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Abstract—Mobile edge computing is a promising computing paradigm enabling mobile devices to offload computation-intensive tasks

to nearby edge servers. However, within small-cell networks, the user mobilities can result in uneven spatio-temporal loads, which have

not been well studied by considering adaptive load balancing, thus limiting the system performance. Motivated by the data analytics and

observations on a real-world user association dataset in a large-scale WiFi system, in this paper, we investigate the mobility-aware

online task offloading problem with adaptive load balancing to minimize the total computation costs. However, the problem is intractable

directly without prior knowledge of future user mobility behaviors and spatio-temporal computation loads of edge servers. To tackle this

challenge, we transform and decompose the original task offloading optimization problem into two sub-problems, i.e., task offloading

control (ToC) and server grouping (SeG). Then, we devise an online control scheme, namedMOTO (i.e., Mobility-aware Online Task

Offloading), which consists of two components, i.e., Long Short Term Memory based algorithm and Dueling Double DQN based

algorithm, to efficiently solve the ToC and SeG sub-problems, respectively. Extensive trace-driven experiments are carried out and the

results demonstrate the effectiveness ofMOTO in reducing computational costs of mobile devices and achieving load balancing when

compared to the state-of-the-art benchmarks.

Index Terms—Mobile edge computing, load balance, mobility-aware task offloading, reinforcement learning
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1 INTRODUCTION

THE proliferation of smart mobile devices (MDs) has
brought rich convenience to our lives. However, the

limited on-board energy and computing power of MDs have
impeded the performance improvement for computation-
intensive services, e.g., augmented/virtual reality and auton-
omous driving [2], [3], [4]. Mobile edge computing (MEC) is a
promising paradigm to alleviate the computing burdens of
MDs by deploying servers at the network edge [5], [6], [7].
With MEC, users can obtain high-quality computing services
with low latency. Recently, integrating MEC with small-cell
networks has drawn much attention considering the high-
throughput performance of small-cell networks. Bydeploying
edge servers at the small-cell based stations (SBSs), small-cell
MEC enables agile service provisioning sinceMDs can offload
their computation tasks to edge serverswith reduced commu-
nication distance and fast response [8].

Nevertheless, the design of efficient computation
offloading strategies in small-cell MEC system is a chal-
lenging task. First, MDs with diverse computing capa-
bilities and computing task requirements may have
different offloading demands. Second, mobile users are
usually unevenly distributed with differentiated service
request patterns, resulting in unbalanced computation
loads on edge servers. Moreover, the load conditions of
edge servers are time-varying since MDs are highly
dynamic with frequent access and logout. Therefore, it is
crucial to design an efficient mobility-aware task offload-
ing strategy with adaptive load balancing in small-cell
MEC systems.

In recent years, there have been many existing works
investigating mobile task offloading in small-cell networks
and MEC. For example, in [11], an adaptive cooperative and
energy-efficient task offloading algorithm is presented for

� Sijing Duan, Feng Lyu, Huali Lu, and Zhe Dong are with the School of
Electrical and Computer Engineering, Central South University, Chang-
sha, Hunan 410083, China. E-mail: {duansijing, fenglyu, huali_lu,
rudy_dong}@csu.edu.cn.

� Huaqing Wu is with the Department of Electrical and Software Engineer-
ing, University of Calgary, Calgary, AB T2N 1N4, Canada.
E-mail: huaqing.wu1@ucalgary.ca.

� Wenxiong Chen is with the Research Institute of Languages and Cultures
and the College of Information Science and Engineering, Hunan Normal
University, Changsha, Hunan 410081, China. E-mail: chenwx@hunnu.
edu.

� Xuemin Shen is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: sshen@uwaterloo.ca.

Manuscript received 24 June 2022; revised 9 October 2022; accepted 1 Novem-
ber 2022. Date of publication 8 November 2022; date of current version 5
December 2023.
This work was supported in part by the National K&D Program of China
under Grants 2022YFF0604504 and 2022YFC2009805, in part by the
National Natural Science Foundation of China under Grant 62002389, in part
by Young Elite Scientist Sponsorship Program by CAST under Grant
YESS20200238, in part by the Key Research and Development Program of
Hunan Province of China under Grant 2022GK2013, in part by the Natural
Science Foundation of Hunan Province of China under Grant 2021JJ20079, in
part by the Young Talents Plan of Hunan Province of China under Grant
2021RC3004, in part by 111 Project under Grant B18059, in part by Central
South University Innovation-Driven Research Programme under Grant
2023CXQD029, in part by Hunan Education Department under Grant
18B043, and in part by the Research Project on Teaching Reform of Ordinary
Colleges and Universities in Hunan Province under Grant HNJG-2020-0156.
(Corresponding author: Feng Lyu.)
Digital Object Identifier no. 10.1109/TMC.2022.3220720

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024 645

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 09:13:11 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3295-8822
https://orcid.org/0000-0003-3295-8822
https://orcid.org/0000-0003-3295-8822
https://orcid.org/0000-0003-3295-8822
https://orcid.org/0000-0003-3295-8822
https://orcid.org/0000-0002-2990-5415
https://orcid.org/0000-0002-2990-5415
https://orcid.org/0000-0002-2990-5415
https://orcid.org/0000-0002-2990-5415
https://orcid.org/0000-0002-2990-5415
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-8273-6913
https://orcid.org/0000-0002-8273-6913
https://orcid.org/0000-0002-8273-6913
https://orcid.org/0000-0002-8273-6913
https://orcid.org/0000-0002-8273-6913
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
mailto:duansijing@csu.edu.cn
mailto:fenglyu@csu.edu.cn
mailto:huali_lu@csu.edu.cn
mailto:rudy_dong@csu.edu.cn
mailto:huaqing.wu1@ucalgary.ca
mailto:chenwx@hunnu.edu
mailto:chenwx@hunnu.edu
mailto:sshen@uwaterloo.ca


multiple small-cell MEC nodes. In [12], the authors design a
data-driven task offloading in MEC-empowered vehicular
networks. In [14], a distributed computation offloading
strategy is investigated in small-cell networks integrated
with MEC. In [15], an offloading strategy for NOMA-
enabled hierarchical small-cell MEC is proposed. To mini-
mize the overall energy consumption while ensuring the
latency requirements, the authors of [16] focus on the joint
design of computation offloading and interference coordi-
nation in small cell networks. Furthermore, the joint optimi-
zation of task offloading and resource allocation strategies
are investigated in MEC systems, aiming to achieve the
trade-off between energy efficiency and service delay [10],
[27], [28], [29], [30]. However, the user mobility issue and
load balancing are not considered in those offloading-
related researches. On the other hand, there have been some
works focusing on load balancing problems. For example,
an optimization problem considering load balancing and
task offloading is studied in MEC networks [18]. In [19],
[20], load balancing solutions are proposed in vehicular
MEC systems and IoT edge systems, respectively. In [21],
[22], [23], load balancing issues are considered in small-cell
networks. Despite the extensive works, the uneven spatio-
temporal load issue and adaptive load balancing in small-
cell MEC have not been well studied, calling for further
investigations. We summarize the difference between this
paper and the existing works in Table 1. The main differen-
ces are summarized as follows: (1) most existing works
focus on either task offloading or load balancing, while
investigation of the integration of both issues is rare; (2) the
user mobility characteristics in small-cell MEC have not
been well considered; and (3) most existing works mainly
focus on theoretical modeling from a mathematical perspec-
tive, while paying little attention to the data-driven
approach for DL model design.

To bridge this gap, in this paper, we study the mobility-
aware online task offloading with adaptive load balancing
in small-cell MEC. Specifically, we first justify the research
motivations by conducting a comprehensive data analytics

on a real-world dataset in a large-scale WiFi system (i.e., a
typical example of small-cell MEC system). Based on the
analysis on 29,284,966 association records of 21,725 users,
we have two major observations. First, the mobility behav-
iors of most users are highly dynamic with short association
durations. Second, the distributions of mobile user loads
present uneven and dynamic spatio-temporal characteris-
tics, which motivate us to conduct mobility-aware task off-
loading with achieving load balancing. To investigate the
problem, we then formulate a task offloading optimization
(TOO) problem, which is intractable directly since the
future user mobility behaviors and the spatio-temporal
computation loads of MEC servers are unavailable in
advance. To this end, we transform and decompose the
original problem into two sub-problems, i.e., Task offload-
ing Control (ToC) and Server Grouping (SeG) with load bal-
ancing. Afterwards, we propose an online control scheme,
named MOTO (i.e., Mobility-aware Online Task Offload-
ing), to solve the two sub-problems. Particularly, MOTO
consists of two components, i.e., Long short term memory
(LSTM)-based algorithm and Dueling Double DQN
(D3QN)-based algorithm, respectively solving the ToC and
SeG sub-problems. Finally, we implement our proposed
MOTO scheme and conduct extensive trace-driven experi-
ments, which demonstrate that the proposed scheme can
achieve the superior performance in terms of system
computational costs and load balancing.

Our main contributions are summarized as follows:

� We investigate the mobility-aware online task off-
loading in a practical small-cell MEC system, which
is of significant importance for mobile service provi-
sioning to keep pace with the dynamic network con-
ditions. To justify the research motivations, we
conduct a comprehensive data analytics on a real-
world dataset in a large-scale WiFi system with sev-
eral major observations.

� Inspired by the observations, we formulate a TOO
problem to investigate the mobility-aware task

TABLE 1
Comparison With Some Related Works

Reference Small cell MEC Mobility- aware Data-driven approach Task offloading Load balancing DL-based method

Thananjeyan et al. [9] No Yes No Yes No No
Hu et al. [10] No Yes No Yes No No
Jing et al. [11] Yes No No Yes No No
Dai et al. [12] No No Yes Yes No Yes
Qian et al. [13] No No Yes Yes No Yes
Yang et al. [14] Yes No No Yes No No
Yang et al. [15] Yes No No Yes No No
Huang et al. [16] Yes No No Yes No Yes
Yang et al. [17] No No No Yes No Yes
Li et al. [18] No No No Yes Yes No
Wu et al. [19] No No No Yes Yes Yes
Liu et al. [20] No No No No Yes Yes
Hasan et al. [21] Yes No No No Yes No
Hu et al. [22] Yes No No No Yes No
Mohammad et al. [23] Yes No No No Yes No
Tang et al. [24] No No No Yes No Yes
Zhang et al. [25] No No No Yes Yes No
Yang et al. [26] No No No No Yes Yes
This paper Yes Yes Yes Yes Yes Yes
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offloading control strategy. To solve the non-convex
and intractable TOO problem, we decompose it into
two sub-problems: 1) the task offloading control
(ToC) sub-problem which optimizes the task offload-
ing decisions to adapt to dynamic user mobility
behaviors, and 2) the server grouping (SeG) sub-
problem that groups MEC servers to address the
spatially and temporally uneven computation loads.

� We propose a task offloading control scheme called
MOTO to minimize the total computation costs. In
MOTO, we integrate two major techniques: LSTM-
based method for ToC sub-problem and D3QN-
based method for SeG sub-problem. The proposed
MOTO can effectively control online task offloading
and achieve adaptive load balancing.

The remainder of this paper is organized as follows.
We conduct a systematical data analysis and present our
observations and motivations in Section 2. Section 3 gives
the system model and problem formulation. We decompose
the problem and elaborate on our MOTO design in respe-
ctive Sections 4 and 5. In Section 6, we evaluate the perfor-
mance of proposed MOTO with trace-driven experiments.
Section 7 reviews the related work. Finally, we conclude the
paper and direct our future work in Section 8.

2 MOTIVATIONS

In this section, we justify the motivations of our study with
some data-driven observations. Specifically, we adopt a
public large-scale WiFi dataset1, which contains 4045 access
points (APs) and more than 21,725 active users. When
mobile users connect to APs, the system can record network
association information, including the connection time, dis-
connection time, and consumed traffic volume, etc. Fig. 1
visualizes the scope of the WiFi system, which covers class-
rooms, department buildings, libraries, dining halls, and
research institutes in a university.

2.1 User Mobility Issue

We first study the overall distributions of user associations.
Fig. 2a shows the cumulative distribution functions (CDFs)
of user association duration, where results from Apr. 26 to
May 16 and fromMay 17 to Jun. 6 are plotted.We can achieve
two major observations. First, two curves show a quite close
trend, indicating similar connection behaviors in these two
time periods. Second, more than 80% of the association dura-
tion are less than 600s, which means that users are not

inclined to keep a long connection with associated AP.
Fig. 2b shows the CDFs of the number of connected APs for
each user per day. We can observe that 40% of users connect
to less than 5 APs per day and about 20% of users associate
more than 20 APs, which indicates that users usually move fre-
quently among multiple geographic locations with a short duration
staying in each location.Likewise, the two curveswithin differ-
ent time periods are quite similar, which demonstrate that
the observed phenomenons exist with a long time span.

2.2 Dynamics of User Load

We select one department building to study the temporal
dynamic characteristics of mobile users. Fig. 3 shows the total
number of users, aswell as the actual increments/decrements
of users connecting/disconnecting the edge server in the
building from 11:00 a.m to 13:00 p.m., where the time slot
duration is minutely based. We can observe that the number
of users has symmetries and reaches themaximum value (i.e.,
1,000) around 12 p.m. It further indicates that the users move
frequently during certain time periods, e.g., lunchtime. The
highly dynamic temporal variation motivates us to make computa-
tion load predictions in advance for better task offloading decisions.

To better understand the spatio-temporal dynamics of
user load distribution, we further analyze the variations in
the number of users on different buildings at different time
slots. In particular, we count the number of users in all build-
ings at different time slots on one day, where the sampling
interval is 15 minutes. Fig. 4 shows the heatmap of user dis-
tribution, where the server ID is ranked in descending order
by the number of users at 8 a.m. In addition, users are mainly
active between 08:00 a.m and 20:00 p.m. We can observe that
most of the users gather in several hot buildings, while the
number of users in other buildings is small. Therefore, we need
to consider load balancing among servers for better service provi-
sioning and resource utilization.

We then examine the spatio-temporal dynamics of the
user load in different locations. Fig. 5 visualizes the number
of users at two different moments on one day, i.e., 11:00 a.m

Fig. 1. APs deployment map.
Fig. 2. Overall user association analysis.

Fig. 3. Dynamics of the number of users in one building.1. Online available. https://github.com/Intelligent-WiFi/DataSet
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and 23:00 p.m, where circles denote the number of users
and larger size implies more users. We can have the follow-
ing two major observations. First, the number of users is
temporally uneven. Particularly, the computation load at
11:00 a.m is much larger than that of 23:00 p.m2. It is reason-
able since users are more active in the daytime than night-
time. Second, the user loads are spatially variant. For
example, the user load of classrooms is heavier than that of
departments and research institutions.

Therefore, the highly dynamic mobility behaviors of
users and uneven load distributions motivate us to investi-
gate mobility-aware task offloading with load balancing, to
achieve optimal resource utilization.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model and then
formulate the mobility-aware task offloading problem.

3.1 System Model

We consider a typical small-cell MEC scenario, wheremobile
edge servers (MESs) communicate with each other via wire-
less network3. Fig. 6 shows an example of the scenario, where
MESs are located in each building. We partition the long-
term duration into T consecutive time slots4. In each time
slot, there are many MDs connecting to MESs for computa-
tion service requests through the connected wireless net-
work. Due to the mobility characteristics5, mobile users may
move among buildings and be served by MESs deployed in
the corresponding building. Denote by U ¼ fMD1;MD2;
. . .;MDi; . . .;MDNg the set of MDs, and by P ¼ fMES1;
MES2; . . .;MESj; . . .;MESMg the set of MESs, where N ¼ jUj

and M ¼ jPj. The key notations are summarized in Table 2.
Each MD can only be served by one MES in each time slot.
The uneven distribution of users and differences in service
requests result in uneven loads for MESs. For example, the
loads of MES A and MES B in crowded places are heavy,
while loads ofMESC andMESD are light.

3.1.1 Task Buffer Model

We consider that tasks arrive at MDi following a Bernoulli
process with a parameter �i, where the MD has at most one
task to be processed in each time slot. Without loss of gener-
ality, the computing tasks are atomic, which can be exe-
cuted locally or be offloaded to an MES. Each task can be
described by a tuple fr; lg, where r represents the average
data size required to be transmitted when the MD offloads
the task to an MES, and l indicates the average CPU cycles
required to finish the task computation.

For each task, there are two processing options, i.e., local
computing or edge computing via offloading. Generally,

Fig. 4. Heatmap of user distribution.

Fig. 5. Spatio-temporal dynamics of computation load.

Fig. 6. System architecture of small-cell MEC.

TABLE 2
Key Notations

Notation Definition

U;P the set of MDs and MESs
M;N; i; j the number and indexes of MDs and MESs
r; l the average data size of task, the average CPU

cycles required to finish the task computation
fi; fj the CPU frequency ofMDi andMESj
xj the offloading probability ofMESj
mi;mj the task processing rate ofMDi andMESj
mg the sum of computing power of all MESs in group g
pi the transmission power ofMDi

DL
i the expected time for local computing ofMDi’s task

DO
i the expected time forMDi’s task executed at edge

EL
i the computational energy cost ofMDi

EO
i The energy cost to support the transmission ofMDi

CL
i the weighted local computing cost ofMDi’s task

CO
i the weighted expected cost for edge computing of

MDi’s task
Ci the weighted computational costs ofMDi’s task
Vj the set of MDs served byMESj
r the average data rate of wireless links between MD

and MES
a the weight coefficient for delay
sa;b the indicator of whetherMESa andMESb belong to

the same group
G the number of MES groups

2. We assume that the computation loads are proportional to the
number of users.

3. The considered problem and the proposed scheme are readily
applicable to general WiFi-based and 5G-based small-cell networks.

4. The system is managed and scheduled every time slot, the dura-
tion of which can be set flexibly in accordance with the system
requirement.

5. Since we do not restrict the users’ mobility characteristics in the
model design, the proposed scheme can also be applied to scenarios
with high-mobility users.
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MDs will offload as many tasks as possible to the MESs to
minimize their computational costs while satisfying the com-
puting capability constraints of MESs. But too many tasks
flooding into theMES bufferwill reduce the quality of service.
Therefore, eachMESj will set a task offloading probability xj
to limit MD task offloading. In each time slot, MES broadcasts
the edge computing delay and offloading probability x to all
MDs. The goal is tominimize the sum cost of all MDs bymak-
ing task offloading control decisions at eachMES. Specifically,
the MESs firstly calculates the offloading probability X ¼
fx1; x2; . . .; xj; . . .; xMg for all MESs, and all MDs associated
withMESj offload their taskswith a probability of xj 2 ½0; 1�.

3.1.2 Local Computing Model

Denote the CPU frequency of MDi by fi, the local task proc-
essing rate mi can be represented by mi ¼ fi

l . Then, the
expected time spent for local computing can be calculated as

DL
i ¼

1

mi � 1� xj

� �
�i

: (1)

The computational energy cost to support local comput-
ing can be calculated by

EL
i ¼ kfi

2l; (2)

where k represents the energy consumption coefficient,
which mainly depends on the chip architecture.

Combining Eqs. (1) and (2), the weighted expectation
cost for local computing can be obtained by

CL
i ¼ aDL

i þ ð1� aÞEL
i ; (3)

where a 2 ½0; 1� is the weight coefficient for delay, and 1� a

is for the energy cost. If the MD cares more about the delay
performance, a larger a can be set.

3.1.3 Edge Computing Model

Denote by Vj the set of MDs that are currently served by
MESj. The cost for task execution on the MES consists of
two parts: 1) the transmission delay and energy cost to off-
load the task; and 2) the expected computation delay to exe-
cute the task at edge.

Let fj be the CPU frequency of MESj, and then the task
process rate ofMESj can be calculated as mj ¼

fj
l . Denote by

r the average data rate of wireless links between MDs and
MESs. Then, the expected time spent for the task executed
at edge can be calculated as

DO
i ¼

r

r
þ 1

mj � xj

Pvj
i¼1 �i

; (4)

where vj ¼ jVjj represents the number of MDs in the set Vj,
and xj should satisfy mj � xj

Pvj
i¼1 �i � 0 due to the comput-

ing capability constraint of MESj. The energy cost to sup-
port the MD transmission can be calculated by

EO
i ¼ pi

r

r
; (5)

where pi is the transmission power ofMDi.
Combining Eqs. (4) and (5), the weighted expected cost

for edge computing can be achieved by

CO
i ¼ aDO

i þ ð1� aÞEO
i : (6)

3.2 Problem Formulation

At the beginning of each time slot, task offloading control
decisions are made to minimize the computational costs of
all MDs in the time slot based on the offloading decision X.
We first define the weighted computational cost of MDi’s
tasks with Eqs. (3) and (6):

Ci ¼ ð1� xjÞCL
i þ xjC

O
i : (7)

The sum of computational costs of all MDs in the system
can be calculated as

Ctotal ¼
XN
i¼1

Ci: (8)

Therefore, the task offloading optimization (TOO) prob-
lem can be formulated as P1:

P1 (Original TOO Problem):

min
fXg

Ctotal

s:t: C1 : 0 � xj � minð1; mjPvj
i¼1 �i
Þ; 8j 2 P: (9)

Directly tackling the above P1 problem is difficult since
the dynamic user mobility behaviors result in spatially and
temporally uneven computation load distribution. Further-
more, the status of task arrival rate in the time slot is
unavailable in advance.

4 PROBLEM TRANSFORMATION AND

DECOMPOSITION

In this section, we first introduce an MES grouping
approach and transform P1 into a group-based TOO prob-
lem to facilitate load balancing. Then, to solve the non-con-
vex and intractable problem, we further decompose the
problem into two sub-problems: 1) the task offloading con-
trol (ToC) sub-problem which optimizes the task offloading
decisions to adapt to user mobility behaviors; and 2) the
server grouping (SeG) sub-problem that addresses the spa-
tially and temporally uneven computation loads to achieve
load balancing.

4.1 Problem Transformation

The objective of P1 is to find the optimal offloading control
decision for eachMES to serve its associatedMDs. However,
considering the uneven load of different MESs in the real-
world scenario, it is inefficient that each MES only serves its
associated MDs. For example, some overloaded MESs are
not able to support high-quality service provisioning while
some light-loadedMESs’s resources are underutilized.

To solve this problem, a potential approach is to transfer
parts of tasks from heavy-loaded MESs to light-loaded
MESs. For each heavy-loaded MES, we need to determine
the target MES for task transfer. Although we can find the
target MES via exhaustive searching, the searching delay is
unacceptable. In this work, we leverage a grouping-based
approach, where several MESs are clustered into one group
and the tasks can only be transferred within the group.
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Denote by G ¼ fsa;bg the grouping decision, where
MESa;MESb 2 P and sa;b 2 f0; 1g indicates whether MESa;
MESb belong to the same group, i.e.,

sa;b ¼
1 If MESa and MESb are in the same group;

0 Otherwise:

�
(10)

Denote by g an MES group, and G the set of groups. A
group g includes MESs and MDs associated with those
MESs. All MESs in g are viewed as a whole, and the proba-
bility of offloading tasks to MESs in g is xg. Let yg and vg
denote the number of MESs and MDs in g, respectively. The
sum of computing rate of all MESs in g can be calculated as

mg ¼
Xyg
j¼1

mj: (11)

After merging servers into a group, the tasks of users
belonging to g may be executed on any MES in this group.
Fig. 7 shows the task offloading process after grouping. In
particular, when MDi has a task to be processed, it first
makes an offloading decision based on xg. If MDi chooses
local processing, the task will be placed in the local task
buffer. Otherwise, the task will be uploaded to MESa
which is directly connected to MDi, and then MESb will be
determined to perform the task. For simplicity of descrip-
tion, we consider that all MESs in the same group have the
same computing rate (ma ¼ mb)

6. It means that the proba-
bility of tasks being executed on any MES is equal, and the
amount of tasks handled by each server is also equal. In
this case, the probability that a task needs to be transferred
to another server in the group for execution is

yg�1
yg

. Then,
the edge computing delay for MDi belonging to g can be
recalculated as

DO
i ¼

r

r
þ yg � 1

yg

r

rtrans
þ 1

mg � xg

Pvg
i¼1 �i

: (12)

where rtrans represents the average transmission data rate
between MESs.

With MES grouping, the sum computational costs of all
MDs can be calculated as

CT
total ¼

XjGj
g¼1

Cg
total; (13)

where jGj is the number of MES groups based on grouping
decision G, and Cg

Total represents the sum computational
costs of all users in g, i.e.,

Cg
total ¼

Xvg
i¼1

Ci: (14)

With group-based adaptive load balancing, the original
problem P1 can be transformed into

P2 (Transformed Problem):

min
fG;Xg

CT
total

s:t: C1 : 0 � xg � minð1; mgPvg
i¼1 �i
Þ; 8g 2 G: (15)

The transformed problem P2 includes ToC and SeG sub-
problems, which optimize the task offloading decision X
and server grouping decision with load balancingG, respec-
tively. Therefore, by solving P2, we can achieve the optimal
task offloading control decision X� and the optimal server
grouping decision G�, where the number of users and com-
puting resources of each group are matched optimally.

4.2 Problem Decomposition

Since G� is discrete and X� is continuous, P2 is a typical
mixed integer nonlinear programming (MINLP) problem
[31]. Generally, the spatial branch and bound (SBB) method
can be adopted to solve MINLP problems [32]. However,
due to high complexity, this method is not suitable for our
problem which requires real-time decisions to adapt to
dynamic environments.

In this work, we use the Tammer method to decompose
P2 into two sub-problems to reduce the complexity [33].
Particularly, we first rewrite the transformed problem P2 as:fP2 (Equivalent Problem):

min
fGg

min
fXg

CT
total

� �
:

s:t: C1: (16)

Since C1 only constrains the solution of X�, solving prob-
lem fP2 is equivalent to solving the following two sub-prob-
lems, i.e., the task offloading control (ToC) sub-problem
P2:1 and the server grouping (SeG) sub-problem P2:2.

P2:1 (ToC Sub-Problem):

C�total ¼ min
fXg

XjGj
g¼1

Cg
total

s:t: C1: (17)

P2:2 (SeG Sub-Problem):

min
fGg

C�total: (18)

5 DESIGN OF MOTO

In this section, we elaborate on the design of MOTO. Partic-
ularly, we first describe its architecture and present the
workflow. Then, we concentrate on the major technical com-
ponents ofMOTO.

Fig. 7. Illustration of offloading decision in a group.

6. If MESs have different computing rates, the system will assign
tasks to different MESs based on their computing capabilities.
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5.1 Overview

Fig. 8 shows the workflow and overall architecture of
MOTO, which consists of two components, i.e., LSTM-based
algorithm for ToC and D3QN-based algorithm for SeG. Since
the task arrival rates are unknown in advance,MOTO deter-
mines task offloading strategy in an online learning manner
based on dynamic network environment. Specifically, the
system initializes each MES as one group and solves P2:1 by
predicting the task arrival rates of all MDs, and get the opti-
mal offloading probability set X�. Afterwards, the system
determines whether the system is load balanced. If the sys-
tem is in a load-balanced state, we return the current deci-
sion to the environment. Otherwise, the MESs need to be
regrouped by solving P2:2.

The computation loads of MESs in different locations are
uneven in both time and spatial domains. To improve the
intelligence of server grouping strategy, we transform P2:2
into a typical Markov Decision Process (MDP) problem, and
design a D3QN-based reinforcement learning (RL) algo-
rithm to solve it. The D3QN algorithm takes the current
state Xt and samples from the experience pool as the inputs,
outputs a grouping action, and gets a reward. The online
learning process continues until the system can make satis-
fying offloading control decisions in accordance with the
dynamic environments. In the following subsections, we
will elaborate on the two algorithms.

5.2 LSTM-Based Algorithm for ToC

Since task offloading in different groups is independent,
solving P2:1 is equivalent to finding the optimal x�g for each
group. In this section, we first prove that ToC Sub-Problem
is convex. Then, we design an LSTM-based algorithm to
solve it. To obtain the optimal solution for P2:1, we derive
Lemma 1 in the following.

Lemma 1. Cg
total is a convex function in the definition domain

0 � xg � minð1; mgPvg
i¼1 �i
Þ.

Proof. Based on (7) and (14), we can rewrite Cg
total as

Cg
totalðxgÞ ¼

Xvg
i¼1
ð1� xgÞCL

i þ xgC
O
i

� �
: (19)

It is easy to see Cg
total is a higher-order function of x,

including higher-order terms, first-order terms and con-
stant terms. For convenience, we extract the higher-order
terms as

cðxgÞ ¼ ð1� xgÞa
Xvg
i¼1

1

mi � 1� xg

� �
�i

þ xga
Xvg
i¼1

1

mg � xg

Pvg
i¼1 �i

: (20)

The second derivative of cðxgÞ is calculated as

c00ðxgÞ ¼
Xvg
i¼1

 
2a�imi

ðmi � 1� xg

� �
�iÞ3
þ

2a�gmg

ðmg � xg�gÞ3

!
: (21)

Obviously, �i, mi, �g and mg are greater than 0. In addi-
tion, forMDi, the task arrival rate �i must be less than the
task processing ratemi, and xg is less than 1. So we can get

mi � 1� xg

� �
�i > 0: (22)

Generally, the task processing rate of an MES is
greater than its task arrival rate. Thus, mg � xg�g is
greater than 0 and c00 is a positive number, and Cg

totalðxgÞ
is a convex function. tu

With Lemma 1, P2:1 can be easily solved with given task
arrival information, which however is not available before-
hand when making the offloading decisions. Therefore, for
every group g, we devise an LSTM-based ToC algorithm to
predict the task arrival rates of all MDs in the group �t0þ1

g in
the upcoming time slot, as illustrated in Fig. 9.

LSTM-Based ToCAlgorithm. LSTM is a variant of Recur-
rent Neural Network (RNN) to effectively deal with time-
series data prediction [34], [35]. Denote by TN ¼ ftn1; � � � ;
tnt; tnlsg the time series of historical tasks, where ls is the
length of time series, and each element tnt is the number of
tasks arrival at time slot t. At each time slot t, the LSTM cell
can be calculated as

et ¼ sðWe½ht�1; tnt� þ beÞ;
it ¼ sðWi½ht�1; tnt� þ biÞ;
ot ¼ sðWo½ht�1; tnt� þ boÞ;
m̂t ¼ tanhðWm½ht � 1; tnt� þ bmÞ; (23)

where et, it, ot, and m̂t are forget gate, input gate, output
gate, and modulated input, sð�Þ is the Sigmoid function,
and tnt is the input. Then the memory cell and hidden state
are updated as

mt ¼ et 	mt�1 þ it 	 m̂t;

ht ¼ ot 	 tanhðmtÞ; (24)

where ht is the output of the LSTM cell at step t.
We adopt three LSTM layers in this paper, each LSTM

cell takes the vector representation, memory state, and hid-
den state at time slot t� 1 as input at time slot t

ht; ct ¼ LSTMðtnt�1; ht�1; ct�1Þ; (25)

where ct�1 and ht�1 are the memory state and the hidden
state, respectively, and the output ht denotes the task arrival
rates at the next time slot, i.e., �tþ1

g . Based on the predicted
task arrival information, we can get the optimal task off-
loading probability x�g for each group

Fig. 8. An overview of the proposedMOTO.
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x�g ¼ argmaxxgC
g
totalðxgÞ; (26)

which can be solved in polynomial time with the Newton
method [36].

Recall that the task offloading probability should satisfy
the computing constraint mj � xg

P
�i. For MESj with lim-

ited computation capability, the associatedMDswill decrease
xj to avoid MES overload. In this paper, we use jxa � xbj to
represent the load gap between MESa and MESb. Note that
for MESs in the same group, their computational loads are
balanced since they cooperate to perform computation via
task transfer. Considering the highly dynamic network envi-
ronment, absolute load balancing is difficult to achieve unless
all MESs are in the same group. Therefore, we consider that
load balancing can be achieved once the load gap (i.e.,
xmax � xmin) is less than the maximum value of d. The xmax

and xmin denote the maximum and minimum values of deci-
sionX, respectively.When the system service loads are unbal-
anced, theMESs need to be regrouped.

5.3 D3QN-Based Algorithm for SeG

To solve the SeG sub-problem, we first model it as an MDP
and then propose a D3QN-based algorithm to optimize
MES grouping.

Problem Mapping. A typical MDP model consists a tuple
with five parameters S;A; P ;R; gh i, representing the state
space, action space, state transition probability, reward
function, and future reward discount factor, respectively.
The value of g is between 0 and 1, where a larger g means
that more attention is paid to future rewards.

Based on the value of X obtained from solving the ToC
sub-problem, if the computational loads are unbalanced,
the MES grouping algorithm will be activated to regroup
MESs. In other words, the grouping module only works
when needed, which means that the time interval between
two grouping actions is dynamic. We define the time inter-
val between two consecutive actions as a logical step t, and
let t denote the time interval when MESs update task off-
loading probabilities. Therefore, one time step t might con-
tain multiple time slots t.

State Space: Let S denote the collection of all the states of
environment. In our model, we set the task offloading prob-
ability of all MESs as the state at t, i.e., st ¼ fxt

jg 2 S,
1 � j �M.

Action Space: Let A be the collection of all actions. The
goal of server grouping is to split and regroup all MESs into
new MES groups. Considering the tremendous dimension
of grouping decisions, we divide the procedure into multi-
ple actions. The derivation process is as follows.

Denote byM the number of MESs. If n1 MESs are selected
as a group from M MESs, the number of combinations is

M!
n1!ðM�n1Þ! . Then, n2 MESs are selected from the remaining

ðM � n1ÞMESs as a group with the number of combinations
being ðM�n1Þ!

n2!ðM�n1�n2Þ!
. The above process is repeated until there

is no remaining MES, i.e., the server grouping is finished. We
assume that all MESs are divided intoH groups, then the size
of grouping action space can be calculated by:

jAj ¼ M!

n1! M � n1ð Þ!
M � n1ð Þ!

n2! M � n1 � n2ð Þ!

� � � M � n1 � n2 � � � � � nH�1ð Þ!
nH ! M � n1 � n2 � � � � � nHð Þ!

¼ M!

n1!
 n2!
 � � � 
 nH !
(27)

According to Equation (27), the searching latency is posi-
tively correlated with the number of MESs in the group and
the largest possible size of the action space is M! (i.e., each
group contains only one MES). Such a large size action
space makes the parameter learning process of reinforce-
ment learning very difficult. To solve the above problem, in
this paper, each action only combines or splits two MESs
during server grouping and regrouping. Specifically, let
action space at t0 be the at0 ¼ fFlagt0 ;MES

t0
i ;MES

t0
j g 2 A,

where MES
t0
i ;MES

t0
j 2M and Flagt0 2 f0; 1g. Particularly,

Flagt0 ¼ 0 and Flagt0 ¼ 1 represent combining and splitting
MES

t0
i and MES

t0
j , respectively. In this way, the action

space is reduced from M! to 2MðM � 1Þ. Particularly, if the
action is to merge MESi and MESj which originally belong
to different groups, MESi and MESj will form a new group.
After grouping, when the computation tasks arrive, the
serving MES with the shortest task buffers (i.e., with the
minimum task loads) within a group will be chosen.

Reward: As mentioned before, a logic step t may include
multiple time slots. The reward of each time slot can be cal-
culated as

rt ¼
1

N

XN
i¼1
ðCL

i � CO
i Þ: (28)

Then the reward of step t can be given as

rt ¼
1

ht

X
rt; (29)

where ht represents the number of time slots in t, which
depends on the speed of environment change. The slower
the environment changes at t, the larger the ht .

Based on the MDP model, the grouping sub-problem P2:2
is transformed into an optimization problem that finds the
optimal grouping policy p� to maximize the reward of all
users.

Definition 1 (MES Grouping Policy). MES Grouping Pol-
icy p represents the mapping relationship between S and A,
and p� is the best mapping with the highest reward. With p�,
the model can directly obtain the best grouping action at� ¼
fFlagt�;MESt�

i ;MESt�
j g 2 A at time t based on the observed

state st ¼ fxt
jg 2 S.

D3QN-Based SeG Algorithm. A D3QN-based algorithm is
designed to find the optimal MES grouping policy, as
shown in Fig. 10. D3QN is a classical RL algorithm for
Markov Decision Process, which has been proven to achieve

Fig. 9. The architecture of LSTM-based ToC algorithm.
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good performance in large-scale discrete state space. D3QN
combines the characteristics of Double DQN [37] and Duel-
ing DQN [38]. It contains two neural networks with the
same structure, namely, the online network that interacts
with the environment and the target network that stores
parameters. The design of double networks avoids the over-
estimation problem in learning.

Algorithm 1. MOTO: Mobility-Aware Online Task Off-
loading Scheme With Adaptive Load Balancing

1: Initialization: t; t  0; xt
g  1; 8xt

g 2 X t; jgj  1; 8g 2 G; rt
 0; st  X t; at 2 A

2: while t! TZ do
3: for g 2 G do
4: nt

g  0; rt  0.
5: for i 2 g do
6: Calculate CL

i ; C
O
i .

7: if i decides to offload task based on xt
g then

8: nt
g  nt

g þ 1.

9: rt  rt þ ðCL
i � CiÞ.

10: end if
11: end for
12: Set fnt�len

g ; nt�lenþ1
g ; :::; nt�1

g g \ nt
g as the input of

LSTM.
13: Get n̂g

tþ1 as the output of LSTM.
14: xtþ1

g ¼ argmaxxgC
g
totalðxgÞ  n̂g

tþ1;

15: rt  rt þ rt.
16: end for
17: if X tþ1

max � X tþ1
min > d then

18: stþ1  X tþ1

19: Store ðst; at; rt; stþ1Þ to D3QN experience pool.
20: Set stþ1 as the state input of online network.
21: Select atþ1 2 A via �-greedy policy.
22: Regroup servers with action atþ1.
23: if ðt þ 1Þ%f ¼ 0 then
24: Update u based on D3QN experience pool.
25: u�  u.
26: end if
27: t ¼ t þ 1
28: end if
29: t ¼ tþ 1
30: end while

When the MESs are load unbalanced, Xt is sent as the
current state st to D3QN, which will make action at to
regroup the MESs. After regrouping, we can obtain the next
state value stþ1 and collect the reward value rt. Then, we
collect st, at , stþ1 and rt and store them in the experience
pool to train the network parameters.

The parameter training process is as follows. We first
enter the state st and the action at into the online network
to get the estimated action-value as

Qðst; at; h;a;bÞ ¼ V ðst; h;bÞ þBðst; at; h;vÞ; (30)

where V ðst; h;bÞ is the value function, and its output is a
scalar. Bðst; at; h;vÞ is an advantage function, which out-
puts a vector whose length is equal to the size of the action
space. h is the input layer and hidden layer parameters, and
v and b are the output layer parameters of the value func-
tion and advantage function, respectively. For simplicity of
description, we use u to represent all the parameters of the

online network, i.e.,

u ¼ h;v;bh i: (31)

Correspondingly, we use u� to represent the parameters
of the target network. We input stþ1 into the online network
to get the argmaxafst; a; ug with the largest action-value,
and then we can get the target action-value as

Qtarget ¼ rt þ gQ̂ stþ1; argmaxa st; a; uf g; u�
� �

: (32)

Equation (32) shows that D3QN uses different functions to
select and evaluate an action, which can avoid the over-esti-
mation problem in the original DQN. Based on (30) and (32),
we can get the loss function of online network parameter as

LðuÞ ¼ Qtarget �Qðst; at; uÞ
� �2

: (33)

After obtaining the loss function, we can update the
parameter u in the online network through the gradient back
propagation of the neural network. In addition, we need to
replace the parameter u� in the target network with the
parameter u in online network at regular intervals. This
method of asynchronous update of the two networks reduces
the correlation between target action-value and estimated
action-value, which is conducive to accelerate network con-
vergence. Combining the proposed solutions of the sub-prob-
lems, we summarize the details ofMOTO inAlgorithm 1.

AlgorithmComplexity Analysis.TheMOTO scheme includes
two major stages: 1) offline model training and 2) online deci-
sion. In the first stage, the system periodically takes a portion
of data from the experience pool and the system costs consist
of two components, i.e., the LSTM-based algorithm for task
offloading control (ToC) and the D3QN-based algorithm for
server grouping (SeG). For the ToC, the prediction step is 1
and each step is 1 min, which needs len iterations in total.
Denote the termination threshold of Newton’s method by f,
so the time cost for solving task offloading probability isOð1

f
Þ.

Thus, the time cost of ToC is Oðlenþ 1
f
Þ. For the SeG, let T be

the number of time steps in each episode and Z denote the
number of episodes, then the cost of the D3QN-based algo-
rithm isOðTZÞ. In the second stage, we assume the number of
users and MESs are n and m, respectively. The time costs for
ToC and SeG are within OðlogðnmÞÞ and OðmÞ, respectively.
Overall, the proposed model can be adaptive in an online
mannerwith low time complexity.

6 PERFORMANCE EVALUATION

In this section, we conduct extensive data-driven experi-
ments to evaluate the performance of MOTO. Specifically,

Fig. 10. The architecture of D3QN-based SeG algorithm.
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we first elaborate on the evaluation methodology with
experiment setup, benchmark strategies design, and metrics
definition. Then, we respectively compare the overall per-
formance, the performance of LSTM-based ToC algorithm,
and the performance of D3QN-based SeG algorithm, to eval-
uate the impact of different parameters.

6.1 Methodology

6.1.1 Experiment Setup

We implementMOTO in Python based on Tensorflow, which
is an open-source machine learning framework. The experi-
ments are carried out on a serverwith 4 CPUs each containing
16 Intel(R) Xeon(R) Platinum 8260 CPU @2.40GHz with 24
cores, and one graphics processing unit (NVIDIA Tian V
GPU) is used to accelerate the training process. For perfor-
mance evaluation, we adopt 42 days large-scale real world
data samples, i.e., fromApr. 26th, 2019 to Jun. 6th 2019. Table 3
shows an example of an association record, containing the
association ID (the unique identification of record), the associ-
ated AP ID and name (the unique identification of AP, identi-
fying the campus, building, and floor), the building name
where the AP is located, client MAC address (the unique
identification of mobile user), connection time, and discon-
nection time. In particular, we randomly select 35 days and
use the data samples as the training data set, and the remain-
ing 7 days data samples are the testing data set. The detailed
experimental parameters are shown in Table 4.

6.1.2 Benchmarks

To demonstrate the performance of our proposedMOTO, we
adopt and implement the following comparable benchmarks
strategies for LSTM-based ToC algorithm and D3QN-based
SeG algorithm, respectively.

(1) For LSTM-based ToC algorithm:

� No offloading (NO): in this strategy, all tasks are com-
puted locally.

� Random offloading (RO): users can randomly select
local or edge computing.

� Free offloading (FO): users choose local or edge com-
puting with lower total cost.

(2) For D3QN-based SeG algorithm:

� All group (AG): all MESs in the system are in the same
group.

� No group (NG): each MES independently provides
services for MDs.

� Max-Min Group (MG): this strategy firstly groups the
MESs with the heaviest load and the lightest load,
and then the grouping rule is repeated until no more
groups can be formed.

For the overall performance comparison, we choose the
combination of FO and three benchmarks for D3QN-based
algorithm, i.e., AG+FO, NG+FO, and MG+FO. The reason is
that FO can always outperform NO and RO, which will be
described in Section 6.3.

6.1.3 Performance Metrics

The following three metrics are defined to evaluate the off-
loading control performance with load balancing.

� Energy Cost (Energy): the sum of energy consumption
on local computing and transmission when offload-
ing tasks to the edge server.

� Delay Cost (Delay): the sum of delay on transmission
and computation.

� Total Cost: the weighted cost of energy cost and delay
cost.

6.2 Overall Performance Comparison

We first carry out the overall performance comparison
between MOTO and other benchmark strategies. Figs. 11a,
11b, and 11c show the CDFs of system energy, delay, and total
cost achieved by different strategies, respectively. We have
the following three major observations. First,MOTO can out-
perform other benchmarks significantly on all metrics. Partic-
ularly, the probabilities that the energy cost is lower than 2mj
are about 0.88, 0.45, 0.57, and 0.24 inMOTO,NG+FOMG+FO,
and AG+FO, respectively. This is because MOTO scheme
comprehensively considers task offloading control and server
grouping with adaptive load balancing, and both modules
are coupled to each other. Instead, other baselines are static in
load balancing and cannot adjust computing strategy dynam-
ically and adaptively according to the actual system status.
Second, we can observe that given the percentile of 80%, the
delay costs ofNG+FO,MG+FO and AG+FO reach about 5ms,
4.7ms and 4.7ms, respectively, while the MOTO scheme only

TABLE 3
Network Association Record Description

Field Value

Association ID 241974033
AP ID 1030
AP Name MH-D2CY-2F-13
Building Name MH-D2CY
Client MAC Address 00:00:xx:xx:EF:52
Connection Time 2019-05-08T18:30:31+08:00
Disconnection Time 2019-05-08T18:40:31+08:00
Number of APs: 4045 Number of Records: 29,284,966
Number of Users: 21,725 Time Span: Apr. 26th to Jun. 6th 2019

TABLE 4
Experimental Parameters

Parameters Value

Task size (r) 2
 103 Bits
CPU cycles required to process a task (l) 4
 106 Cycles
CPU frequency of MDs (fi) 2 GHz
CPU frequency of MESs (fj) 16
 3 GHz
Task arrive rate of MDs (�i) [0.05 - 0.15] Tasks/ms
Energy efficiency parameter (k) 1
 10�27

Transmission power of MDs (pi) 1 W
Weights of delay (a) 0.8
Maximum load gap (d) 0.1
Exploration rate (�) [0.1, 0.4]
Learning rate (lr) 1
 10�4

Reward discount factor (g) 0.7
D3QN experience pool capacity 1
 219

Batch size 1
 210

Optimizer Adam
Activation function Relu
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consumes 1.3ms, reducing the delay cost by 74%, 72.3%, and
72.3% compared to other three benchmarks. Third, since the
delay has a higher weight than the energy, the results of total
cost show similar trends with delay, and the MOTO scheme
can achieve the least cost in most cases. Finally, we also find
that AG+FO has lower energy cost than other baselines but
performs worse on delay metric. This is because the system
achieves the best load balancing with full edge resource utili-
zationwhen all servers belong to the same group. In this case,
more MDs prefer to offload tasks. However, searching for an
optimal MES for MD task offloading leads to high delay costs
under AG+FO scheme. The reason is that users choose local
or edge computing with the lower total cost and all MESs are
in the same group with large size. Different from the AG+FO
scheme, the searching space of our proposed MOTO scheme
is within a group and the server grouping strategy will avoid
forming large-size MES groups. Therefore, the searching
delay is very small (i.e., about 1/1000 of the average task exe-
cution time) and can be negligible.

Then we evaluate the temporal performance of MOTO
scheme, i.e., how it performs at different time periods. Fig. 12
shows the temporal box-plots of total cost, where four time
periods (i.e., 8:00-11:00, 11:00-14:00, 14:00-17:00, 17:00-20:00)
are considered. Under all temporal zones, MOTO can
achieve a significantly better performance in terms of total
cost. By observing the 25th, 50th, 75th, and 100th percentiles,
the total costs of the benchmark schemes have large devia-
tions. On the other hand, the performance of MOTO varies
less than other schemes with different percentiles and with
time evolving, demonstrating the stability and adaptiveness

of MOTO. It is also worth noting that the gaps between the
upper and lower quartile position of the four schemes are rel-
atively large during 8:00-11:00 and 11:00-14:00. This is
because the users’ mobility in these periods are much larger
than that in 14:00-17:00 and 17:00-20:00.

Moreover, when observing the performance of bench-
marks, the total cost box-plot gap of AG+FO scheme is par-
ticularly large. The reason is that AG+FO requires all users
in the same server group, leading to increasing computation
costs for all users when resources are insufficient. For NG
+FO and MG+FO schemes, due to the large number of
server groups, the user surge for some servers only affects a
part of users, and thus the impact on the overall user com-
putation cost is smaller compared to AG+FO.

6.3 Performance of LSTM-Based ToC Algorithm

In this subsection, we examine the performance of the
LSTM-based algorithm for ToC sub-problem, considering
that each MES independently provides services for MDs.
We first evaluate the total cost of different task offloading
schemes at different time periods, as shown in Fig. 13. We
can observe that the proposed LSTM-based ToC algorithm
can outperform other baselines with an obvious perfor-
mance gap. Moreover, NO scheme achieves the highest cost
and remains the same value at all time intervals since all
tasks are computed locally. RO scheme allows mobile devi-
ces to randomly offload tasks, but its cost is still high. The
reason is that the proportion of offloading tasks is low.

Then, we compare total cost with varying weight of delay
a, as shown in Fig. 14. Regardless of the a variation, the pro-
posed LSTM-based ToC algorithm can outperform other

Fig. 11. The overall system performance.

Fig. 12. The total cost versus time. Fig. 13. The offloading cost versus time.
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baselines with an obvious performance gap. Moreover,
the total costs decrease with the increasing value of a, as the
delay cost is much larger than the energy cost. Furthermore,
we plot the average total cost, delay cost, and energy cost by
adopting different values of a in Fig. 15. We can observe that
LSTM-based ToC algorithm can outperform all the bench-
marks under the total cost and delay cost. For the energy
cost, LSTM-based ToC algorithm achieves higher score than
FO scheme when a ¼ 0:9 and approximately the same score
when a ¼ 0:1. The reason is that FO scheme prefers to offload
as many tasks as possible to edge servers, which can reduce
the energy cost of MDs. However, FO scheme can lead to
overloading of edge servers and increase system delay,
which can be verified in Fig. 15b. In addition, the standard
deviation of NO scheme is almost 0 since all computation
tasks are computed locally, which leads to the same compu-
tation costs for all MDs.

6.4 Performance of D3QN-Based SeG Algorithm

We then verify the performance of D3QN-based SeG algo-
rithm. Note that for fairness, LSTM-based ToC algorithm is
adopted for all benchmarks. We first plot the CDFs of total
cost in Fig. 16a, and it can be seen that the proposed D3QN-
based SeG algorithm can achieve the superior performance.
Particularly, given the percentile of 80%, the costs of AG,
MG, and NG reach about 1.7, 3, and 4.1, respectively, while
the D3QN-based SeG algorithm only achieves a score of 0.9,
reducing the total cost by 47%, 70%, and 78%, respectively.
Fig. 16b shows the average performance of three metrics
with error bars, and we have the following observations. For
all metrics, D3QN-based SeG algorithm can significantly out-
perform other benchmarks. For instance, the average energy
costs for D3QN-based SeG algorithm, NG, MG and AG are

about 0.8, 4.2, 2.3, and 1 respectively. That means D3QN-
based SeG algorithm reduces the energy cost by about 80.9%,
65.2%, and 25% comparedwith other benchmarks.

We next investigate the buffer size (number of tasks in
MES buffer) of all MESs without (Red) and with (Blue) load
balancing. As shown in Fig. 17, with grouping-based load
balancing, the standard deviation of MES load becomes
smaller, which shows the effectiveness of the load balancing
algorithm. In addition, we can find that the average load of
all MESs has increased after load balancing. This is because
MESs can handle more tasks and their computing resources
are more effectively utilized after load balancing.

6.5 Impact of a and s on System Performance

In this subsection, we investigate the impact of weight of
delay a and the maximum load gap d on the performance of
MOTO.

In Fig. 18a, we plot the average results of total cost, delay
cost, and energy cost with varying weights of delay a, while
fixing the maximum load gap d to 0.2. With increasing value
of a, comparedwith the energy cost, the delay cost has amore
predominant impact on the total cost. In this case, MOTO
focuses more onminimizing the delay when making task off-
loading decisions. Therefore, the total cost and delay cost
decrease and energy cost increases with a larger a. Specifi-
cally, when a increases from 0.1 to 0.3, the total cost and delay
cost can decrease from 4.7 and 2.9 to 4.1 and 1.9, respectively.

Fig. 14. Impact of different a on the total cost.

Fig. 15. Average performance of LSTM-based ToC algorithm.

Fig. 16. Performance of D3QN-based SeG algorithm.

Fig. 17. Mean and standard deviation of MESs buffer size with and with-
out load balancing.
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As shown in Fig. 18b, we plot the convergence curves of
total cost with different values of d, while fixing the weight of
delay to 0.9. All curves are smoothed for clear results. We
have the following two major observations. First, MOTO can
achieve the best convergence performance when the d ¼ 0:2.
Second, although MOTO also converges fast when d ¼ 0:5,
the curve increases again in the last several training steps. The
reason is that a larger value of d indicates a higher load gap tol-
erance. In this case, although the algorithm can find the load
balancing point easily, it cannot guarantee that the system is
stable in the balanced state, thus resulting in some fluctuation.

7 RELATED WORK

We review the related works in two categories, i.e., mobile
task offloading and load balancing in MEC.

7.1 Mobile Task Offloading in MEC

To achieve efficient task computation in MEC, mobile task
offloading has attracted much research attention recently
[9], [11], [12], [14], [15], [16], [17], [24], [39], [40], [41]. For
example, Yang et al. [14] considered the interaction of the
interests between small cells and mobile devices. They pro-
posed a distributed computation offloading method in a
multi-server and multi-device system. To minimize the total
energy consumption of user equipment subject to minimum
overall throughput of the hierarchical small cell mobile-
edge network, the authors of [15] proposed an alternating
direction method of multipliers (ADMM)-based distributed
offloading algorithm. Huang et al. [16] focused on joint
optimization of computation offloading and interference
coordination for small-cell MEC. Thus, they proposed a dis-
tributed DRL scheme with the objective of minimizing the
overall energy consumption while ensuring the latency
requirements. Yang et al. [17] devised a multi-task learning
approach to solve the computation offloading problems in
a multi-access edge computing network. Tang et al. [24]
designed a model-free DRL-based distributed algorithm,
which can determine the offloading decision without know-
ing the task models and offloading decision of other devi-
ces. Zhou et al. [41] studied the task offloading strategies for
computing task selection to maximize effective rewards in
uncertain and stochastic 5G small cell networks. Some
recent works focused on joint task offloading and resource
allocation in MEC [10], [13], [18], [27], [28], [29], [30]. Specifi-
cally, Hu et al. [10] studied the computing offloading and
resource allocation problems in a MEC-enabled IoT network
that supports both mobility and energy harvesting. Jiang

et al. [27] proposed an online joint offloading and resource
allocation framework under the long-termMEC energy con-
straint to guarantee the end-user quality of experience. The
authors of [30] proposed a utility-based approach to maxi-
mize users’ quality of experience through jointly optimizing
service selection, computation resource allocation, and task
offloading decisions. Although these research works pro-
posed effective mobile task offloading methods in MEC, the
consideration of user mobility issues and load balancing is
still lacking in those MEC offloading strategies. Different
from the previous works, in this paper, we design a mobil-
ity-aware online task offloading control strategy in a more
practical scenario with the consideration of load balancing
in the small-cell MEC system.

7.2 Load Balancing in MEC

Load balancing in MEC refers to efficiently distributing
mobile computation tasks across a set of edge servers [18],
[19], [20], [21], [22], [23], [25], [26]. This technique can avoid
unevenly overloading and idle conditions among edge serv-
ers and achieve overall computation balance. For example,
Li et al. [18] studied an optimization problem to minimize
the weighted sum of the total delay and energy consump-
tion of all MDs in the MEC network, which considered
multi-dimensional optimization on offloading strategy mak-
ing, load balancing, computation resource allocation and
transmit power control. In [19], the authors proposed a dis-
tributed coalition-based algorithm and an incentive algo-
rithm based on DRL, solving the load balance problem in
the vehicle-to-vehicle computation offloading problem. To
fulfill the communication balancing requirements from IoT
networks and the computation balancing requirements
from edge servers, Liu et al. [20] proposed a dynamic clus-
tering solution using the DRL-based approach. The authors
of [21] proposed a mobility load balancing algorithm for
small cell networks by adapting network load status and
considering load estimation. Zhang et al. [25] studied paral-
lel offloading and load balancing with multiple cooperative
MEC servers and massive delay-sensitive execution work-
loads. The authors proposed a Lyapunov-based centralized
cost management algorithm to maximize the computation
efficiency by load balancing. Yang et al. [26] and Wu et al.
[42] focused on UAV-enabled MEC. To achieve load balanc-
ing and optimal UAV caching for UAVs, the authors devel-
oped a deep learning-based algorithm for task scheduling
and real-time decision-making. Despite the extensive work,
the uneven spatio-temporal load issue and adaptive load
balancing in small-cell MEC have not been well studied,
thus limiting the system’s performance. In this paper, we
design a joint task offloading control and load balancing
framework to achieve better service provisioning and
resource utilization in small-cell MEC.

8 CONCLUSION AND FUTURE WORK

In this paper, we have investigatedmobility-aware online task
offloading with adaptive load balancing in a small-cell MEC
system.As the formulatedTOO problem is intractable directly
without knowing the dynamics of mobile users and the com-
putation loadsdistribution on edge servers,we have proposed
MOTO to jointly optimize the task offloading and MES

Fig. 18. Average performance ofMOTO.
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grouping in an online manner. Specifically, we firstpredict the
task arrival rates and derive the offloading probabilities based
on the LSTM-based approach. Then, a D3QN-based MES
grouping approach is devised to achieve load balancing. With
the proposed MOTO scheme, the spatially and temporally
unevenuser demands can be effectivelymanaged andutilized
for resource-efficient task computation,which can further pro-
vide valuable insights on service provisioning in mobile net-
works. Besides, the problem formulation and optimization
process in this work can provide a theoretical basis for future
studies related to task offloading in small-cell MEC systems.
For future work, we will integrate digital twin techniques to
better characterize user dynamics and optimize the deep
learning model to further improve the user behavior predic-
tion to facilitate adaptive computing offloading.
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