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Abstract—Due to the limited computing resource and battery capability at the mobile devices, the computation-intensive tasks

generated by mobile devices can be offloaded to edge servers or cloud for processing. In this paper, we study the multi-user task

offloading problem in an end-edge-cloud system, in which all user devices compete for the limited communication and computing

resources. Particularly, we first formulate the offloading problem with the goal of maximizing the Quality of Experience (QoE) of the

users subject to resource constraints. Since each user focuses on maximizing its own QoE, we reformulate the problem as a Multi-User

Task Offloading Game (MUTO-Game). We then identify an important property that for any device, both the communication interference

and the degree of computing resource competition can be upper bounded. Based on the property, we further theoretically prove that

there exists at least one Nash Equilibrium offloading strategy in the MUTO-Game. We propose the Game-based Decentralized Task

Offloading (GDTO) approach to obtain the Nash Equilibrium offloading strategy. Finally, we analyze the upper bound for the

convergence time and characterize the performance guarantee of the obtained offloading strategy for the worst case. A series of

experimental results are presented, in comparison with both the centralized optimal approach and the approximate approaches.

Index Terms—Task offloading, end-edge-cloud, quality of experience (QoE), game model

Ç

1 INTRODUCTION

WITH the rapid development of mobile computing techni-
ques, more and more computation-intensive tasks are

generated by applications or services running onmobile devi-
ces, such as AR, VR [1], etc. However, the computing resour-
ces and the battery capacity of mobile devices are generally
limited [2]. A feasible solution is to offload the tasks to remote

cloud with sufficient computing resources. However, offload-
ing to cloud suffers from several limitations. In particular,
since the cloud is usually located far away from mobile devi-
ces, offloading to the cloud would result in high delay [3] and
degrade users’ Quality of Experience (QoE). Moreover, trans-
mitting all the tasks to the cloudwould put a heavy burden on
the core networks. To solve the above issues, one promising
solution is to take advantage of the recently proposed Mobile
Edge Computing (MEC) [4], [5], [6], [7] framework. Based on
theMEC framework, the edge serverswith computing resour-
ces are placed at the network access points (typically in base
stations) close tomobile devices. In this way, the service delay
for mobile devices can be reduced and users’ QoE can be
improved. The burden of transmitting tasks frommobile devi-
ces on the core networks can also be relieved [8].

Although the edge servers are equipped with some com-
puting resources, the computing capacities are still limited
compared with the central cloud [7], [9]. With the rapid
increase in the number of mobile applications and mobile
devices, the edge servers cannot efficiently process all the
offloaded tasks from mobile devices. Therefore, edge serv-
ers are typically backed-up by a remote cloud. When the
edge servers become heavily loaded by the computation
workloads from the mobile devices, part of the tasks can be
further offloaded to the cloud [10], [11], [12]. Thus, the task
offloading in an end-edge-cloud system has attracted more
and more attention from both industry and academia.

However, solving the task offloading problem in the end-
edge-cloud system faces several challenges. First, the transmis-
sion resources and the computing resources on edge servers
are limited [9]. All the user devices in the system have to

� Ying Chen and Jie Zhao are with Computer School, Beijing Information Sci-
ence and Technology University, Beijing 100101, China. E-mail: {chenying,
zhaojie99723}@bistu.edu.cn.

� Yuan Wu is with the State Key Laboratory of Internet of Things for
Smart City, University of Macau, Macau, China. E-mail: yuanwu@um.
edu.mo.

� Jiwei Huang is with the Beijing Key Laboratory of Petroleum Data Mining,
China University of Petroleum, Beijing 102249, China. E-mail: huangjw@cup.
edu.cn.

� Xuemin Shen is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: sshen@uwaterloo.ca.

Manuscript received 24 May 2022; revised 15 November 2022; accepted 15
November 2022. Date of publication 18 November 2022; date of current ver-
sion 5 December 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61902029, 61972414, 61973161, and 61991404, in
part by the R&D Program of Beijing Municipal Education Commission under
Grant KM202011232015, in part by Beijing Nova Program under Grant
Z201100006820082, in part by Beijing Natural Science Foundation under
Grant 4202066, in part by the Science and Technology Development Fund of
Macau SAR under Grant 0162/2019/A3, in part by Guangdong Basic and
Applied Basic Research Foundation under Grant 2022A1515011287, and in
part by the Guangdong-Macau Joint Laboratory for Advanced and Intelligent
Computing under Grant GDST 2020B1212030003.
(Corresponding author: Jiwei Huang.)
Digital Object Identifier no. 10.1109/TMC.2022.3223119

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024 769

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:15:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0002-0844-0882
https://orcid.org/0000-0003-3323-4674
https://orcid.org/0000-0003-3323-4674
https://orcid.org/0000-0003-3323-4674
https://orcid.org/0000-0003-3323-4674
https://orcid.org/0000-0003-3323-4674
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0001-6661-9461
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
mailto:chenying@bistu.edu.cn
mailto:zhaojie99723@bistu.edu.cn
mailto:yuanwu@um.edu.mo
mailto:yuanwu@um.edu.mo
mailto:huangjw@cup.edu.cn
mailto:huangjw@cup.edu.cn
mailto:sshen@uwaterloo.ca


compete for the limited transmission and computing resources
[13], and each user device aims at maximizing its own benefit.
Therefore, how to achieve a balanced offloading strategy
among all the users while maximizing the total benefit of the
whole system is a challenging problem.Moreover, the growing
solution space size (due to the growing number of the mobile
devices and the available channels) also dramatically increases
the computational complexity in finding the optimal offloading
strategy. There are some heuristic approaches with relatively
low complexity that can provide offloading strategies approxi-
mated to the globally optimal one. Nevertheless, it is techni-
cally difficult to provide a guaranteed performance gap
between the approximated one and the globally optimal one.

In this paper, we study the multi-user task offloading
problem in the end-edge-cloud system. Our goal is to maxi-
mize the QoE of the users subject to the resource constraints.
We formulate the problem as a Multi-User Task Offloading
Game (MUTO-Game) model, and theoretically prove that
there exists at least one Nash Equilibrium offloading solu-
tion. Then, we propose a Game-based Decentralized Task
Offloading (GDTO) algorithm to solve the game model and
reach one of the feasible equilibrium offloading strategies.
Theoretical analysis for the convergence time and perfor-
mance guarantee of the worst case are given. The main con-
tributions of this paper are summarized as follows.

� We study themulti-user task offloading problem in an
end-edge-cloud system, where the edge servers are
located in base stations and are also connected with a
central cloud. Tasks of users can be processed locally
on the user devices, or offloaded to be processed on
the edge servers through wireless channels, or off-
loaded to the cloud. Our goal is to maximize all the
users’ QoE. The offloading constraints include both
communication resource constraints and computing
resource constraints. The offloading decisions include
both the task offloading decisions (i.e., the local proc-
essing, the edge/cloud processing) and the channel
resource allocation for offloading transmissions.

� Considering that all users are self-interested and aim
at optimizing their respectively own QoE, we refor-
mulate the multi-user task offloading problem as a
MUTO-Game model. Each game player is the user in
the system with the objective of maximizing its own
QoE. The solution to the MUTO-Game is defined as
its Nash Equilibrium solution. Then, we theoretically
demonstrate that for any user in the system, both its
communication interference and degree of comput-
ing resource competition can be upper bounded (i.e.,
Lemma 1). Next, we prove, by demonstrating six
possible cases, that the MUTO-Game is a potential
game and give the corresponding potential function
(i.e., the results in Theorem 1), based on which we
can establish that our MUTO-Game has at least one
feasible Nash Equilibrium strategy.

� We propose the Game-based Decentralized Task Off-
loading (GDTO) algorithm to obtain the Nash Equilib-
rium offloading strategy for the end-edge-cloud
system. Each user individually makes its own offload-
ing decision, and the GDTO algorithm can be imple-
mented in a distributed way. To theoretically analyze

the performance of the GDTO algorithm, we give the
upper bound of the number of iterations to obtain an
Nash Equilibrium offloading strategy (i.e., Theorem
2). Furthermore, we define the Price of Anarchy (PoA),
i.e., the ratio of the QoE obtained by the worst Nash
Equilibrium offloading strategy and the QoE of the
centralized optimal offloading strategy. We then give
the lower bound of the PoA (i.e., Theorem 3).

� We carry out extensive experiments to evaluate our
GDTO algorithm. The experiment results show that
when the offloading solution space size increases
exponentially, the increasing speed of the number of
iterations for GDTO to reach an Nash Equilibrium
solution is less than linear speed. We also carry out
two groups of experiments with different solution
space scales to evaluate GDTO. The small scale
experiment with the optimal strategy shows that the
QoE of our GDTO algorithm is close to that of the
centralized optimal solution. The large scale experi-
ment with four approximate algorithms validate the
superiority of our GDTO algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system model and formulates the multi-
user task offloading problem. Section 3 reformulates the off-
loading problem as the MUTO-Game model, and gives the
theoretical analysis for the property of the MUTO-Game.
Section 4 proposes the decentralized GDTO algorithm, and
provides the theoretical analysis for GDTO’s performance.
Section 4 provides the experimental evaluation. Section 6
presents the related works and Section 7 gives the conclu-
sion of this paper.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

Fig. 1 depicts the system scenario. There are n User Devices
(UDs) represented by U ¼ fu1; u2; . . . ; ung and m base sta-
tions represented by S ¼ fs1; s2; . . . ; smg. Each UD ui has a
computing task (Bi;Xi; di) to process. Here, Bi represents the
task’s size (in bits), Xi represents the number of CPU cycles
required to complete the task. di 2 S stands for the base sta-
tion that the UD ui connects to. Each base station (BS) is
equipped with an edge server to provide computing services
for the UDs. In this following, we treat the BS di and the edge

Fig. 1. An example of the system scenario.
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server di interchangeable. For each BS sj, there are cj wireless
channels. Table 1 lists the main notations of this paper. UDs
can offload tasks to the edge servers for processing. Referring
to existing works [10], [12], [14], [15], we consider the scenario
that the UDs are pre-assigned to the BS. We also integrate the
collaborative edge-cloud computing framework, and when
the UDs assigned BS is overloaded, users’ tasks can be further
offloaded to the central cloud for processing. In this way, the
UDs transmit their tasks to the cloud through the BSs. If the
channel resources are not enough or exhausted, the UDs will
have to execute their tasks locally on the devices. To be more
specific, we give the detailed definition of offloading decision
for eachUD inDefinition 1.

Definition 1. (Offloading Decision ai) Let ai 2 fð0; 0Þ S
ð�i; kiÞg represent the offloading decision ofUD ui, i.e., to execute
the task locally, or offload the task to the edge serve or the cloud
through which wireless channel. Specifically, ai ¼ ð0; 0Þ repre-
sents that the task is executed locally. �i ¼ 1 represents that the
task is offloaded to be executed in the edge server di, and �i ¼ 2
represents that the task is offloaded to the cloud. ki 2 f1; . . . ; cdig
represents the selected wireless channel of the BS di for sending
the task.

Then, the collective offloading strategy of all the UDs can
be defined by Definition 2.

Definition 2. (Offloading Strategy a of all the UDs) An offload-
ing strategy for all the UDs is the collection denoted by
a ¼ ða1; . . . ; anÞ.

2.2 Communication Model

In this paper, we consider that the BS provides multiple
available channels, and each UD can choose only one of the
channels provided by the BS to access. Multiple users may
access the same wireless channel, and there exists interfer-
ence among the UDs that access the same channel.

2.2.1 Offloading to Edge Server

When multiple UDs communicate with the BS on the same
channel, there is interference between these UDs. The Sig-
nal-to-Interference-plus-Noise Ratio (SINR) for UD ui is

�
ki
i ¼ pig

ki
i

$0 þ
P

ul2U=fuig:kl¼ki\dl¼di
plg

ki
l

: (1)

$0 is the background noise variance. pi is the transmission
power of ui, g

ki
i is the uplink channel gain between ui and

BS di on channel ki. The transmission rate for UD ui’s com-
munication with BS di via channel ki is

r
ki
i ¼ W

ki
i log 2ð1þ�

ki
i Þ; (2)

whereWki
i is the bandwidth onwireless channel ki. When the

number of UDs assigned to the same channel increases, the
transmission interference will increase, and the transmission
rate will decrease. In this paper, there is a constraint rmin for
the minimum transmission rate, as shown in Eq. (3). rmin is
specified by the BS provider [13]. If the transmission rate rkii is
smaller than rmin, the transmissionwill be terminated.

r
ki
i � rmin; ui 2 U: (3)

According to Eq. (2), the communication delay between
ui and di is

t̂i;di ¼
Bi

r
ki
i

: (4)

According to [16], the energy consumption of communica-
tion for UD ui is

êi;di ¼ pit̂i;di ¼ pi
Bi

r
ki
i

: (5)

2.2.2 Offloading to Cloud

When the edge servers’ resources are not enough, the tasks
of UDs can be offloaded to the cloud for processing. In this
way, the BS transmits the data to the remote cloud by a
high-speed fiber communication link. UD ui’s delay of
transmitting from the BS to the cloud is

t̂c ¼ Bi

r̂
; (6)

where r̂ is the transmission rate from the BS to the cloud.
Therefore, the total transmission delay of UD ui is

t̂i;c ¼ t̂i;di þ t̂c ¼ Bi

r
ki
i

þBi

r̂
: (7)

TABLE 1
Key Notations

Notations Definitions

ui the ith UD, i 2 f1; 2; . . . ; ng
Bi the task size of ui

U the set of UDs
fi the ui’s computing capability (cycles/s)
gi the ui’s weight parameter of computation resource
sj the jth edge server, j 2 f1; 2; . . . ;mg
fsj the sj’s computing capability (cycles/s)
cj the number of channels on edge server sj
fdi the di’s computing capability (cycles/s)
fi;di the computing capability obtained by ui on di
�i the decision of offloading method for ui

ki the channel selection of ui

ai offloading decision for ui, ai ¼ ð�i; kiÞ
W

ki
i ki’s bandwidth on BS di

$0 background noise
g
ki
i the channel gain between ui and di on wireless

channel ki
%i the coefficient of energy consumption per CPU

cycle for UD ui
r
ki
i ui’s data rate on ki
r̂ data rate between BS and cloud
Ea�i

ðaiÞ the quality of experience value of offloading
decision ai

a the rate of change for QoE
b the reference value of QoE
Emax the maximum QoE
Emin the minimum QoE
Tmax the maximum delay
Tmin the minimum delay
ECmax the maximum energy consumption
ECmin the minimum energy consumption
f�aðaiÞ potential function
Mp

i threshold of wireless communication interference
Mg

i threshold of computation capability competition

CHEN ETAL.: QOE-AWARE DECENTRALIZED TASKOFFLOADING AND RESOURCE ALLOCATION FOR END-EDGE-CLOUD SYSTEMS: A... 771

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:15:39 UTC from IEEE Xplore.  Restrictions apply. 



2.3 Computation Model

Similar to [17], it is considered that the cloud has sufficient
computing resources, and the computation delay on the
cloud is very small, and can be neglected. Let fi represent
the computing capability of UD ui. When UD ui chooses to
process the task locally (ai ¼ ð�i; kiÞ ¼ ð0; 0Þ), the computa-
tion delay of ui’s task is

ti ¼ Xi

fi
: (8)

If UD ui offloads task to the edge server, then, ai ¼
ð�i; kiÞ ¼ ð1; kiÞ. Recall that di represents the BS that ui con-
nects to. Let fdi represent the computing capability of the
edge server di. The computing resources of the edge server
will be shared by all the tasks of the UDs offloading to di. In
this paper, the computing resource that di assigns to ui is,

fi;di ¼
giP

ul2U :�l¼�i\dl¼di
g l

fdi ; (9)

where gi is the weight parameter of UD ui [18].P
ul2U :�l¼�i\dl¼di

g l is the sum of the weight parameter of all

the UDs offloading task to di. To guarantee the quality of
service for each UD, there is a minimum threshold fmin as

shown in Eq. (10).

fi;di � fmin; ui 2 U: (10)

and the computing energy consumption [19] of UD ui can
be calculated as

ei ¼ %iXi; (11)

where %i is the energy consumption factor per CPU cycle for
UD ui.

The computation delay of UD ui is

ti;di ¼
Xi

fi;di
; (12)

2.4 QoE Model

Similar to the related works [16], [18], [19], [20] on task off-
loading, in this paper, we consider that each device gener-
ates a task, and focus on the offloading strategy of the tasks.
Thus, similar to the related works, the queueing delay is
ignored in this paper. We can obtain the total delay of each
UD ui 2 U as,

Ti ¼
ti; ai ¼ ð0; 0Þ
t̂i;di þ ti;di ; ai ¼ ð1; kiÞ
t̂i;di þ t̂c; ai ¼ ð2; kiÞ

8<
: : (13)

The total energy consumption of each UD ui 2 U is

ECi ¼ ei; ai ¼ ð0; 0Þ
êi;di ; ai 6¼ ð0; 0Þ

�
: (14)

Similar to [16], we consider both the latency and energy
consumption of each UD, and formulate the cost of each
UD as

Costi ¼ ttiTi þ teiECi; (15)

where tti and tei (with tti þ tei ¼ 1) represent the weighted
parameters of delay and energy consumption of UD ui,
respectively. Each UD ui can set its corresponding tti and tei
based on its own priority and preference. For example,
when UD ui is in a low-battery state and is more concerned
about energy consumption, it can set a larger tei . When UD
ui runs latency-sensitive applications, it can set a larger tti.

For each UD ui, there exists an upper bound Tmax of the
maximum delay and a lower bound Tmin of the minimum
delay. There is also an upper bound ECmax of the maximum
energy consumption and a lower bound ECmin of the
minimum energy consumption. The maximum delay can
be upper bounded by Tmax ¼ Xmax=f , where f ¼
minff1; f2; . . . ; fng is the minimum computing capability
and Xmax ¼ maxfX1; X2; . . . ; Xng is the maximum number
of CPU cycles for all UDs’ tasks. The lower bound of
minimum delay corresponds to the user completing
task through the edge server in an ideal case. In other
words, Tmin ¼ Bmin=rmax þXmin=fmax, where fmax ¼
maxffs1 ; fs2 ; . . . ; fsmg represents the maximum computing
capability for edge servers, Bmin ¼ minfBi; ui 2 Ug repre-
sents the minimum size of the task for all UDs, Xmin ¼
minfX1; X2; . . . ; Xng is the minimum number of CPU cycles
for all UDs’ tasks, rmax ¼ W log 2ð1þ pmaxgmax=$0Þ, pmax ¼
maxfp1; p2; . . . ; png represents the maximum transmission
power for all UDs and gmax ¼ maxfgkii ; ui 2 Ug represents
the maximum channel gain for all UDs and channels. Simi-
larly, ECmax ¼ %maxXmax and ECmin ¼ pminBmin=rmax,
where %max ¼ maxf%1; %2; . . . ; %ng is the maximum energy
consumption factor per CPU cycle for all UDs and pmin ¼
minfp1; p2; . . . ; png represents the minimum transmission
power for all UDs.

For each UD ui, we can obtain Costi � ttiTmax þ
teiECmax � ðtti þ tei ÞmaxfTmax; ECmaxg ¼ maxfTmax; ECmaxg,
and Costi � ttiTmin þ teiECmin � ðtti þ tei ÞminfTmin; ECming
¼ minfTmin; ECming. Therefore, there exists an upper bound
Costmax ¼ maxfTmax; ECmaxg of the maximum cost and a
lower bound Costmin ¼ minfTmin; ECming of the minimum
cost.

Generally speaking, the QoE is often negatively corre-
lated with the cost. When the cost increases, the QoE will
decrease. Referring to [21], [22], in this paper, the QoE of
each UD ui is defined as follows:

Ea�i
ðaiÞ ¼ Emin; ai ¼ ð0; 0Þ

�alog 2Costi þ b; ai 6¼ ð0; 0Þ
�

; (16)

where parameter a ¼ Emax�Emin
log 2ðCostmax=CostminÞ > 0 and parameter

b ¼ Emaxlog 2Costmax�Eminlog 2Costmin
log 2ðCostmax=CostminÞ > 0. Emax denotes the maxi-

mum value of the QoE which corresponds to Costmin, and

Emin denotes the minimum value of the QoE which corre-

sponds to Costmax. To be more specific, when the cost

approaches Costmin, the QoE approaches the maximum

value Emax. When the cost approaches Costmax, the QoE
approaches the minimum value Emin. In Ea�i

ðaiÞ, a�i ¼
ða1; :::; ai�1; aiþ1; :::anÞ represents the offloading decisions of

all the UDs excluding UD ui.
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2.5 Problem Formulation

The optimization goal for the task offloading problem is to
find the offloading strategy to maximize the sum of QoE of
all UDs subject to the resource constraints. The detailed
problem formulation is shown in Problem (17).

max
P

ui2U Ea�i
ðaiÞ

s:t: ð3Þ; ð10Þ:
(17)

Problem (17) is an NP-hard problem[18]. Solving this prob-
lem faces severe difficulties and challenges. First, there is a
competitive relationship between the UDs. All the UDs com-
pete for the limited resources. Each rational UD focuses on its
own benefit, and wants to obtain more resources to maximize
its ownQoE. Thus, it is hard for all the competingUDs to reach
a stable and equilibrium state. Second, as the number of UDs
increases, the scale of the solution space size increases exponen-
tially. Thus, centralized optimization approaches often suffer
from high complexity, and it is unrealistic to obtain the desired
offloading solutionswithin acceptable time.

3 TASK OFFLOADING GAME

We take advantage of game theory to solve the task offload-
ing problem (17) for end-edge-cloud. In the section, we for-
mulate the task offloading game model, and present the
theoretical analysis for the property of our offloading game.

3.1 Task Offloading Game Formulation

Here, we reformulate the task offloading problem as a Multi-
user Task Offloading Game (MUTO-Game) P ¼
ðU; fAigui2U ; fEigui2UÞ. U is the player collection. Each player
is the UD and makes the offloading decision ai 2
fð0; 0Þ S ð�i; kiÞg. Ai and Ei are the available offloading deci-
sion set and the benefit of UD ui, respectively. The benefit of
the UD ui is represented by its QoE according to Eq. (16).

In this paper, we consider that there is a network service
provider (or an agent) for each BS. The service provider
(agent) maintains the information of all the users connected to
the BS. Each user acquires the information (such as channel
information, interference information) from the service pro-
vider and sends back user’s desirable decision to the service
provider. All these players compete for the limited channels
and computing resources. Next, we define the offloading
solution to this game P by its Nash Equilibrium solution. The
detailed definition is given inDefinition 3 below.

Definition 3. (Nash Equilibrium) Given the MUTO-Game P ¼
ðU; fAigui2U ; fEigui2UÞ, if no UD can change its decision to
increase its QoE, the offloading strategy a� ¼ ða�1; a�2; . . . ; a�nÞ
can reach a Nash Equilibrium, i.e.

Ea��i
ðaiÞ � Ea��i

ða�i Þ; 8ui 2 U; 8ai 2 Ai: (18)

Then, we give Property 1 which demonstrates that the
optimal offloading solution to each UD is its best response
to other UDs.

Property 1. For the Nash Equilibrium offloading solution a� ¼
ða�1; a�2; . . . ; a�nÞ of the MUTO-Game P , UD ui’s optimal

offloading decision a�i 2 Ai is the best response to the offloading
decisions a��i of other (n� 1) UDs.

Proof. Together with Eqs. (1), (2), (9), (13), and (16), for each
UD ui, given the offloading decisions of other UDs
excluding ui, ui’s QoE depends on ai. Suppose a�i 2 Ai is
not the best response of UD ui, then, there must exist
another better decision ai 2 Ai such that ai can increases
its QoE and Ea��i

ðaiÞ > Ea��i
ða�i Þ. This contradicts with the

condition that Ea��i
ðaiÞ � Ea��i

ða�i Þ. Therefore, a�i 2 Ai

must be the best response of UD ui given other UDs’ off-
loading decisions. tu
Property 1 shows that if a Nash equilibrium offload-

ing solution exists, then the MUTO-Game allows each
individual UD to make its own offloading decision, and
all users’ decisions together form the overall offloading
strategy. In this way, the offloading decision for each
individual UD can be obtained in a distributed pattern,
reducing the time complexity and improving the
efficiency.

3.2 Analysis of Nash Equilibrium Offloading
Solution

In this part, we propose the detailed theorem to demon-
strate that an Nash Equilibrium solution exists in the
MUTO-Game. We propose Lemma 1 which proves that
for all the UDs, the transmission interference and the
degree of computing resources competition can be upper
bounded.

Lemma 1. For each UD ui, if it is allocated to channel ki, then in
the transmission process, ui’s transmission interferenceP

ul2U=fuig:kl¼ki\dl¼di
plg

kl
l can be upper bounded by

Mp
i ¼ ðpigkii Þ=ð2

rmin
W � 1Þ �$0: (19)

In addition, if UD ui decides to complete its task by the edge
server in BS di, then, ui’s degree of computing resource compe-
tition

P
ul2U :�l¼�i\dl¼di

gl can be upper bounded by

Mg
i ¼ gi

fmin
fdi : (20)

Proof. UD ui can transmit data through channel ki only if
condition (3) is satisfied. That is to say, r

ki
i � rmin.

Together with Eq. (1) and Eq. (2), we obtain thatP
ul2U=fuig:kl¼ki\dl¼di

plg
kl
l � ðpigkii Þ=ð2

rmin
W � 1Þ �$0 ¼ Mp

i .

Similarly, the task of ui can only be executed on the edge

server in BS di only if condition (10) is satisfied, i.e., fi;di �
fmin. Together with Eq. (9), we obtain that

giP
ul2U :�l¼�i\dl¼di

gl
fdi � fmin. Thus,

P
ul2U :�l¼�i\dl¼di

g l �
gi

fmin
fdi ¼ Mg

i holds. tu
Then, we can prove that our MUTO-Game is a potential

game based on the lemma 1. Definition 4 gives a detailed
definition of potential games.

Definition 4. (Potential Game) If a potential function fðaÞ
exists and satisfies Eq. (21), the game is a potential game.
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Ea�i
ðaiÞ � Ea�i

ða0iÞ ) fa�i
ðaiÞ � fa�i

ða0iÞ; (21)

where ui 2 U and ai; a0i 2 Ai.

For a potential game, the potential function increases (or
decreases) with the increase (or decrease) of the utility func-
tion. Next, we give Theorem 1 to prove our MUTO-Game is
a potential game.

Theorem 1. The MUTO-Game is a potential game, and the
potential function is

f�aðaiÞ ¼
� 1

2

X
ui2U

Qi

X
ul 6¼ui

ðplgkil Ifkl¼kig þ g lIf�l¼�igÞIfdl¼di\ai¼ð1;kiÞg

�
X
ui2U

Qið
X
ul 6¼ui

plg
ki
l Ifkl¼kig þMiÞIfdl¼di\ai¼ð2;kiÞg

�
X
ui2U

QihMiIfai¼ð0;0Þg;

(22)

where h � 2, Qi ¼ pig
ki
i þ gi,Mi ¼ Mp

i þMg
i ¼ gi

fmin
fdiþ

ðpigkii Þ=ð2
rmin
W � 1Þ �$0.

Proof. For each UD ui, consider two different offloading
decisions ai and a0i. We suppose that Ea�i

ðaiÞ � Ea�i
ða0iÞ

and prove Theorem 1 from the following 6 cases. 1) ai ¼
ð1; kiÞ and a0i ¼ ð1; k0iÞ; 2) ai ¼ ð2; kiÞ and a0i ¼ ð2; k0iÞ; 3)
ai ¼ ð2; kiÞ and a0i ¼ ð1; k0iÞ; 4) ai ¼ ð2; kiÞ and a0i ¼ ð1; kiÞ;
5) ai ¼ ð0; 0Þ and a0i ¼ ð1; k0iÞ; 6) ai ¼ ð0; 0Þ and
a0i ¼ ð2; k0iÞ. tu

Case 1. ai ¼ ð1; kiÞ and a0i ¼ ð1; k0iÞ.
According to Eq. (16), we have CostðaiÞ � Costða0iÞ.

Together with Eqs. (1), (2), (4), and (12), we obtain that

X
ul2U=fuig:kl¼ki\dl¼di

plg
ki
l �

X
ul2U=fuig:kl¼k0

i
\dl¼di

plg
k0
i

l :

Thus,

fa�i
ðaiÞ � fa�i

ða0iÞ ¼

Qi

X
ul2U=fuig

ðplgk
0
i

l Ifkl¼k0
i
g � plg

ki
l Ifkl¼kigÞIfdl¼dig � 0:

Case 2. ai ¼ ð2; kiÞ and a0i ¼ ð2; k0iÞ.
According to Eqs. (13) and (16), Ea�i

ðaiÞ � Ea�i
ða0iÞ

implies rkii � r
k0
i

i . Thus, the proof of Case 2 is similar as that
of Case 1. We can obtain fðaiÞa�i

� fa�i
ða0iÞ.

Case 3. ai ¼ ð2; kiÞ and a0i ¼ ð1; k0iÞ.
In Lemma 1, we prove

P
ul2U=fuig:kl¼ki\dl¼di

plg
ki
l þP

ul2U=fuig:�l¼�i\dl¼di
gl � Mi. Therefore,

fa�i
ðaiÞ � fa�i

ða0iÞ ¼

Qi½
X

ul2U=fuig:dl¼di

ðplgk
0
i

l Ifkl¼k0
i
g þ glIf�l¼�0

i
gÞ

�Mi �
X

ul2U=fuig:dl¼di

plg
ki
l Ifkl¼kig� < 0:

Case 4. ai ¼ ð2; kiÞ and a0i ¼ ð1; kiÞ.
Similar to the Case 3, Because

X
ul2U=fuig:kl¼ki\dl¼di

plg
ki
l þ

X
ul2U=fuig:�l¼�i\dl¼di

g l � Mi:

Therefore,
P

ul2U=fuig:�l¼�i\dl¼di
g l � Mi. We obtain

fa�i
ðaiÞ � fa�i

ða0iÞ ¼

Qið
X

ul2U=fuig:dl¼di

glIf�l¼�0
i
g �MiÞ < 0:

Case 5. ai ¼ ð0; 0Þ and a0i ¼ ð1; k0iÞ.
h � 2 and

P
ul2U=fuig:kl¼ki\dl¼di

plg
ki
l þP

ul2U=fuig:�l¼�i\dl¼di
gl � Mi imply that

fa�i
ðaiÞ � fa�i

ða0iÞ ¼

Qi½
X

ul2U=fuig:dl¼di

ðplgk
0
i

l Ifkl¼k0
i
g þ g lIf�l¼�0

i
gÞ � hMi� < 0:

Case 6. ai ¼ ð0; 0Þ and a0i ¼ ð2; k0iÞ.
Similar to the Case 5, we obtain

fa�i
ðaiÞ � fa�i

ða0iÞ ¼

Qi½
X

ul2U=fuig:kl¼k0
i

plg
k0
i

l � ðh� 1ÞMi� < 0:

Until now, we have proved that Eq. (22) holds for all the
6 cases, which thus completes the whole proof.

4 GAME-BASED DECENTRALIZED TASK
OFFLOADING ALGORITHM

In the section, we propose the Game-based Decentralized
Task Offloading (GDTO) Approach to solve the original
problem for the end-edge-cloud system. The theoretical
analysis for the convergence of our GDTO approach and its
optimality analysis are also given.

4.1 Decentralized Task Offloading Approach Design

Theorem 1 proves that the MUTO-Game is a potential game.
Thus, the MUTO-Game has the Finite Improvement Prop-
erty (FIP) [23], and the Nash Equilibrium offloading strat-
egy can be obtained through the finite number of iterations.
Therefore, we design the GDTO algorithm, i.e., Algorithm
4.1, to find a Nash Equilibrium of the game. Each UD makes
the offloading decision in an iterative pattern. Each UD
searches for the optimal decisions in parallel and then
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competes for the update opportunities. Only the UD who
wins the update opportunity can update the decision. The
GDTO algorithm terminates when no UD wants to change
the decision furthermore.

Algorithm 1. Game-Based Decentralized Task Offload-
ing (GDTO) Algorithm

Input: S ¼ fs1; s2; . . . ; smg; U ¼ fu1; u2; . . . ; ung, and other
parameters

Output: all UDs’ decision
1: Initialization:
2: a=fa1; a2; . . . ; ang, mobile device ui’s decision ai ¼ ð�i; kiÞ ¼

ð0; 0Þ, where i ¼ 1 � n
3: End Initialization
4: repeat
5: for each UD ui 2 U do
6: Calculate the current rkii and fi;di
7: if fi;di < fmin then
8: update its decision with ai ¼ ð2; kiÞ
9: if r

ki
i < rmin then

10: update its decision with ai ¼ ð0; 0Þ
11: Calculate the current QoE
12: Calculate the current total QoE
13: for each UD ui 2 U do
14: for each channel ki 2 f1; . . . ; cdig do
15: Calculate

P
ui2U Ea�i

ða0iÞ when ui’s task is offloaded
to k0i channel and completed in edge server or cloud.

16: Find a decision that can achieve the highestP
ui2U Ea�i

ða0iÞ from all possible decisions
17: if

P
ui2U Ea�i

ða0iÞ >
P

ui2U Ea�i
ðaiÞ then

18: send a0i to contend for decision update opportunity
19: if ui gets a chance to get an update then
20: chance ui’s decision to a0i
21: until there is no need to update decisions for any user
22: return a

At the beginning, for the initial settings, no UD offloads
the task and each UD ui; 8ui 2 U starts with the offloading
decision ai ¼ ð0; 0Þ (Lines 1-3). Next, the GDTO approach
allows each UD to update the offloading decision by itera-
tion. Based on the FIP property, the GDTO approach is
guaranteed to converge and reach the Nash equilibrium,
where no single UD will change its decision any further.

In each iteration, the transmission rate r
ki
i and the allo-

cated computing resources fi;di for each UD ui are calcu-
lated. Then, the constraints of Eq. (3) and Eq. (10) are
checked and validated (Lines 5-10). After that, the each UD
ui’s current QoE and total QoE of all UDs is calculated.
Then, each UD ui searches for the best offloading decision
a0i (Lines 13-16). The UD ui’s decision to update is a0i and the
previous decision is ai. Then, the UD compares the new
decision with the previous decision. If

P
ui2U Ea�i

ða0iÞ >P
ui2U Ea�i

ðaiÞ, a0i will be sent to the new decision set of all
UDs to compete for update opportunities (Lines 17-18). In
some studies [13], [24], the competitive process is used to
determine the winner in an indeterminate manner (such as
by random method). In this paper, we consider the UD with
the largest change in QoE utility as the winner. After that, if
UD ui wins the update opportunity, ai will be updated to a0i.
Decisions of the UDs that do not win will not be updated in

the iteration (Lines 19-20). After the winner has updated the
decision, the QoE of all UDs that are affected by the winner
will be updated accordingly. Finally, when no UD changes
the offloading decision, the GDTO algorithm ends and the
Nash equilibrium offloading strategy is reached.

The decisions of all the UDs constitute the final offload-
ing strategy a, which is the solution of the GDTO problem
(Lines 21-22). Since each individual UD makes its own off-
loading decision, our GDTO algorithm is a decentralized
algorithm.

4.2 Convergence Analysis

After a finite number of iterations, the MUTO-Game will
finally reach a Nash Equilibrium offloading strategy
because of the FIP property. Next, we prove the upper
bound of the converge time measured by the number of iter-
ations, as in Theorem 2.

Theorem 2. When Qi, Q
p
i and Mi are non-negative integers for

ui 2 U , there is an upper limit on the number of iterations,
which satisfies

R � 1

2
n2Q2

max=Qmin þ nQmaxðnQp
max þMmaxÞ=Qmin

þ nhQmaxMmax=Qmin;

where Qp
i , pig

ki
i , Qp

min , minðQp
i Þ, Qp

max , maxðQp
i Þ,

Qmax , maxðQiÞ, Qmin , minðQiÞ andMmax , maxðMiÞ.
Proof. According to Eq. (22), it holds

0 � fa�i
ðaiÞ

� � 1

2

X
ui2U

X
ul2U

QmaxQmaxIfai¼ð1;kÞg

�
X
ui2U

Qmaxð
X
ul2U

Qp
max þMmaxÞIfai¼ð2;kÞg

�
X
ui2U

hQmaxMmaxIfai¼ð0;0Þg

Thus, we have

0 � fa�i
ðaiÞ � � 1

2
n2Q2

max � nQmaxðnQp
max þMmaxÞ

� nhQmaxMmax: (23)

If ui updates its decision from ai to a0i, ui’s QoE
increases, EðaiÞ < Eða0iÞ. According to Definition 4, the
potential function f�aðaiÞmeets

fa�i
ða0iÞ � fa�i

ðaiÞ � 0 (24)

Then, we prove Theorem. 2 by analyzing the follow-
ing 6 cases. tu

Case 1. ai ¼ ð1; kiÞ and a0i ¼ ð1; k0iÞ.
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According to Eq. (22), There is

fa�i
ða0iÞ � fa�i

ðaiÞ ¼
Qi

X
ul2U=fuig

ðQp
l Ifkl¼kig �Qp

l Ifkl¼k0
i
gÞIfdl¼dig > 0 (25)

Because Qp
i is a non-negative integer for ui 2 U , there

holds

X
ul2U=fuig

ðQp
l Ifkl¼kig �Qp

l Ifkl¼k0
i
gÞIfdl¼dig � 1:

Thus, according to Eq. (25), fða0iÞ � fðaiÞ þQi � f

ðaiÞ þQmin.

Case 2. ai ¼ ð2; kiÞ and a0i ¼ ð2; k0iÞ.
Similar to Case 1, Inequality (25) can be obtained. There-

fore, there exists fða0iÞ � fðaiÞ þQi � fðaiÞ þQmin.

Case 3. ai ¼ ð2; kiÞ and a0i ¼ ð1; k0iÞ.
There exists

fa�i
ða0iÞ � fa�i

ðaiÞ ¼ Qi½Mi þ
X

ul2U=fuig
ðQp

l Ifkl¼kig �Qp
l Ifkl¼k0

i
g

� g lIf�l¼�0
i
gÞIfdl¼dig� > 0:

Since Mi > 0, Qp
i > 0 and gi > 0 are integers for any

ui 2 U , there holds Mi þ
P

ul2U=fuigðQ
p
l Ifkl¼kig �

Qp
l Ifkl¼k0

i
g � glIf�l¼�0

i
gÞIfdl¼dig � 1. Thus, fða0iÞ � fðaiÞ þ

Qi � fðaiÞ þQmin.

Case 4. ai ¼ ð2; kiÞ and a0i ¼ ð1; kiÞ.
There exists

fa�i
ða0iÞ � fa�i

ðaiÞ ¼ QiðMi �
X

ul2U=fuig:dl¼di

g lIf�l¼�0
i
gÞ > 0:

Because Qi and Qp
i are non-negative integers, we can

obtain �i is non-negative integers. Therefore, Mi �P
ul2U=fuig:dl¼di

g lIf�l¼�0
i
g � 1. So fða0iÞ � fðaiÞ þQi

� fðaiÞ þQmin.

Case 5. ai ¼ ð0; 0Þ and a0i ¼ ð1; k0iÞ.
There exists

fa�i
ða0iÞ � fa�i

ðaiÞ
¼ Qi½hMi �

X
ul2U=fuig

ðQp
l Ifkl¼k0

i
g þ g lIf�l¼�0

i
gÞIdl¼di � > 0

BecauseMi and Qp
i are non-negative integers, there is

hMi �
X

ul2U=fuig:dl¼di

ðplgk
0
i

l Ifkl¼k0
i
g þ g lIf�l¼�0

i
gÞ � 1:

So fða0iÞ � fðaiÞ þQi � fðaiÞ þQmin.

Case 6. ai ¼ ð0; 0Þ and a0i ¼ ð2; k0iÞ.

fa�i
ða0iÞ � fa�i

ðaiÞ ¼
Qi½ðh� 1ÞMi �

P
ul2U=fuigQ

p
l Ifkl¼k0

i
\dl¼dig� > 0:

(26)
We can obtain ðh� 1ÞMi �

P
ul2U=fuig Q

p
l Ifkl¼k0

i
\dl¼dig � 1.

Thus, based on inequalities (26), fða0iÞ � fðaiÞ þQi � f

ðaiÞ þQmin.
Together with Case 1 to Case 6, we can get fða0iÞ �

fðaiÞ þQmin. Thus, fða0iÞ � fðaiÞ � Qmin. In other words,
the minimum increased value of the potential function
before and after each iteration is Qmin. Therefore, according
to inequalities (23), the following inequality always holds:

0� fa�i
ðaiÞ � 1

2
n2Q2

max þ nQmaxðnQp
max þMmaxÞ

þ nhQmaxMmax:

We can obtain

R � 1

2
n2Q2

max=Qmin þ nQmaxðnQp
max þMmaxÞ=Qmin

þ nhQmaxMmax=Qmin:

Therefore, we complete the proof of Theorem 2.

4.3 Complexity Analysis

As shown in Algorithm 4.1, in each iteration, each user con-
ducts the operations of calculating its own QoE (Lines 5-11)
and searching for its best strategy (Lines 13-16) in a distributed
way. For the part of calculating its own QoE, there are only
some basic mathematical operations, and the time complexity
for this part can be regarded asOð1Þ. For the part of searching
for its best strategy, the time complexity is OðcmaxÞ, where
cmax ¼ maxfc1; . . . ; cmg, i.e., themaximumnumber of channels
provided by the BSs. Therefore, the time complexity for each
iteration is Oð1Þ þ OðcmaxÞ ¼ OðcmaxÞ. Furthermore, Theorem
2 in the paper proves the upper bound of number of interac-
tions, i.e., R � 1

2n
2Q2

max=Qmin þ nQmaxðnQp
max þMmaxÞ=Qmin.

Therefore, the time complexity of GDTO algorithm is
Oðcmax 	 ð12n2Q2

max=Qmin þ nQmaxðnQp
max þMmaxÞ=QminÞÞ.

4.4 Analysis of Price of Anarchy

In general, our proposed multi-user offloading game may
admit more than one Nash Equilibrium. Moreover, these
Nash Equilibrium solutions might be different from the
globally optimal solution to Problem (17) before. To quan-
tify the gap between the Nash Equilibrium solution and the
globally optimal solution to Problem (17), we adopt the met-
ric of Price of Anarchy (PoA) [25]. In particular, PoA meas-
ures the ratio between the worst utility of offloading
strategies that achieve Nash Equilibrium and the utility of
the exactly optimal offloading strategy. We denote the set of
all Nash equilibrium strategies by N in our MUTO-Game.
a ¼ ða1; . . . ; anÞ denote the centralized optimal offloading
strategy. The PoA of the game in the overall QoE is

POAQoE ¼ mina�2N
P

ui2U Ea��i
ða�

i
ÞP

ui2U Ea�i
ðaiÞ

; (27)

and it can be analyzed by the following Theorem 3.
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Theorem 3. For the MUTO-Game, PoA calculated with Eq. (27)
satisfies:

Emin

�alog 2ðminfBmin
rmax

þ Xmin
fmax

; pminBmin
rmax

gÞ þ b
� POAQOE

� 1: (28)

Proof.
There is QOEða�Þ � QOEðaÞ for any offloading strat-

egy a� 2 N, i.e.,

P
ui2U Ea��i

ða�
i
ÞP

ui2U Ea�i
ðaiÞ

� 1 Therefore, POAQOE � 1.

For any user ui 2 U , there are the minimum QoE Emin

and the maximum QoE Emax. Thus, for any offloading
strategy a� 2 N, the total QoE satisfies

X
ui2U

Ea��i
ða�i Þ � nEmin

and the total QoE produced by the optimal offloading
strategy a satisfies

X
ui2U

Ea�i
ðaiÞ � nEmax

Therefore, combining the above inference with
Eq. (27), we can get

POAQOE � nEmin

nEmax
¼ Emin

Emax

According to (13), (14), (15) and (16), there is

Emin

Emax
¼ Emin

�alog 2ðminfBmin
rmax

þ Xmin
fmax

; pminBmin
rmax

gÞ þ b
:

Finally, we can prove (28) of Theorem 3. tu

5 PERFORMANCE EVALUATION

In the section, we conduct parameter analysis and compara-
tive experiments to validate the performance and the effec-
tiveness of our GDTO alogrithm.

5.1 Parameter Configuration

We consider that there are 10 service areas in the experiments.
Each service area has a BS with an edge server (jSj ¼ 10). The
UDs in each service area are randomly distributed. The param-
eter settings are shown in Table 2. For each BS, the background
noise $0 ¼ -100 dBm and wireless channel bandwidth W ¼ 5
MHz [13], [24]. For each UD ui 2 U , the task’s data size is ran-
domly set from 3 MB to 5 MB, the transmission power pi ¼
1000 mWatts and the computing capability is 0.5 GHz. The
transmission rate from BS to cloud is r̂ ¼ 1 Mbps. The CPU
cycles number to complete the task is Xi ¼ Biv, where v ¼
1000 cycles/bit according to [26], [27]. Similar to [28], the large-
scale path loss is 128.1+37.6log 10li dB, where li is the distance
between BS di andUD ui, randomly set from 500m to 1000m.

5.2 Experimental Results

We evaluate the convergence time of the GDTO approach
with different numbers of users and channels. We also con-
duct two groups of comparison experiments to validate the
GDTO’s performance.

5.2.1 Evaluation of Convergence Time

As the execution time of algorithms are greatly affected
by the hardware equipment, similar to existing works,
we use the number of iterations to represent the conver-
gence time.

Fig. 2 shows the number of iterations of the GDTO for
different number of UDs. The number of users is
increased from 100 to 1000. We can see from Fig. 2 that
the number of iterations increases continuously when
the number of UDs is from 100 to 600. When the number
of UDs is from 700 to 1000, the number of iterations does
not change too much. The phenomena is caused by the
competition mechanism of the GDTO algorithm. When
the number of users is from 100 to 600, there are suffi-
cient resources to serve the users. Therefore, there are
more possible decisions to select for the users, and the
iteration number increases. However, when the number
of users is from 700 to 1000, a large number of users can-
not be offloaded due to insufficient transmission
resources.

Fig. 3 shows the number of iterations with different num-
ber of channels. The number of UDs is 1000 and the number
of channels varies from 5 to 40. We can see from Fig. 3 that
the iteration number grows with the increase of channels
numbers. This is because more available channels for selec-
tion brings more candidate strategies for the users. Never-
theless, when the size of solution space increases
exponentially with the number of channels, the increase
speed of the iteration number of our GDTO algorithm is
lower than linear speed.

5.2.2 Evaluation of Energy Consumption

Table 3 lists the numerical results showing the average
energy consumption that users experience from the task
offloading and local task processing operations. The
number of UDs is set as 1000, and the number of chan-
nels provided by each BS varies from 5 to 40 with an
increment of 5. We can see from Table 3 that with the

TABLE 2
Experimental Settings (1)

Parameter Value

Distance from user 500 m�1000 m
to BS (li)
bandwidth of Channel (W ) 5 MHz
Data size of task 3 MB�5 MB
Transmission rate of 1 Mbps
base station (r̂)
Background noise -100 dBm
Processing density of task (v) 1000 cycles/bit
Large-scale path loss 128:1þ 37:6log 10li dB
Computing capability of user 0.5 GHz
Transmission power (pi) 1000 mWatts
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increase of number of channels, the average energy con-
sumption of local task processing decreases and the
average energy consumption for task offloading
increases. The reason is that when there are more avail-
able channels, there are more transmission resources pro-
vided for UDs to offload tasks. Then, the number of
tasks offloaded will increase, and the number of tasks
processed locally will decrease. Thus, the average energy
consumption for local computing decreases and the aver-
age energy consumption of task offloading increases.
Furthermore, we can also observe from Table 3 that the
average energy consumption sum decreases when the
number of channels increases. We can draw the conclu-
sion that providing more channel resources will benefit
more users in reducing their energy consumption.

5.2.3 Comparison Experiments

To further evaluate our GDTO algorithm, we compare it
with 5 other methods shown as below.

� Optimal: The optimal method models the problem as
an integer programming problem and uses the cen-
tralized approach to get a global optimal offloading
solution.

� Random: The method randomly assigns decisions to
each user to complete the task. When there are

enough bandwidth resources, the user randomly
selects a method (local computing or transmitting
the tasks to the BS). When the edge servers’ compu-
tation resources are sufficient, the user randomly
selects local computing, edge computing or cloud
computing. Otherwise, the user randomly selects
local computing or cloud computing.

� ICSOC 19: This heuristic method is extended from
[29] and adjusted accordingly to solve our offloading
problem. Specifically, each user selfishly and greed-
ily acquires the maximum resources to maximize its
QoE while meeting constraints.

� DGEA 20: This distributed game-based algorithm
DGEA 20 is extended from [30] to be applied to our
model. When the users compete for the update
opportunities, the winner is selected randomly.

� CCPM 19: This scheduling algorithm CCPM 19 is
extended from [31] and adjusted accordingly for
our model. The users are sorted according to their
channel conditions and qualities. And then, based
on the sorted user order, the users updates the
decision to achieve its own maximum QoE one by
one.

When the solution space size is large, the optimal
method suffers from high complexity and cannot obtain
the offloading strategy within a reasonable time. There-
fore, we set two groups of experiments, including the
small-scale experiments and the large-scale experiments
(Set # 1 and Set # 2), as shown in Table 4. For Set # 1,
we evaluate all the four methods, while for Set # 2, the
optimal method is omitted.

a. Small-scale Experiment
Fig. 4 shows the average QoE of the 6 algorithms with

different number of UDs. We can find that for all the 6
algorithms, the average QoE decreases with the increase
of number of UDs. There are two reasons. First, the com-
puting capability of the edge servers are fixed. Adding
UDs will gradually use up the resources of the edge
servers, thus the number of UDs who cannot offload
task will increase. Second, the channel resources are
fixed. Adding UDs will result in competition for the
channel resources. Therefore, the average QoE will
decrease. In addition, when the number of user is
smaller than 60, the average QoE of our GDTO algorithm
is the same as that of the Optimal algorithm. When the

Fig. 2. Number of iterations versus number of users.

Fig. 3. Number of iterations versus number of channels.

TABLE 3
Energy Consumption

Number of
channels
for each BS

Average energy
consumption of

local processing (J)

Average energy
consumption of
task offloading (J)

Average sum
energy

consumption
(J)

5 30.1 1.7 31.8
10 27.0 2.3 29.3
15 22.9 3.5 26.4
20 19.5 4.5 24.0
25 16.2 5.4 21.7
30 13.6 5.9 19.5
35 10.4 7.0 17.4
40 8.1 7.3 15.4
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number of user exceeds 60, the average QoE of our
GDTO algorithm is slightly smaller than the Optimal
and still larger than the other 4 algorithms.

Fig. 5 shows the total QoE with the 6 different algorithms
when the number of channels is from 1 to 6. We can see that
when the number of channels varies from 1 to 5, the total
QoEs of the 6 algorithms all increase when the number of
channels increases. The reason is that when the number of
channels increases, there are more transmission resources
and less competition among users, increasing each user’s
QoE. However, as the number of wireless channels
increases from 5 to 6, the QoEs of the algorithms do not
improve much. This is because when the number of wire-
less channels is further increased, the computing resources
of the edge servers become the bottleneck and are not suffi-
cient to serve the users. We also find that when number of
channels is smaller than 4, the GDTO’s QoE is second to
that of the Optimal algorithm and better than the other 4
algorithms. When the number of channels is larger than 4,
the QoE of our GDTO algorithm and the Optimal algorithm
is the same.

Fig. 6 shows the total QoEs of the 6 algorithms when the
edge server’s computing capability varies from 5 GHz to 14
GHz. The overall QoE of the GDTO, ICSOC 19, DGEA 20,
CCPM 19 and the optimal algorithms all increase when the
computing capability increases from 5 GHz to 14 GHz. As
more computing resources are available, the edge servers
can accommodate more tasks. Thus, the overall QoE will
increase. The overall QoE of our GDTO algorithm is slightly
smaller than that of the optimal algorithm, and larger than
the other 4 algorithms.

b. Large-scale Experiment
Figs. 7 and 8 show the average QoE and percentage of

task offloading of the 5 algorithms with different number of
UDs. The number of UDs is increased from 100 to 1000. We
can see from Fig. 7 that the QoEs of the 5 algorithms all
decrease when number of UDs increases. This is because
the transmission resources are limited, and the resources
allocated to each user will decrease when there are more
users competing for the resources, thus decreasing the aver-
age QoE. Nevertheless, the QoE of our GDTO algorithm is
still the largest among the 5 algorithms. In Fig. 8, with the
increase of number of UDs, the percentage of offloaded
tasks with GDTO, ICSOC 19, DGEA 20 and CCPM 19 algo-
rithms all decrease. That is because the number of UDs is
increasing, the resources gradually become insufficient.
Thus, the percentage of UDs who can offload tasks will
decrease. However, the percentage of task offloading with
our GDTO algorithm is still the largest among all the 5
algorithms.

Figs. 9 and 10 show the total QoE and percentage of
offloading task under the 5 algorithms. The number of
wireless channels is from 5 to 40. We can see that for the
5 algorithms, the QoE all increases with the increase of
number of channels. This is because when the number of
UDs is fixed, the increase in number of channels can
bring more transmission resources for users. Therefore,

TABLE 4
Experimental Settings (2)

n cdi fdi

Set # 1

Set # 1.1 10 � 100 1 5
Set # 1.2 50 1 � 6 5
Set # 1.3 50 1 5 � 14

Set # 2

Set # 2.1 100 � 1000 5 10

Set # 2.2 1000 5 � 40 10
Set # 2.3 1000 5 10 � 100

Fig. 4. Average QoE versus number of users (Set #1.1).

Fig. 5. Total QoE versus number of channels (Set #1.2).

Fig. 6. Total QoE versus computing capability (Set #1.3).
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users can increase the transmission rate and thus improve
the overall QoE. In addition, we can find that the overall
QoE of GDTO algorithm is always larger than that of
the other 4 algorithms. We also find from Fig. 10 that
the percentages of task offloading for the GDTO, ICSOC
19, DGEA 20 and CCPM 19 algorithms all rise when the
number of channels increases. Actually, more wireless
channel resources enable more users to transmit tasks,
thus improving the percentage of task offloading. Simi-
larly, we can see that the percentage of task offloading of
our GDTO algorithm is larger than the ICSOC 19, DGEA
20 and CCPM 19 algorithms. The percentage of offloading
task with the Random algorithm does not change much
due to its random offloading mechanism.

We adopt the metric of number of Offloading Beneficial
User (OBU) to further evaluate our proposed GDTO algo-
rithm in benefiting the users from offloading tasks. One
user is called an OBU user, if the user’s obtained QoE with
integrated offloading choice is better than its QoE with
solely local computing. Then, we say that this user benefits
from offloading, and call this user an OBU user.

Fig. 11 shows the number of OBU users with the 5 algo-
rithms under different number of channels. The number of
channels is from 5 to 40. We can observe that the numbers
of OBU users for the 5 algorithms all become larger with

the increase of number of channels. This is because when
there are more channels, there are more transmission
resources provided for the users to offload their tasks.
Then, more users can benefit from offloading tasks and the
number of OBU users will increase. We also observe that
the number of OBU users with our GDTO algorithm is
always the largest among the 5 algorithms, which demon-
strates the superiority of our GDTO algorithm in benefiting
the users. Besides, the number of the OBU users with the
Random algorithm is always the smallest among the 5
algorithm. This is because the Random algorithm does not
make effective use of the channel resources to make the
offloading decisions.

Fig. 12 shows the overall QoE when edge server’s com-
puting capability varies from 10 GHz to 100 GHz. We
observe that the overall QoE of the 5 algorithms increases as
the computing capability of the edge server increases, and
the QoE of our GDTO algorithm is the largest. We also
observe that when the computing capacity is further
increased (about 70 GHz in Fig. 12), the increase rate of QoE
gradually becomes slower. The increase trend of the curves
of all the algorithms’ QoE is gradually flattened. The reason
is that when the computing capability increases to a certain
level, the computing resources allocated to the UDs on the
edge servers are already sufficient. At this time, the main

Fig. 7. Average QoE versus number of users (Set #2.1).

Fig. 8. Percentage of offloading task versus number of users (Set #2.1).

Fig. 9. Total QoE versus number of channels (Set #2.2).

Fig. 10. Percentage of offloading task versus number of channels
(Set #2.2).
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factor affecting the increase of QoE is insufficient channel
resource.

6 RELATED WORK

The problem of caching optimization and task offloading in
edge computing is an important research topic, and widely
studied in academia. Xu et al. [32] studied the service cach-
ing problem in MEC networks. An integer linear program-
ming solution and a distributed game-theoretic approach
were proposed to minimize the social cost for all network
service providers. In [33], Lyu et al. proposed a distributed
online learning approach to optimize content placement and
delivery at each edge server to achieve optimal cache hit rate
and cost effectiveness. Wang et al. [34] regarded the content
caching strategy, tasks offloading decision and resource allo-
cation as an optimization problem. it was transformed into a
convex problem, and was solved by a multiplier-based alter-
nating directions approach. In [35], Fan et al. designed an
iterative algorithm based on Lyapunov optimization to min-
imize the total task processing latency. Duan et al. [36] trans-
formed and decomposed the task offloading optimization
problem into two subproblems and designed an online con-
trol scheme based on Long Short TermMemory and Dueling
Double DQN to reduce the computation cost of mobile devi-
ces and achieve load balancing.

In general, co-channel interference exists in the wireless
channel transmission in edge computing scenarios. Assign-
ing too many users to edge servers can lead to serious inter-
ference that can affect the user’s data rate. In [13], [24], Cui
et al. studied the mobile edge device allocation problem of
interference perception in edge computing and edge cloud
computing respectively. A distributed solution approach
was proposed. In [37], Chen et al. considered the computing
task offloading of multi-user in a two-layered end-edge sys-
tem and the tasks were either executed on the edge servers
or locally. It was considered that the resources of edge serv-
ers were sufficient and could satisfy all the users. Different
from their work, our work considers a three-layered end-
edge-cloud system, and the tasks can also be executed on
the cloud. Furthermore, we consider more realistic scenarios
that the edge servers’ computing resources are limited, and
users compete for the computing resources.

In addition, some studies have taken user’s quality of expe-
rience (QoE) as an optimization goal. In Lai et al. [21] solved
the user assignment problem in edge computing scenarios.
A distributed algorithm was proposed to optimize the
user’s QoE based on game theory. Zheng et al. [22] compre-
hensively considered the use of spectrum efficiency, user
fairness and service satisfaction to evaluate user’s quality of
experience, described the resource allocation problem as a
local cooperative game.

The computing capability of edge servers is limited com-
pared to that of cloud servers.Therefore, it can be consid-
ered to combine edge computing and cloud computing to
improve the entire system’s performance. Some works have
studied the computing offloading problem in the edge-
cloud systems. In [11], Fantacci et al. used queuing theory to
evaluate and optimize three-layer edge-cloud computing,
and proposed a allocation algorithm of computing resource
to maximize the optimization goal under the constraint of
satisfying a specific quality of service(QoS). In [12], Wang
et al. considered the heterogeneous system combining
mobile edge computing and cloud center, and presented an
approach to optimize time latency of the whole system by
coordinating task allocation, computing and transmission
resources together.

In the edge cloud scenario, users sometimes need to
compute their own tasks locally (end-edge-cloud comput-
ing). For example, when the connection is unstable or the
system resources are insufficient. There were also some
works to consider task offloading for end-edge-cloud com-
puting. Sun et al. [38] used a low-complexity hierarchical
heuristic method and an inequality method to determine
resource allocation under the joint constraints of cache
resources and edge server communication and computing
resources. Du et al. [39] proposed a low-complexity subop-
timal algorithm based on semidefinite relaxation, frac-
tional programming theory and Lagrange duality to solve
offloading decisions and resource allocation problems.
Ding et al. [18] studied the offloading optimization under
two different types of computing architectures, and pro-
posed game algorithms under two architectures based on
game theory.

Related works on caching and task offloading inMEC can
also be classified by the criteria of distributed approaches

Fig. 11. Number of OBU users versus number of channels (Set #2.2). Fig. 12. Total QoE versus computing capability (Set #2.3).
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and centralized approaches. Some existing works proposed
the task offloading approaches which could be implemented
in a distributed way. [40] studied the risk-aware data off-
loading problem in MEC. Each user aimed at maximizing
the perceived satisfaction. A non-cooperative game was for-
mulated to study this problem and a distributed algorithm
converging to the Nash Equilibrium was proposed. [41]
investigated the energy efficient task offloading in a collabo-
rative MEC and autonomous aerial system. The authors
adopted the Satisfaction Game and proposed a reinforce-
ment learning-enabled approach to increase Internet of
Thing user’s satisfaction with the energy cost considered.
[42] designed incentives for wireless body area network
(WBAN) users to curtain the task offloading amount to
achieve the green task offloading for 5G-enabled healthcare
systems. The Stackelberge game was adpoted and the opti-
mal solution was obtained by the alternating direction
method of multipliers (ADMM)-based approach imple-
mented in a distributed manner. [43] proposed the resource
management scheme to minimize the MEC server’s energy
consumption without compromising WBAN users’ QoE. A
cooperative framework was proposed, and the Nash bar-
gaining theory was adopted to model the interaction. The
closed-formNash bargaining solutions were also derived. In
[44], Feng et al. studied the caching optimization problem in
edge networks. The cache control was described as a sto-
chastic difference game, and a distributed cache iterative
control algorithm was proposed to finally obtain an optimal
edge cache control policy.

Some other works adopted centralized approaches to
solve the task offloading problems. [10] considered the sce-
nario of edge computing and cloud computing collabora-
tion with the objective of minimizing the weighted-sum
latency of all mobile devices. A resource allocation strategy
based on convex optimization was proposed. [12] focused
on the task scheduling, resources allocation among devices,
multi-layer MEC servers and remote clouds. [45] modeled
the computation offloading problem by a Markov decision
process, and proposed a deep Q-network-based computa-
tion offloading algorithm. [15] jointly considered the com-
puting offloading and interference management in a MEC-
enabled network, and formulated the computing offloading,
physical resource and MEC computing resource allocation
as an optimization problem.

7 CONCLUSION

In the paper, we investigate the user task offloading problem in
a collaborative end-edge-cloud system. We formulate the off-
loading problem with the goal of maximizing users’ QoE while
satisfying the communication and computing resource con-
straints. Then, we reformulate the problem as the MUTO-Game
model, and define the optimal offloading strategy by the Nash
Equilibrium strategy.We propose the lemma that both the com-
munication interference and the degree of computing resource
competition can be upper bounded. Then, we prove that the
MUTO-Game is a potential game and there exists at least one
Nash Equilibrium offloading strategy. We propose the decen-
tralized GDTO approach which obtains the Nash Equilibrium
offloading strategy. Theoretical analysis for the upper bound of
convergence time and performance guarantee in the worst case

is given. Finally, we conduct extensive experiments, which vali-
date the performance of our GDTO approach.

One future direction is considering the service provider as
another typeof players in the game, and take advantage of Stack-
elberg Game to formulate the offloading problem with the goal
of social welfare maximization. Another important and interest-
ing future research direction is to adopt the non-orthognalmulti-
ple access (NOMA) technique that implements the successive
interference cancellation technique tomodel the interference.

REFERENCES

[1] Z. Chen et al., “An empirical study of latency in an emerging class
of edge computing applications for wearable cognitive assis-
tance,” in Proc. 2nd ACM/IEEE Symp. Edge Comput., 2017, pp. 1–14.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Things J., vol. 5, no. 1,
pp. 450–465, Feb. 2018.

[3] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-
based real-time video analytics,” in Proc. IEEE Conf. Comput. Com-
mun., 2020, pp. 257–266.

[4] S. Wang et al., “A cloud-guided feature extraction approach for
image retrieval in mobile edge computing,” IEEE Trans. Mobile
Comput., vol. 20, no. 2, pp. 292–305, Feb. 2021.

[5] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation off-
loading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Trans. Mobile Comput., vol. 18, no. 4, pp. 771–786,
Apr. 2019.

[6] F. Vhora and J. Gandhi, “A comprehensive survey on mobile edge
computing: Challenges, tools, applications,” in Proc. IEEE 4th Int.
Conf. Comput. Methodol. Commun., 2020, pp. 49–55.

[7] K. Peng, V. Leung, X. Xu, L. Zheng, J. Wang, and Q. Huang, “A
survey on mobile edge computing: Focusing on service adoption
and provision,”Wirel. Commun. Mobile Comput., vol. 2018, 2018.

[8] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. K. Tsang, “NOMA-
assisted multi-access mobile edge computing: A joint optimiza-
tion of computation offloading and time allocation,” IEEE Trans.
Veh. Technol, vol. 67, no. 12, pp. 12244–12258, Dec. 2018.

[9] J. Hu, K. Li, C. Liu, J. Chen, and K. Li, “Coalition formation for
deadline-constrained resource procurement in cloud computing,”
J. Parallel Distrib. Comput., vol. 149, pp. 1–12, 2021.

[10] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol,
vol. 68, no. 5, pp. 5031–5044, May 2019.

[11] R. Fantacci and B. Picano, “Performance analysis of a delay con-
strained data offloading scheme in an integrated cloud-fog-edge
computing system,” IEEE Trans. Veh. Technol, vol. 69, no. 10,
pp. 12004–12014, Oct. 2020.

[12] P. Wang, Z. Zheng, B. Di, and L. Song, “HetMEC: Latency-optimal
task assignment and resource allocation for heterogeneous multi-
layer mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 18, no. 10, pp. 4942–4956, Oct. 2019.

[13] G. Cui, Q. He, F. Chen, Y. Zhang, H. Jin, and Y. Yang,
“Interference-aware game-theoretic device allocation for mobile
edge computing,” IEEE Trans. Mobile Comput., vol. 21, no. 11,
pp. 4001–4012, Nov. 2021.

[14] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/
ACM Trans. Netw., vol. 26, no. 4, pp. 1619–1632, Apr. 2018.

[15] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint compu-
tation offloading and interference management in wireless cellu-
lar networks with mobile edge computing,” IEEE Trans. Veh.
Technol, vol. 66, no. 8, pp. 7432–7445, Aug. 2017.

[16] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Cognitive data offloading in mobile edge computing for internet
of things,” IEEE Access, vol. 8, pp. 55736–55749, 2020.

[17] Z. Zhou, S. Yu, W. Chen, and X. Chen, “CE-IoT: Cost-effective cloud-
edge resource provisioning for heterogeneous IoT applications,”
IEEE Internet Things J., vol. 7, no. 9, pp. 8600–8614, Sep. 2020.

[18] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic
approach to computation offloading strategy optimization in end-
edge-cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 6, pp. 1503–1519, Jun. 2022.

782 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:15:39 UTC from IEEE Xplore.  Restrictions apply. 



[19] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, May 2016.

[20] T. Fang, F. Yuan, L. Ao, and J. Chen, “Joint task offloading, D2D pair-
ing, and resource allocation in device-enhanced mec: A potential
game approach,” IEEE Internet Things J., vol. 9, no. 5, pp. 3226–3237,
May 2021.

[21] P. Lai et al., “Quality of experience-aware user allocation in edge
computing systems: A potential game,” in Proc. IEEE 40th Int.
Conf. Distrib. Comput. Syst., pp. 223–233, 2020.

[22] J. Zheng, Y. Cai, Y. Liu, Y. Xu, B. Duan, and X. Shen, “Optimal
power allocation and user scheduling in multicell networks: Base
station cooperation using a game-theoretic approach,” IEEE Trans.
Wireless Commun., vol. 13, no. 12, pp. 6928–6942, Dec. 2014.

[23] D. Monderer and L. S. Shapley, “Potential games,” Games Econ.
Behav., vol. 14, no. 1, pp. 124–143, 1996.

[24] G. Cui et al., “Interference-aware SaaS user allocation game for edge
computing,” IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1888–1899,
ThirdQuarter, 2020.

[25] T. Roughgarden, Selfish Routing and the Price of Anarchy. Cam-
bridge, MA, USA: MIT Press, 2005.

[26] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Processor-network
speed scaling for energy–delay tradeoff in smartphone
applications,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1647–1660,
Mar. 2016.

[27] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and
task allocation for energy minimization in mobile cloud systems,”
IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[28] P. Lai et al., “Cost-effective user allocation in 5G noma-based
mobile edge computing systems,” IEEE Trans. Mobile Comput.,
vol. 21, no. 12, pp. 4263–4278, Dec. 2022.

[29] P. Lai et al., “Edge user allocation with dynamic qualityof serv-
ice,” in Proc. Int. Conf. Serv.-Oriented Comput., 2019, pp. 86–101.

[30] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[31] H. Zeng, X. Zhu, Y. Jiang, Z. Wei, and T. Wang, “A green coordi-
nated multi-cell noma system with fuzzy logic based multi-crite-
rion user mode selection and resource allocation,” IEEE J. Sel.
Topics Signal Process., vol. 13, no. 3, pp. 480–495, Mar. 2019.

[32] Z. Xu et al., “Near-optimal and collaborative service caching in
mobile edge clouds,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2022.3144175.

[33] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and X. Tao, “Distributed
online learning of cooperative caching in edge cloud,” IEEE Trans.
Mobile Comput., vol. 20, no. 8, pp. 2550–2562, Aug. 2021.

[34] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[35] W. Fan et al., “Collaborative service placement, task scheduling,
and resource allocation for task offloading with edge-cloud coop-
eration,” IEEE Trans. Mobile Comput., to be published, doi:
10.1109/TMC.2022.3219261.

[36] S. Duan et al., “MOTO: Mobility-aware online task offloading
with adaptive load balancing in small-cell MEC,” IEEE Trans.
Mobile Comput., to be published, doi: 10.1109/TMC.2022.3220720.

[37] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, May 2015.

[38] C. Sun et al., “Task offloading for end-edge-cloud orchestrated com-
puting in mobile networks,” in Proc. IEEE Wirel. Commun. Netw.
Conf., 2020, pp. 1–6.

[39] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with
min-max fairness guarantee,” IEEE Trans. Commun., vol. 66, no. 4,
pp. 1594–1608, 2018.

[40] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Risk-aware data offloading in multi-server multi-access edge
computing environment,” IEEE/ACM Trans. Netwo., vol. 28, no. 3,
pp. 1405–1418, Jun. 2020.

[41] N. Irtija, I. Anagnostopoulos, G. Zervakis, E. E. Tsiropoulou, H.
Amrouch, and J. Henkel, “Energy efficient edge computing enabled
by satisfaction games and approximate computing,” IEEE Trans.
Green Commun. Netw., vol. 6, no. 1, pp. 281–294, Mar. 2021.

[42] P. K. Bishoyi and S. Misra, “Enabling green mobile-edge comput-
ing for 5G-based healthcare applications,” IEEE Trans. Green Com-
mun. Netw., vol. 5, no. 3, pp. 1623–1631, Sep. 2021.

[43] P. K. K. Bishoyi and S.Misra, “Towards energy-and cost-efficient sus-
tainableMEC-assisted healthcare systems,” IEEE Trans. Sustain. Com-
put., early access, Apr. 26, 2022, doi: 10.1109/TSUSC.2022.3170508.

[44] H. Feng, S. Guo, D. Liu, and Y. Yang, “Mean-field game theory
based optimal caching control in mobile edge computing,” IEEE
Trans. Mobile Comput., early access, Jul. 25, 2022, doi: 10.1109/
TMC.2022.3193764.

[45] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis,
“Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning,” IEEE Inter-
net Things J., vol. 6, no. 3, pp. 4005–4018, Jun. 2019.

Ying Chen (Member, IEEE) received the PhD
degree in computer science and technology
from Tsinghua University, Beijing, China, in 2017,
where she was a joint PhD student with the
University of Waterloo, Waterloo, ON, Canada
from 2016 to 2017. She is an associate professor
with the Computer School, Beijing Information
Science and Technology University, Beijing.
Her current research interests include Internet of
Things, mobile edge computing, wireless net
works and communications, machine learning,

etc. She is the recipient of the Best Paper Award with IEEE SmartIoT
2019, the 2016 Google PhD Fellowship Award, and the 2014 Google
Anita Borg Award, 2022 OUTSTANDING CONTRIBUTION AWARD in
18th EAI CollaborateCom, respectively. She serves/served the leading
guest editor of Springer JCC, TPC member of IEEE HPCC, and PC
member of IEEE Cloud, CollaborateCom, IEEE CPSCom, CSS, etc.
She is also the Reviewer of several journals such as the IEEE Wireless
Communications Magazine, IEEE Transactions on Dependable and
Secure Computing, IEEE Internet of Things Journal, IEEE Transactions
on Computers, IEEE Transactions on Cloud Computing, and IEEE
Transactions on Services Computing.

Jie Zhao is currently working toward the MEng
degree in computer science and technology, the Bei-
jing Information Science and Technology University,
China. His current research interests include edge
computing, Internet of Things, and Game theory.

Yuan Wu (Senior Member, IEEE) received the
PhD degree in electronic and computer engineer-
ing from the Hong Kong University of Science
and Technology, in 2010. He is currently an asso-
ciate professor with the State Key Laboratory of
Internet of Things for Smart City, University of
Macau, Macao, China, and also with the Depart-
ment of Computer and Information Science, Uni-
versity of Macau. During 2016-2017, He was a
visiting scholar with Department of Electrical and
Computer Engineering, University of Waterloo.

His research interests include resource management for wireless net-
works, green communications and computing, edge computing and
edge intelligence, and energy informatics. He received the Best Paper
Award from the IEEE ICC’2016, WCSP’2016, IEEE TCGCC’2017, and
IWCMC’2021. He is currently on the editorial board of IEEE Transac-
tions on Vehicular Technology, IEEE Transactions on Network Science
and Engineering, and IEEE Internet of Things Journal.

CHEN ETAL.: QOE-AWARE DECENTRALIZED TASKOFFLOADING AND RESOURCE ALLOCATION FOR END-EDGE-CLOUD SYSTEMS: A... 783

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:15:39 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1109/TMC.2022.3144175
https://doi.org/10.1109/TMC.2022.3220720
https://doi.org/10.1109/TSUSC.2022.3170508
https://doi.org/10.1109/TMC.2022.3193764
https://doi.org/10.1109/TMC.2022.3193764


Jiwei Huang (Member, IEEE) received the BEng
and PhD degrees in computer science and tech-
nology from Tsinghua University, Beijing, China,
in 2009 and 2014, respectively. He was a Visiting
Scholar with the Georgia Institute of Technology,
Atlanta, GA, USA. He is currently a professor
and the Dean with the Department of Computer
Science and Technology, China University of
Petroleum, Beijing, and the Director of Beijing Key
Laboratory of Petroleum Data Mining, Beijing. He
has authored or coauthored one book and more

than 60 articles in international journals and conference proceedings,
including IEEE Transactions on Services Computing, IEEE Transactions
on Cloud Computing, IEEE Transactions on Vehicular Technology, IEEE
Internet of Things Journal, ACM Sigmetrics, and IEEE ICWS, etc. His
research interests include services computing, Internet of Things, and
edge computing. He is currently on the Editorial Board of the Chinese
Journal of Electronics and Scientific Programming.

Xuemin Shen (Fellow, IEEE) received the PhD
degree in electrical engineering from Rutgers
University, New Brunswick, NJ, USA, in 1990. He
is a University Professor with the Department of
Electrical and Computer Engineering, University
of Waterloo, Canada. His research focuses on
network resource management, wireless network
security, Internet of Things, 5G and beyond, and
vehicular networks. He is a registered Profes-
sional Engineer of Ontario, Canada, an Engineer-
ing Institute of Canada Fellow, a Canadian

Academy of Engineering Fellow, a Royal Society of Canada Fellow, a
Chinese Academy of Engineering Foreign Member, and a Distinguished
Lecturer of the IEEE Vehicular Technology Society and Communica-
tions Society. He received the Canadian Award for Telecommunications
Research from the Canadian Society of Information Theory (CSIT) in
2021, the R.A. Fessenden Award, in 2019 from IEEE, Canada, Award of
Merit from the Federation of Chinese Canadian Professionals (Ontario),
in 2019, James Evans Avant Garde Award, in 2018 from the IEEE Vehic-
ular Technology Society, Joseph LoCicero Award in 2015 and Education
Award, in 2017 from the IEEE Communications Society (ComSoc), and
Technical Recognition Award from Wireless Communications Technical
Committee (2019) and AHSN Technical Committee (2013). He has also
received the Excellent Graduate Supervision Award in 2006 from the
University of Waterloo and the Premier’s Research Excellence Award
(PREA), in 2003 from the Province of Ontario, Canada. He served as
the Technical Program Committee Chair/Co-Chair for IEEE Globe-
com’16, IEEE Infocom’14, IEEE VTC’10 Fall, IEEE Globecom’07, and
the Chair for the IEEE ComSoc Technical Committee on Wireless Com-
munications. He is the President of the IEEE ComSoc. He was the Vice
President for Technical & Educational Activities, Vice President for Publi-
cations, Member-at-Large on the Board of Governors, Chair of the Dis-
tinguished Lecturer Selection Committee, and Member of IEEE Fellow
Selection Committee of the ComSoc. He served as the Editor-in-Chief of
the IEEE IoT Journal, IEEE Network, and IET Communications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

784 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:15:39 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


