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Wk ON/OFF decision (1 = ON, 0 = OFF)
ik, Voltage angle [radian]

I. INTRODUCTION

HERE are many remote communities around the world

which do not have interconnection with the power grid
because of technical and/or economic constraints, and thus
have to manage their energy requirements independently,
mainly from fossil-fuel based and, in some cases, renewable
based generations. Such systems operate as isolated micro-
grids.

A microgrid is a group of interconnected loads and Dis-
tributed Energy Resources (DERs) such as distributed gener-
ators (DGs), energy storage systems (ESS) and controllable
loads, within a clearly defined and local electrical boundary
that can act as a single controllable entity with respect to the
grid [1]. The reliable and economic operation of a microgrid
is handled by an Energy Management System (EMS), which
includes scheduling and dispatching of DGs while maintaining
appropriate reserve levels, and considering uncertainty in the
forecast of renewable and coordination of DERs and demand
response (DR) management [2], [3].

The concept of centralized EMS for microgrids, based
on Unit Commitment (UC) and Optimal Power Flow (OPF)
models, have been reported. UC based EMS models in [4] and
[5] take into account the operational constraints pertaining to
DERs such as ramp-up, ramp-down, and minimum up/down-
time constraints, but do not consider network flows; on the
other hand, the OPF based EMS models in [6] and [7] do
consider the network flows, but do not consider the above
mentioned operational constraints. A UC based centralized
microgrid EMS with the objective of simultaneously reducing
fuel consumption and pollutant emissions is presented in [4],
considering photovoltaic (PV) based and fossil fuel based DGs
and ESS. In [5], a UC based EMS is proposed to determine
optimal dispatch of DGs and ESS, and purchase/sell decisions
with the objective of minimizing the microgrid operation costs.
In [6], an OPF based EMS for grid connected industrial
microgrids is proposed, which considers revenue maximization
and includes constraints associated with power flows, ESS,
and plug-in electric vehicles. Paper [7] describes a multi-
objective OPF problem for optimal dispatch of DGs and ESS
in the presence of renewable based generation for isolated
microgrids. None of the above mentioned references consider
DR as an option in the proposed EMS frameworks.

Customer participation in energy management, enabled by
DR mechanisms [8], can play a key role in improving the
efficiency of operation of isolated microgrids and facilitate
the integration of renewables. Thus, in [9], the impacts of
residential DR on network losses, voltage profiles, and service
reliability in distribution networks are studied by considering
aggregated load profiles in a power flow analysis problem,
which are developed using realistic metered usage data and
load profile flexibility estimated from surveyed data. The
impact of price-responsive and controllable loads in a three-
phase unbalanced distribution system is discussed in [10], for-
mulating a Distribution Optimal Power Flow (DOPF) model.

In [11], the demand behaviour in response to real time pricing
(RTP) is expressed by price elasticity coefficients; the energy
management problem considers linearized power flow and UC
constraints simultaneously. However, works [9]-[11] do not
take into account ESS and renewable based DGs. On the
other hand, the effect of different DR options on the operation
of isolated microgrids, such as peak shaving and demand
shifting, are modeled in [12] by using associated cost and price
elasticity coefficients. Although the work considers DR and
renewables DGs in the EMS framework, it does not include
ESS.

For isolated microgrids with a high penetration of renew-
ables based DGs, deviations in the forecast of renewables can
significantly affect the dispatch decisions of other resources
and hence operating costs [3]. Therefore, the microgrid EMS
needs to re-evaluate the dispatch decisions at frequent intervals
considering the deviations from forecasts. Recently, Model
Predictive Control (MPC) has found significant applications
in systems with uncertain inputs, wherein the optimization
problem is solved at discrete time steps considering updated
forecasted inputs with a rolling time horizon, with the obtained
optimal decisions being only valid for the next time step [13].
In [14], the energy management problem of an isolated micro-
grid is decomposed into UC and OPF sub-problems; in order
to address the uncertainty in the forecast of wind and solar PV
generation, an MPC technique is adopted in which the EMS is
solved every 5 min considering updated forecasted inputs and
moving forward the time horizon. However, the proposed EMS
does not consider load curtailment or control mechanisms. In
[15] and [16], UC based EMS models for renewables based
microgrids are presented, in which the variation in the forecast
of renewables and demand is accounted for by applying an
MPC approach. A component of the electricity demand is
considered shiftable to other hours [15], which is a form
of DR. On the other hand, in [16], two types of loads are
represented: critical loads, which are fixed, and controllable
loads, which can be curtailed, based on a cost to account for
user discomfort.

In [9]-[12], [15] and [16], DR is included in the EMS by
modeling controllable loads either by price elasticity coeffi-
cients or by curtailment with an associated cost. However,
such representations fail to capture the load behaviour in
response to various DR controls such as peak demand limits,
or externalities such as weather conditions. Therefore, in this
paper, a neural network (NN) based Residential Controllable
Load Profile Estimator (RCLPE) is presented, which is de-
veloped using measured and simulated data from an actual
Energy Hub Management System (EHMS) [17], and repre-
sents controllable loads that respond to various DR controls,
in particular peak demand constraints. Moreover, to investigate
the economic and technical impact and benefits of some DR
schemes, the developed NN-based RCLPE is integrated within
a UC-OPF coupled Microgrid Energy Management System
(MEMS) framework, which yields the optimal dispatch of
DGs, ESS, and controllable loads considering power flow and
UC operational constraints simultaneously. To account for the
uncertainties in the forecast of renewables and demand, an
MPC approach is adopted. The effectiveness of the proposed
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Fig. 1. Proposed MEMS architecture.

framework is compared with traditional EMS approaches,
which separate the EMS problem in UC and OPF sub-
problems. Hence, the main contributions of this work are as
follows:

o An RCLPE is developed by using supervised NN learning
to estimate the demand of smart loads as a function
of ambient temperature, TOU price, time of the day,
and peak demand constraints imposed by the microgrid
operator (MGO).

o The estimated NN load model from the RCLPE is incor-
porated into an integrated MEMS framework to study the
impact and potential of smart DR.

o A comprehensive mathematical formulation of the opti-
mal EMS for isolated microgrids, which simultaneously
considers power flow and UC operational constraints, is
proposed and demonstrated.

o An MPC approach is applied to the proposed MEMS
framework to take into account the uncertainties associ-
ated with renewables and electricity demand.

The rest of the paper is organized as follows: Section
IT presents the architecture of the proposed MEMS, and
the mathematical model of the coupled UC+OPF microgrid
dispatch approach. Section III discusses the decoupled version
of the proposed MEMS, its time horizon, and its MPC imple-
mentation. Section IV describes the proposed RCLPE, while
Section V presents the test system considered, and discusses
some of more relevant results obtained with the proposed
MEMS, highlighting its main features and demonstrating its
feasibility. Finally, Section VI highlights the main conclusions
and contributions of this paper.

II. PROPOSED MEMS

The proposed MEMS architecture for an isolated microgrid
is shown in Fig. 1, comprising the smart loads and the MEMS
itself. The introduced controllable load demand PD™ is a
function of the ambient temperature (7°), TOU price, peak
demand constraint (P™%"), and the time of day; among them,
the time of the day and the TOU prices are known inputs,
TP is a forecasted input, and P™% is a variable determined
optimally by the MEMS.

One of the main outputs of the MEMS model is the dispatch
of the controllable demand as an available resource. The other
MEMS outputs are the dispatch of available resources in the
microgrid considering the operational limits and constraints
related to the dispatchable units, power flows, ESS energy
balance, and spinning reserve requirements.

The mathematical model of MEMS is comprised of an
objective function that represents the microgrid operational
cost, including generation costs, start up and shut down costs,
and costs associated with load curtailment, as follows:

J = [(agPly, Aty, + b,

g,kt

+ Cy"PUg i,

Pg’kt + CgWg:kt)Atkt

+C Sy )+ Y PECCHOAL, (1)
i,k

where all variables and parameters in their and other equations
are defined in the Nomenclature section. It is assumed that the
MGO owns all the DERSs, and fully controls them. Further-
more, load curtailment is considered in (1) with significant
high cost. The above objective function is subjected to the
constraints discussed next.

A. Real and Reactive Power Balance

The real power balance at a bus considers the output from
DG, solar PV and wind units, and the net power of the
loads from commercial and residential customers, taking into
account ESS charging and discharging, and the network flows,
as follows:
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The residential loads comprise fixed and controllable com-
ponents; the fixed components (PD") are obtained from
a forecasting engine, while the controllable components
PDr¢(P™*) represent the dispatchable demand included in
the MEMS model as a function of P™%* which is esti-
mated using the RCLPE discussed in Section IV. Furthermore,
residential and commercial loads are considered as a mix
of constant impedance (Z), constant current (I) and constant
power (P) (ZIP) loads, and are included in the MEMS model
as exponential functions of the voltage, as shown in (2) and
(3). Note that customers are not paid any incentives for DR
participation by the MGO, but are assumed to be controlled
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by an intelligent Home EMS (HEMS) designed to individually
optimize their costs and/or energy consumption, as explained
in detail in [18].

B. Reserve Constraint

This constraint ensures that the spinning reserve require-
ment for the microgrid is provided by the dispatched genera-
tors as follows:

Z(pg - Pg,’w)W%kt > R Z[PDZ ktVz Ick:
g [

[PDz Kt +P i k, (Pma:v) PICL,C}V;?‘]::LVIQ (4)

C. Generalized UC Constraints

The following constraints include active and reactive power
generation limits, ramp-up and ramp-down constraints, min-
imum up-time and down-time constraints, and coordination
constraints:
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D. Energy Storage System

The ESS constraints include the energy balance and con-
straints to prevent simultaneous charging/discharging, plus
limits on SOC and charging/discharging power, as follows:

Pdckh

h h n,
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n
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E. Grid Constraints

The following represent the grid operational constraints to
ensure the bus voltages and apparent power transfers are within
specified limits:

V<Vig <V, Vi k
Si ke (Vi |3 Vi |5 103 e 5 1050, 1) < Sy

(18)

Viaja kt (19)

FE. DR Cap

The following constraint imposes a limit on the maximum
demand P™%" at a given time interval:

Pmam’ S P]::a:r S pmax’ th (20)

where the minimum value P™%" represents the minimum
loading condition defined in agreement with DR participants,
while the maximum value P specifies the maximum peak
demand desired by the utility.

III. MEMS IMPLEMENTATION

Equations (1)-(20) represent the proposed MEMS model,
and correspond to a Mixed Integer Non-linear Programming
(MINLP) problem. This optimization problem is solved using
the existing MINLP solvers, in particularly the DICOPT solver
[19], and a warm start procedure, i.e., the previous feasible
solution is used as the starting point of the next solution. If the
problem is infeasible during the solution process, the binary
decision variables W, j, are re-initialized to the ON state and
the optimization problem is re-solved.

It is important to note that DGs in microgrids generally
have fast start-up, shut-down, and ramp characteristics in the
order of a few minutes. In spite of that, constraints (7)-(10)
need be considered because of the MPC recalculation time,
which is less than the minimum up- or down-times, or the time
required to ramp up to full capacity of the respective DGs. In
the present work, the minimum up- and down-times of the
diesel generators are assumed 30 minutes, and full capacity
ramp-up and ramp-down rates of 10 minutes are used, which
are typical values for diesel generators [20].

A. Decomposition Approach

The microgrid EMS problem can also be decomposed
into UC and OPF sub-problems and solved sequentially, as
proposed in [14]. The decoupled microgrid EMS (DMEMS)
starts with the microgrid UC (MUC) sub-problem, which
is solved considering the inputs provided by the forecasting
engine and smart loads to obtain the commitment decisions.
To accomplish this, the real power demand, supply balance,
and reserve constraints are modified as follows:

ZP,kt gkf‘f'z PV kt+PW1 Ky +Z gckht

nkt
_ZPlef+Plef+P zkf(Pma) kt ]ath
2D
Z(Pg - PQJ%)WQJH Z R Z[P‘Dl k¢ + PD:,kt
g9 7
+ PDIS, (P{**) — PEC), Yk, (22)

Hence, the MUC sub-problem is comprised of (1), (5)-(17),
(20), (21) and (22). The optimal decisions thus obtained are
then applied to the microgrid OPF (MOPF) sub-problem,
comprised of (1)-(8), (13)-(20), to obtain the optimal dispatch
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Fig. 2. Time horizons of MEMS, MUC and MOPF models.

decisions that are implemented as reference set points for
controllable DERs.

B. Time Horizons

Solving the MEMS problem considering a uniform time
horizon of 5 min intervals over 24 hours, i.e., T = 288 inter-
vals, adds to the computational burden. In this work, therefore,
a non-uniform time scale comprising a higher resolution for
the first few min and reduced resolution in the later part is
considered for the MEMS model, as in [14]. This accounts for
the fact that the accuracy of forecasts vary over the forecasting
horizon; thus, the shorter the horizon, the more accurate the
forecast than that over an extended horizon. The considered
non-uniform time horizon is shown in Fig. 2, yielding 12 time
steps of 5 min, followed by 6 time steps of 15 min, and 5 time
steps of 30 min, and finally 19 time steps of 1 hour, all adding
to a total of 24 hours.

For the DMEMS framework, the MUC problem is solved
for a 24 hour look ahead time window with a uniform time
resolution of one hour, as shown in Fig. 2, as decisions related
to UC problem follow slower dynamics. The MOPF problem
is, on the other hand, solved with a look ahead period of one
hour and uniform time resolutions of 5 min.

C. MPC Implementation

The optimal decisions obtained by solving the MEMS
model over the horizon 79 = {0,...,T} relies on the fore-
casted inputs of intermittent energy sources and demand. In
isolated microgrids, renewable power generation forecasts can
vary significantly over a 24 hour time horizon. Hence, the
optimal decision of the MEMS must be re-calculated with
updated forecasted inputs every 5 min, based on an MPC
approach. In this case, the optimal results obtained by solving
the MEMS model are applied only to the next time interval,
after which the forecast inputs are updated and the MEMS
model is re-solved over the next 24 hour horizon, repeating
this process every 5 min [13], [14].

IV. RESIDENTIAL CONTROLLABLE LOAD PROFILE
ESTIMATOR

In this work, the smart residential DR options discribed in
[18] is considered, in which a household owns an intelligent

ip
Bll

Fig. 3. Smart load NN model obtained from the RCLPE.
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Fig. 4. Validation error histogram for RCLPE model.
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HEMS or EHMS for optimally managing the household loads
to reduce electricity costs and/or consumption. It is assumed
here that such EHMS is connected to the microgrid with
a bi-directional communication network, so that the MGO
can send DR control signals, in particular P™%*, to the
EHMS. Thus, the EHMS would schedule the operation of
the household based on the DR signal, weather conditions,
and customer preferences. This EHMS is comprised of an
objective function seeking to minimize the customer’s energy
cost and/or consumption, subject to operational constraints of
the household appliances and constraints associated with DR
controls. The DR control signal P™%* is determined by the
MGO using the proposed MEMS model to limit the PD"¢ of
each house with an EHMS, within certain limits.

For efficient energy management of a microgrid in the pres-
ence of DR, the PD" profile needs to be properly estimated,
so that an adequate DR model can be integrated in the MEMS
framework. Thus, based on the universal approximation the-
orem [21], which states that a single hidden layer NN can
be used to approximate any arbitrary continuous function,
an RCLPE is developed to estimate the PD"° from ambient
temperature, TOU price, time of day and P™* inputs.

A supervised learning technique is applied to train the NN
with measured data from smart meters and simulated data for
an actual EHMS. These data were obtained for the months of
May, June, and July of 2012 for weekdays, with a resolution of
5 min, and includes actual temperature profiles, TOU prices,
and load profiles for different P™* values. An input 121,537
x 4 matrix and a 121,537 output vector is used for training
the NN. Ultimately, the estimated P D" NN can be expressed
as a function of time, ambient temperature, TOU price, and
P as follows:

PD}¢ = f(t, P™* TOU,T) (23)

By varying the number of hidden layer neurons and training
the NN with the available data, the best result is obtained
with 11 hidden layer neurons, using the Levenberg-Marquardt
learning technique in MATLAB™, because of its robust nature
[22]. The resulting RCLPE structure, shown in Fig. 3, has
an R? of 0.87 for the complete dataset, indicating that the
output of the NN and the data used for training have a
high correlation. Note that the complexity of the NN-model
obtained, reflects the complex relations between the various
inputs to the load model and the power demand. Hence, the
simpler models (e.g., linear) would not have been able to
properly represent the controllable load modeled here.

After the training procedure, the NN model is validated
and tested with the datasets that are not used for training,
to evaluate the performance of the NN. Figure 4 shows the
validation error histogram for the proposed NN model in Fig.
3, depicting the maximum and minimum possible error and
their number of occurrences; observe that the model is quite
accurate, with about 80% errors being within the range of +
0.2 kW for a peak power of about 5 kW.

The mathematical model needed in the proposed MEMS
model to represent the smart load demand P D", which is the
output from the NN model, can be expressed as an equation

2500 kW 1400 KW 800 kW

Dicscl| |Digsel| [Diesel
Gen || |Gen2| |Gen3l
480V

12.47kV
2.8 km l

33kW o 2 200 kW
! | 44km

A - o
13 km m T

4 310 kW & 3km

i - 1.7 km
0.6 km dicsel

30kw | 1

13

0.3 kg
500 kW 5 CHP
w ]
i

9| | Fuel
8 km eell
lN E o 205

e S0 kW
Fuel cell L
cell 175 KW 250 kW | A
41.25 kW -

1.5 km

0.3 km

—— Load

I @ Transformer

—— s

1000 kW
(4]

T50 kW

Fig. 5. Modified CIGRE microgrid benchmark [14].

as follows:
rc 2 o
PDI¢ = Z (1 o 1) LW, + B ¥t (24)
yey
where

Hyp =Y IPyyIW,y+BP VyeyY
zeX

(25)

It should be mentioned that other types of controllable/smart
loads, beside the EHMS, could be modeled in a similar way,
with an appropriately NN model. Therefore, the proposed
approach can be considered generic in this regard, with the
only requirement for the smart load being that it should be
able to respond to peak demand commands, as, for example,
the case of Peak Saver Plus loads [23].

V. RESULTS AND DISCUSSION

To validate the proposed MEMS for a significantly com-
plex isolated microgrid, the modified CIGRE medium voltage
benchmark network shown in Fig. 5 is considered, based on
the test microgrid used in [14] with 25% more total ESS ca-
pacity, and including the main transformer limit. To represent
an isolated microgrid, the connection to the main grid at Bus 1
is replaced with 3 diesel units of a combined capacity of 4,700
kW. The total installed capacity in the microgrid is 9,216 kW
including ESS, intermittent energy sources and various other
DGs. In order to account for the uncertainties and errors in
the forecast of the renewables and demand, probability density
functions (pdf) for day and 1-hour ahead are used to obtain
the wind, PV, and demand power profiles, based on linear
approximations of the difference between the 24-hour and 1-
hour ahead forecast errors with respect to time.
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TABLE I
SUMMARY OF RESULTS WITH MEMS

TABLE 11
SUMMARY OF RESULTS WITH DMEMS

DR Objective  Energy served Energy Load Peak DR Objective  Energy served Energy Load Peak
control  function by ESS curtailed factor demand control  function by ESS curtailed factor demand
[%] [$] [kWh] [kWh] (kW] [%] [$] [kWh] [(kWh] [kW]

0 83,781 3,037 528 0.580 7,575 0 315,354 1,097 2,468 0.568 7,576
20 62,447 2,870 351 0.589 7,431 20 289,379 1,067 2,252 0.578 7,431
40 42,464 2,808 185 0.6 7,287 40 263,168 1,064 2,034 0.589 7,286
60 25,099 2,760 41 0.611 7,141 60 241,396 1,033 1,853 0.6 7,141
100 19,941 2,416 0 0.631 6,851 100 195,833 1,053 1,474 0.622 6,851

In the RCLPE, the EHMS is considered to be managing
four household appliances, namely, dish washer, cloth dryer,
washer, and air conditioner. It is assumed that 50% of the total
energy demand of households, which corresponds to 30% of
the total energy demand of the microgrid, is from controllable
loads.

A. Case Studies

The proposed MPC based MEMS framework is validated
for 24 hours of operation, with a re-calculation time of 5
min. The MEMS model and the MUC and MOPF models,
as part of the DMEMS framework, were coded in GAMS
[24]. The MEMS and MUC models, being mixed integer
non-linear programming (MINLP) problems (due to the smart
load NN model in the MUC), are solved using the DICOPT
solver [19], which first solves the relaxed MINLP problem
where the binary variables are relaxed and considered as
continuous variables. To obtain the best integer solution, the
DICOPT solves MIP and NLP sub-problems sequentially,
multiple times, until the NLP solution starts deteriorating
[19]. Although the DICOPT solver obtains the global optimal
solutions for both convex and non-convex models [19], there
is no guarantee that the global optimal solution will be
reached. Nevertheless, sub-optimal solutions obtained for the
EMS models, are all that is needed in practice for microgrid
operation. The MOPF is a non-linear programming (NLP)
problem that is solved using the SNOPT solver [19].

To investigate the impacts of DR on microgrid operation,
different cases, from no controllable loads to 100% EHMS
loads (30% of total demand), are considered, where EHMS
loads in the microgrid are controlled by an optimal P™%*.
Note that, 20% controllable loads means that 6% of the total
energy demand of the microgrid is being controlled through
an optimal P™*,

The proposed MEMS model using the MPC approach
required on average 28 s to solve for a single 24 hour
variable time-steps horizon, in a Intel(R) Xeon(R) CPU L7555
1.87GHz (4 processors) server, which is well within the 5
min MPC re-calculation time. This was repeated 288 times by
shifting the time horizon forward by 5 min, for 24 hours, thus
simulating the MEMS operation in 1 full day; this computation
took 180 min. On the other hand, the DMEMS framework
required a total computation time of around 30 min, with
an average of 6.25 s per iteration. Although, the MEMS
framework requires a longer simulation time than the DMEMS
framework, it is still reasonable for real-time applications.

Table I presents a summary of the results obtained from the
MEMS application, which shows that as DR control increases,
the energy curtailed by the MGO decreases, with no need for
load curtailment for 100% DR control. Consequently, the total
operating costs are very high without DR control, because
of the high cost of load curtailment, decreasing as DR is
increased. Furthermore, the load factor, which represents the
ratio of average daily demand with respect to peak demand,
increases from 0.580 to 0.631, indicating that the load profile
gets flatter as DR control increases. Finally, and as expected,
the peak demand decreases from 7.5 MW to 6.8 MW with
increased DR control.

From the summary of results presented for the DMEMS
framework in Table II, it can be observed that with increased
DR control, peak demand decreases from 7.5 MW to 6.8 MW,
and the load factor increases from 0.568 to 0.622, which are
similar to the results to those presented in Table I for the
proposed MEMS approach. However, note that even though
the total cost in DMEMS decreases with increased DR control,
it is considerably higher than the total cost obtained with the
MEMS approach, due to comparatively high load curtailment.
Furthermore, observe that the total energy served by ESS with
the MEMS approach is higher than with the DMEMS, which
indicates the MEMS method makes effective use of the ESS
in the dispatch, hence requiring less load curtailment.

The optimal dispatch of the DERs determined from the
two EMS MPC approaches for a 24 h interval, considering
P™e* feedback or not, are presented in Figs. 6 and 7. The
negative area shows the total charging energy absorbed by the
ESS, and white spaces under the demand (P D) line show the
curtailed energy, confirming the better use of ESS and less load
curtailment with the proposed MEMS approach. Particularly,
two important time windows are highlighted in Figs. 6 and 7:

¢ In Window 2, between hours 22 to 22.5, a peak demand
of 7.4 MW is observed when there is no P™%* control,
because the EHMS shifts its controllable demand to these
hours when the TOU price is low. On the other hand, with
P2 control, the EHMS manages the load demand such
that the peak is reduced to 5.8 MW, hence reducing load
curtailment significantly.

o Note in Window 1 of Fig. 6 that the ESSs are charged
to store energy until hour 6, and are dispatched to meet
the high demand between hours 6 and 7. On the other
hand, for the DMEMS approach, as shown in Fig. 7, the
demand is not fully met by the DGs and ESSs from hour
6 to 7, thus requiring load curtailment, which is due to the
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ESSs not being optimally scheduled for charging during that with the DMEMS framework.

off-peak hours. In Fig. 8 the 24 h optimal P"%* profile obtained from the

 When energy is available from renewables between hours  MEMS approach and the TOU price profiles are depicted.
7 and 17, the MEMS approach schedules more ESSs

charging (Fig. 6), which are dispatched to meet the Lo

demindgin Wfigndow 2. However, in tll)le DMEMS approach B. Effect of Uncertainties in the RCLPE Model

(Fig. 7), the ESSs are not adequately charged to serve the As discussed in Section IV, there are errors associated with

peak demand, and hence load curtailment is required from the NN-based smart load model. Therefore, to study the effect

hour 19 to 22.5 due to lack of generation from DGs. Even  of these errors in the proposed dispatch approach, a real-time

though load curtailment is still needed without P™e* operation scenario is considered here. The errors 7, in the

control in the MEMS approach, it is lower compared to output of the NN-based model are considered in the MEMS,
based on a normalized pdf of the validation error histogram
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TABLE III
SUMMARY OF RESULTS FOR DETERMINISTIC AND STOCHASTIC LOAD
MODEL
Objective Energy Total Peak
Load Ject served Load
Model function by ESS demand factor demand
[$] (kWh] [kWh] [kW]
Deterministic 19,941 2,416 103,822 0.631 6,851
Stochastic 20,098 2,480 104,626  0.641 6,799

as shown in Fig. 4. Note that this approximate pdf overstates
the actual error distribution in the model, thus representing
a worst case scenario for testing purposes. These errors are
applied as a stochastic deviation parameter of the controllable
demand as follows:

PD§, = PD;, (P10 + 7, 26)

t

where 161\):; represents the deterministic output of the NN
model (24).

The MEMS model including (26) is validated considering
100% EHMS loads with P™%* control for 24 hour of oper-
ation using the MPC approach, and the obtained results are
summarized in Table III, and compared with the deterministic
load model, which does not consider uncertainties in the output
of the RCLPE. Observe that there is less than 1% changes in
the operating cost and peak demand; moreover, the change in
the load factor is only 1.5%. Furthermore, from the dispatch
solution shown in Fig. 9, note that there are no significant
changes in the dispatch compared to the schedule obtained
for the base case with P™%* control shown in Fig. 6, showing
that errors in the output of the RCLPE have little impact on
the dispatch solutions obtained with the proposed MEMS.

VI. CONCLUSIONS

In this paper, an NN-based model has been proposed to
estimate controllable loads demand as a function of ambi-
ent temperature, TOU prices, time of the day, and demand
limit. This developed mathematical model was integrated in
a proposed comprehensive MEMS framework, which was
formulated considering UC operational and network flow con-
straints simultaneously. The deviations in the forecast of the
renewables and electricity demand were managed by adopting
an MPC approach. To evaluate the benefits of the proposed

MEMS approach, an DMEMS approach was implemented
by decomposing the EMS problem into UC and OPF sub-
problems.

The MEMS and DMEMS techniques were compared on a
CIGRE benchmark system, demonstrating that, even though
the MEMS method took longer to solve than that of the
DMEMS approach, better overall dispatch results were ob-
tained, with less load curtailment and better use of ESS
resources, within feasible computational times for real-time
applications. Furthermore, the solutions obtained with both
the EMS methodologies for a smart load highlighted the
advantages of DR schemes, in particular with respect to
reduction in peak demand, load curtailment, total costs, and
improvements in load factors, demonstrating that the proposed
DR scheme enhances the microgrid’s load serving capability in
the long run without the need for large investments. Finally, it
is shown that undesirable load spikes at low electricity price
hours due to customer response can be mitigated with the
proposed approach.
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