 (2020).

	Abstract
	1 Introduction
	2 Preliminaries
	3 Results
	4 Proof for Q-learning with UCB-Hoeffing and Max-Optimal Initialization
	5 Experimental Setup
	6 Experimental Results
	7 Discussion and Future Work
	Acknowledgments
	References

