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Abstract—In this article, we propose an integrated satellite–
terrestrial network (ISTN) architecture to support delay-sensitive
task offloading for remote Internet of Things (IoT), in which satel-
lite networks serve as a complement to terrestrial networks by
providing additional communication resources, backhaul capac-
ities, and seamless coverage. Under this architecture, we investi-
gate how to jointly make offloading link selection and bandwidth
allocation decisions for BSs and IoT users. Considering the dif-
ferentiated decision-making time granularities, we formulate a
two-timescale stochastic optimization problem to minimize the
overall task offloading delay. To accommodate the two-timescale
network dynamics and characterize state–action relations, we
establish a hierarchical Markov decision process (H-MDP) frame-
work with two separate agents tackling two-timescale network
management decisions, and two evolved MDP-based subproblems
are formulated accordingly. To efficiently solve the subprob-
lems, we further develop a hybrid proximal policy optimization
(H-PPO)-based algorithm. Specifically, a hybrid actor–critic
architecture is designed to deal with the mixed discrete and con-
tinuous actions. In addition, an action mask layer and an action
shaping function are designed to sample feasible task offloading
decisions from the time-variant action set. Extensive simulation
results have validated the superiority of the proposed ISTN archi-
tecture and the H-PPO-based algorithm, especially, in scenarios
with scarce spectrum resources and heavy traffic loads.
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I. INTRODUCTION

W ITH the advances in sensing technologies and artifi-
cial intelligence techniques, Internet of Things (IoT)

emerges as an internetworking paradigm to support a multi-
tude of innovative applications and services in remote areas,
such as intelligent agriculture, smart grid management, auto-
mated surface mining, environment monitoring, etc [1]. For
these vertical applications, a large portion of the obtained data
or tasks needs to be transmitted to data centers or cloud servers
for timely processing [2]. For instance, the lower delay in
offloading real-time images and device status data of remote
power electronics converters to cloud servers leads to more
accurate automated control in smart grid. In this context,
achieving low latency and seamless coverage is imperative
for delay-sensitive IoT applications to facilitate precise con-
trol and prompt reaction, which also poses technical challenges
especially, for a remote IoT system. On the one hand, improv-
ing the terrestrial backhaul capacity of existing base stations
(BSs) in remote areas can be economically costly due to com-
plex natural environment and long-range construction, thereby
resulting in degraded radio access network performance. On
the other hand, densely deployed small cells in urban areas
can achieve ubiquitous coverage and low-latency communica-
tions, but they may not be feasible to be deployed in remote
areas where the population density is low.

Alternatively, satellite networks can be a promising com-
plementary solution to enhance terrestrial networks due to the
intrinsic merits in high capacities and large footprints [3].
Recently, the rapid development of reusable launch systems
and satellite maintenance technology paves the way for large-
scale implementation of satellite networks. The proliferation
of low-Earth orbit (LEO) constellations driven by SpaceX and
OneWeb is currently reinventing network architectures for sup-
porting low latency (around 30 ms), high capacity (more than
10 Gb/s per satellite), and global services [4]. The recent scien-
tific literature has already demonstrated that satellite networks
are capable of substantially improving the backhaul capac-
ity for task offloading of remote BSs in case of terrestrial

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 12,2023 at 20:08:47 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1812-5501
https://orcid.org/0000-0002-8208-6295
https://orcid.org/0000-0001-7206-4706
https://orcid.org/0000-0002-0458-1282
https://orcid.org/0000-0002-3497-6437
https://orcid.org/0000-0002-4140-287X


10132 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 12, 15 JUNE 2023

backhaul link failure or congestion [5], [6]. Meanwhile, LEO
satellites can act as alternative radio access nodes to facilitate
task offloading for remote users with poor user-to-BS (UTB)
channel conditions or out of BS coverage [7], [8], [9]. To
this end, the integrated satellite–terrestrial networks (ISTNs)
will inevitably play a pivotal role in the upcoming 6G era to
bridge the digital divide across the globe and fulfill the surging
demands for heterogeneous and flexible communications.

While the respective benefits of satellite networks in reliev-
ing the workload of terrestrial backhaul links and improving
the performance of radio access networks have been proven
in ISTN, the investigation of combining the both benefits to
assist task offloading for remote IoT users is still missing.
In this article, we propose a novel ISTN architecture to sup-
port delay-sensitive task (e.g., content delivery, computation,
etc.) offloading for remote IoT users. In the proposed architec-
ture, an LEO constellation is considered to provide additional
resources and backhaul capacities for the terrestrial network
with overloaded communication demands. All users equipped
with dual radio transceivers are first scheduled to upload their
tasks to BSs over sub-6 GHz band or LEO satellites over Ka-
band [10]. Each BS then offloads the collected tasks to the
core network via wired terrestrial backhaul links and satellite
backhaul links over Ka-band, while each satellite offloads the
collected tasks to the core network via satellite backhaul links.
The task offloading decisions (including offloading link selec-
tion and bandwidth allocation) for user-to-satellite (UTS) and
BS-to-satellite (BTS) transmissions are executed in a larger
timescale compared with that for UTB transmissions.

In the ISTN architecture, how to design an efficient schedul-
ing policy to minimize the long-term offloading delay of all
tasks is a crucial but challenging issue. First, it is nontrivial
to rationally design a joint scheduling policy for UTB, UTS,
and BTS task transmissions with differentiated channel charac-
teristics and resource capabilities. Second, the offloading link
selection decisions for UTB and UTS are interdependent since
only one type of links can be associated with a user in a
network operation window. The scheduling decisions for BTS
transmissions determine the backhaul capacity of BSs, thus,
affecting the scheduling decisions for UTB transmissions. In
addition, all BTS and UTS links share the same set of spec-
trum resources. Therefore, the specific scheduling decisions
for UTB, UTS, and BTS task transmissions are correlated in
different timescales. Third, the variations of task arrivals and
channel conditions in the coming future are not easy to be
predicted, which causes uncertainty for real-time scheduling
decision making to maximize the long-term performance.

To address the above challenges, reinforcement learning
(RL) has been considered as an efficient and future-proof solu-
tion for sequential decision making with environment uncer-
tainty due to its ability of learning in dynamic and complex
systems [11], [12]. However, the traditional RL-based meth-
ods are generally suitable for obtaining a stationary solution to
make proper decisions to a stochastic optimization problem,
which cannot be applied directly to obtain the two-timescale
network management decisions with coupled constraints.
Therefore, we investigate how to develop a tailored RL-
based solution to adaptively make task offloading scheduling

decisions supporting the delay-sensitive tasks offloading for
remote IoT.

In this article, the main contributions are summarized as
follows.

1) We present a novel ISTN architecture to support delay-
sensitive task offloading for remote IoT users. We
formulate the problem of joint offloading link selection
and bandwidth allocation for UTB, UTS, and BTS task
transmissions as a two-timescale stochastic optimization
problem with the objective of minimizing the over-
all task offloading delay, subject to coupled spectrum
allocation constraints and backhaul capacity constraints.

2) To cope with dynamic task arrivals and channel condi-
tions, we propose a two-timescale hierarchical Markov
decision process (H-MDP) framework to capture the
state and action transitions, where two independent
agents for different timescales are introduced and a novel
reward design is proposed to achieve efficient learning.
The formulated optimization problem is transformed into
two MDP subproblems accordingly.

3) We propose a hybrid proximal policy optimization (H-
PPO)-based RL algorithm to solve the two subproblems.
A novel hybrid actor–critic (H-AC) architecture is incor-
porated in the algorithm to deal with the mixed discrete
and continuous action space. In addition, an action mask
layer and an action shaping function are designed for
agents to make proper action selections while interacting
with the environment.

The remainder of this article is organized as follows.
Related works are reviewed in Section II. The system
model and problem formulation are presented in Section III.
In Section IV, the two-timescale H-MDP framework with
problem transformation is established. The H-PPO-based algo-
rithm is introduced in Section V. Simulation results are
provided in Section VI, and the conclusion is drawn in
Section VII.

II. RELATED WORK

Recently, ISTN has drawn great attention in task offloading
due to its ability in providing global and sustainable commu-
nications. In [13], LEO satellites were employed to assist data
offloading for IoT and an online Lyapunov-based algorithm
was proposed to maximize the throughput. To relieve the load
in capacity-limited terrestrial networks, Niephaus et al. [14]
proposed a software-defined-network-based ISTN architecture,
which can improve the user’s quality-of-experience. By lever-
aging the LEO-backhauled small cell, Di et al. [15] introduced
an ISTN architecture to optimize the overall data rate and the
number of accessed users, which shows superior performance
compared with the nonintegrated networks. A pioneering work
developed a cognitive service architecture for the 6G core
network to meet the increasingly high requirement for quality
of service [16]. In [17], a space–air–ground MEC solution was
proposed to assist vehicles for task offloading in the scenario
with dense buildings but scarce communication infrastructure.
A collaborative communication scheme was proposed for sup-
porting vehicle task offloading in [18], where the deployment
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of nonterrestrial networks was studied based on the prediction
of vehicle distribution. In [19], satellites and BSs were inte-
grated with nonorthogonal multiple access and orthogonal
multiple access schemes to minimize the completion time
of IoT tasks. A satellite storage-oriented handover scheme
was presented in [20], which maps the satellite networks to
the virtual space for better delay and handover performance.
In [21], a traffic offloading scheme was proposed to intel-
ligently direct traffic in ISTN for differentiated latency and
throughput satisfaction. Different from the existing works, our
work aims at minimizing the long-term offloading delay of
all IoT tasks arriving dynamically in ISTN. In addition, we
take advantage of satellite networks for both backhaul capac-
ity improvement and connectivity enhancement to ameliorate
the system performance of ISTN.

To deal with a complex and dynamic environment, RL-
based algorithms have been widely applied to maximize the
long-term performance of the ISTN. In [2], a deep risk-
sensitive RL-based algorithm was proposed to make online
offloading decisions for IoT users. Zhou et al. [8] studied the
problem of data scheduling for IoT users in remote areas, in
which a deep RL (DRL)-based algorithm was proposed to
deal with the unknown channel conditions and solar infeed
process. Focusing on traffic offloading with dynamic network
traffic, Tang et al. [22] presented a DRL-based method with
an improved delay-sensitive replay memory algorithm to min-
imize the packet delay. Considering the Markovian rainfall
change and satellite movement, a multilayer Ka/Q-band ISTN
is introduced to obtain a high-transmission rate via a DRL-
based approach [9]. In [23], a DRL-based scheme with offline
training and online decision making is proposed to improve
the system throughput and avoid frequent handovers among
UTS links. Different from the existing works, the operations
of satellite networks and terrestrial networks in our work dif-
ferentiated in time granularity for a more practical realization
of an ISTN system, due to which the traditional RL-based
algorithms are infeasible to be directly applied for ISTN
management.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the network model of the
considered ISTN. Then, the detailed task offloading framework
including offloading link selection and bandwidth allocation,
channel model, and delay model is proposed. Finally, the
problem formulation is presented. The definitions of main
notations used in this article are summarized in Table I.

A. Network Model

Consider an ISTN as shown in Fig. 1, which is composed
of B BSs and an LEO satellite constellation with N satellites
to cooperatively support round-the-clock task offloading and
robust connection for U remote IoT users. All users are ran-
domly distributed over the entire target scenario and need to
offload collected tasks to the core network for further data pro-
cessing. The deployment of ultradense LEO satellites (referred
to as satellites throughout the rest of this article for brevity)
ensures seamless coverage for all BSs and users, which means

TABLE I
SUMMARY OF NOTATIONS

Fig. 1. System model of service offloading in the considered ISTN.

each BS or user is always covered by more than one satellite.
All users are equipped with dual radio transceivers and are
able to directly connect with LEO satellites using very small
aperture terminal or with BSs using antennas for terrestrial
communications.1 To improve the backhaul link capacity, all

1The proposed architecture is independent of user radio types. A single-
radio user can be directly extended to the ISTN by only connecting with BSs
or satellites. In this work, only static users are considered.
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BSs equipped with high-gain satellite antennas can connect to
the core network via terrestrial and satellite backhaul links.
As satellite backhaul transmissions usually experience longer
delay compared with terrestrial backhaul transmissions, terres-
trial backhaul links are considered to have higher priority for
task offloading of BSs. Therefore, each user can offload tasks
through one of the following two paths.

1) Tasks are first offloaded to BSs over sub-6 GHz band,
and then be transmitted to the core network through
capacity-limited terrestrial backhaul links. If the ter-
restrial backhaul links are overloaded, tasks can be
simultaneously uploaded to satellites over Ka-band and
finally transmitted to the core network via satellite back-
haul links. This path is called as user-BS offloading
(UBO) path.

2) Tasks are directly offloaded to satellites over Ka-band
and then forwarded to the core network through satellite
backhaul links. This path is referred to as user-satellite
offloading (USO) path. Several situations may lead to
the selection of USO path, e.g., users located out of
the coverage of BSs, better channel conditions of UTS
links than UTB links, more spectrum resources provided
to users by satellites than BSs, etc.

A centralized control architecture is considered to increase
the flexibility of network management with different time
granularities of control [24]. All BSs and satellites are con-
nected to a softwarized controller deployed near the edge of
the core network to monitor the dynamic network conditions
and conduct joint offloading link selection and bandwidth allo-
cation decisions. In this work, we focus on the uplink process
of task offloading. Considering the difference in operation
time between satellite-based links (i.e., BTS and UTS links)
and terrestrial links (i.e., UTB links), we adopt two differ-
ent timescales in the ISTN system. Specifically, time is first
divided into a sequence of time windows and the set of time
windows is denoted by V = {1, 2, . . . , V}. BTS and UTS
links are scheduled at the beginning of each time window.
Then, each time window is further partitioned into multiple
time slots with the equal and fixed length μ, indexed by
t ∈ T = {1, 2, . . . , T}. Within a time window, UTB links are
scheduled at the beginning of each slot, while the scheduling
of BTS and UTS links remains unchanged. We assume that
the whole system is time slotted and quasi-static, which means
the network topology remains constant within a slot due to the
short duration but changes over slots. The propagation time for
control signal is assumed negligible since it is much smaller
as compared with the duration of time slot and time window.

B. Offloading Link Selection and Bandwidth Allocation

Denote U = {1, 2, . . . , U} as the set of all users. The set of
BSs is denoted by B = {1, 2, . . . , B}. Let N = {1, 2, . . . , N}
be the set of satellites. For notational simplicity, the tth slot
in time window v ∈ V is denoted by (v, t).

1) For Terrestrial Links: At the beginning of each slot, the
softwarized controller makes the offloading link selection and
bandwidth allocation decisions for terrestrial links based on the
global network information. Since the UTB link transmission

is only feasible when user u ∈ U locates in the coverage of BS
b ∈ B, the set of available BSs that user u can be associated
with is denoted by Bu, where Bu = {b|b ∈ B, dUTB

u,b (v, t) ≤
dmax}, dUTB

u,b (v, t) is the distance between user u and BS b at
slot (v, t), and dmax is the coverage radius of each BS. As
typically adopted in 3GPP, we consider that each user can be
associated with a maximum of one BS at each slot (v, t). Let
cUTB

u (v, t) be the integer association indicator variable, where
cUTB

u (v, t) = b ∀b ∈ Bu indicates that user u is associated
with BS b at slot (v, t), and cUTB

u (v, t) = 0 means user u is
not associated to any BSs.

All UTB links share the same spectrum resources, and
frequency-division multiple access (FDMA) is adopted for
transmission. Denote the bandwidth allocation decisions of
UTB links by aUTB

u,b (v, t) ∈ [0, 1], which represents the band-
width fraction allocated to user u from BS b at slot (v, t).
Then, we have

∑

u∈UUTB
b (v,t)

aUTB
u,b (v, t) ≤ 1 ∀b, v, t (1)

where UUTB
b (v, t) = {u|u ∈ U , dUTB

u,b (v, t) ≤ dmax} is the set of
users in the coverage of BS b at slot (v, t).

2) For Satellite-Based Links: For BTS and UTS links, the
softwarized controller makes offloading link selection and
bandwidth allocation decisions following FDMA techniques at
the beginning of each time window. Due to the high movement
speed of satellites, BTS and UTS links are highly dynamic and
the communication window is sporadic. Denote the remain-
ing connection time of BTS and UTS links from BS b and
user u to satellite n ∈ N at the beginning of time window
v by TBTS

b,n (v) and TUTS
u,n (v), respectively. Associations of BTS

and UTS links are feasible only when the remaining connec-
tion time is no shorter than the time window length, i.e., Tμ.
In addition, BTS and UTS links under the minimum eleva-
tion angle will be hindered by natural barriers. Therefore,
the sets of satellites that users u and BS b can associate
with vary over different time windows, which are denoted
by NUTS

u (v) = {n|n ∈ N , TUTS
u,n (v) ≥ Tμ, kUTS

u,n (v) ≥ kmin}
and NBTS

b (v) = {n|n ∈ N , TBTS
b,n (v) ≥ Tμ, kBTS

b,n (v) ≥ kmin},
respectively. In the above sets, kBTS

b,n (v) and kUTS
u,n (v) are the

elevation angles from BS b and user u to satellite n at the
beginning of time window v. kmin is the minimum elevation
angle beyond which BTS and UTS links can be constructed.

Let cBTS
b (v) and cUTS

u (v) be the integer association indi-
cator variable of BTS and UTS links, respectively, where
cBTS

b (v) = n ∀n ∈ NBTS
b (v) or cUTS

u (v) = n ∀n ∈ NUTS
u (v)

indicates that BS b or user u is associated with satellite n
at time window v, and cBTS

b (v) = 0 or cUTS
u (v) = 0 denotes

that there are no satellites associated with BS b or user u. Let
aBTS

b,n (v) ∈ [0, 1] and aUTS
u,n (v) ∈ [0, 1] denote the bandwidth

fraction allocated to BS b and user u from satellite n at time
window v. All BTS and UTS links sharing the same spectrum
resource pool, i.e.,

∑

b∈BBTS
n (v)

aBTS
b,n (v)+

∑

u∈UUTS
n (v)

aUTS
u,n (v) ≤ 1 ∀n, v (2)
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where BBTS
n (v) = {b|b ∈ B, TBTS

b,n (v) ≥ Tμ, kBTS
b,n (v) ≥ kmin}

and UUTS
n (v) = {u|u ∈ U , TUTS

u,n (v) ≥ Tμ, kUTS
u,n (v) ≥ kmin} are

sets of BSs and users that can connect with satellite n at the
beginning of time window v.

C. Communication Model

1) For Terrestrial Links: Both large-scale and small-scale
channel fading are considered. Denote the channel gain
from user u to BS b at slot (v, t) by hUTB

u,b (v, t) =
(dUTB

u,b (v, t))−αg2
u,b(v, t)βu,b(v, t), where βu,b(v, t) indicates the

shadowing effect which follows log-normal distribution, α

denotes the path loss exponent, and gu,b(v, t) ∼ CN (0, 1)

represents the Rayleigh fading coefficient.2 Since two adja-
cent BSs in remote areas are generally separated with a long
distance, the co-channel interference can be controlled within
a low level and considered negligible. Then, based on the
Shannon’s theorem, the achievable rate from user u to BS
b at slot (v, t) is expressed as

RU
u,b(v, t) = aUTB

u,b (v, t)B0 log2

(
1+ hUTB

u,b (v, t)pUTB

aUTB
u,b (v, t)B0N0

)
(3)

where pUTB is the uplink transmission power from user to
BS, B0 is the overall available spectrum resources of each BS
over sub-6 GHz band, and N0 is the additive white Gaussian
noise power spectral density. Thus, the achievable rate of user
u using terrestrial uplink at slot (v, t) is given by

RUTB
u (v, t) =

{
RU

u,cUTB
u (v,t)

(v, t), if cUTB
u (v, t) �= 0

0, if cUTB
u (v, t) = 0.

(4)

Denote RBS
b (v, t) as the received data rate of BS b at slot (v, t),

which is expressed as

RBS
b (v, t) =

∑

u∈UUTB
b

RU
u,b(v, t) ∀b, v, t. (5)

2) For Satellite-Based Links: Denote satellite uplink path
loss of BTS links and UTS links at slot (v, t) by LBTS

b,n (v, t) and
LUTS

u,n (v, t). Different from terrestrial uplink channels, satellite
uplink path loss is mainly composed of free-space path loss,
polarization loss, and atmospheric loss. We denote the free-
space path loss of BTS links and UTS links at slot (v, t) as
FBTS

b,n (v, t) and FUTS
u,n (v, t), given by

FBTS
b,n (v, t) =

(
4πdBTS

b,n (v, t)

λSAT

)2

(6)

and

FUTS
u,n (v, t) =

(
4πdUTS

u,n (v, t)

λSAT

)2

(7)

where λSAT is the wavelength of the signal, dBTS
b,n (v, t) and

dUTS
u,n (v, t) are the geographic distance from satellite n to BS b

and user u at the beginning of slot (v, t). The polarization loss
exists when the polarization of the receiving antenna is incon-
sistent with that of the incident plane wave, which is usually
less than 3 dB [25]. The atmospheric loss is caused due to

2CN denotes the Complex Gaussian distribution.

absorption and scattering by gas molecules in the atmosphere
(e.g., rain attenuation), which can be predicted by measure-
ment and statistics [26]. Denote the channel fading of BTS
links and UTS links at slot (v, t) by hBTS

b,n (v, t) and hUTS
u,n (v, t).

Since the line-of-sight (LoS) signal is generally a dominant
component in satellite uplinks, Rician fading model is widely
adopted. The probability density function of the channel fading
is given by

f|h|2(x) =
K + 1

�
exp

{
−K − (K + 1)x

�

}
I0

(
2

√
K(K + 1)x

�

)

(8)

where h = hBTS
b,n (v, t) or hUTS

u,n (v, t), K is the ratio between the
power in the LOS path and in the non-LOS paths, � is the
mean of the received local power, and I0(·) is the modified
Bessel function of the first kind with zero order. Since the
antennas of BSs and users are generally of good directivity in
Ka-band, thereby ensuring the side-lobe antenna gain is low
and the co-channel interference is negligible. The achievable
rates of BS b and user u served by satellite n at slot (v, t) are
expressed as

RBTS
b,n (v, t) = log2

(
1+ pBTS|hBTS

b,n (v, t)|2GSGBLBTS
b,n (v, t)

aBTS
b,n (v)B1N0

)

· aBTS
b,n (v)B1 (9)

and

RUTS
u,n (v, t) = log2

(
1+ pUTS|hUTS

u,n (v, t)|2GSGULUTS
u,n (v, t)

aUTS
u,n (v)B1N0

)

· aUTS
u,n (v)B1 (10)

where GS, GB, and GU are the antenna gains of satellites, BSs,
and users, respectively, pBTS and pUTS are the transmission
power from BSs to satellites and from users to satellites, and
B1 is the overall amount of available spectrum resources of
each satellite over Ka-band. The data rates of BS b and user
u using satellite links are given by, respectively,

RBTS
b (v, t) =

{
RBTS

b,cBTS
b (v)

(v, t) ∀b, v, t, cBTS
b (v) �= 0

0 ∀b, v, t, cBTS
b (v) = 0

(11)

and

RUTS
u (v, t) =

{
RUTS

u,cUTS
u (v)

(v, t) ∀u, v, t, cUTS
u (v) �= 0

0 ∀u, v, t, cUTS
u (v) = 0.

(12)

D. Delay Model

Considering the offloading paths and task arrival patterns,
the delay model can be described as follows.

1) Queuing Delay: In an ISTN scenario, the task arrival
process of each user is assumed to follow Poisson process with
rate parameter λ. Then, the probability that the cumulative data
size zu(v, t) arrived at user u during slot (v, t) is

Pr(zu(v, t)) = (λμ)zu(v,t)/Z · e−λμ

(zu(v, t)/Z)!
(13)

where Z denotes the data size of each task [27], [28]. Since the
uplink rate of each user is limited, the arrival tasks may not
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be completely offloaded by each user within a single slot. The
remaining tasks are stored in the forwarding queue and wait
to be transmitted in the following slots. Let Iu(v, t) denote the
task backlog length of user u at the beginning of slot (v, t).
We denote Wu(v, t) and Mu(v, t) as the number of backlogged
queue tasks of user u at the end of slot (v, t) and the number
of offloaded tasks of user u during slot (v, t), respectively,
given by

Wu(v, t) = max

{
Iu(v, t)−

⌊
Ru(v, t)μ

Z

⌋
, 0

}
(14)

and

Mu(v, t) = min

{
Iu(v, t),

⌊
Ru(v, t)μ

Z

⌋}
(15)

where Ru(v, t) = RUTB
u (v, t) when UTB link is allocated to

user u, Ru(v, t) = RUTS
u (v, t) when UTS link is allocated to

user u, and 	·
 is the floor function. Then, the task backlog
length of user u at the beginning of slot (v, t+ 1) is given by

Iu(v, t + 1) = Wu(v, t)+ zu(v, t)

Z
. (16)

Given the number of backlogged queue tasks of user u
Wu(v, t), the total queuing delay of all tasks of user u in slot
(v, t) is given by Wu(v, t)μ.

2) Delay of USO Path: For USO path, both transmission
delay and propagation delay are considered. Given the data
rate of each user RUTS

u (v, t) and the offloaded task number
Mu(v, t) at slot (v, t), the uplink delay of all tasks offloaded
by user u is calculated as

oUSO
u (v, t) = Mu(v, t)

(
Z

RUTS
u (v, t)

+ opg

)

∀u, v, t, cUTS
u (v) �= 0 (17)

where opg is the round-trip propagation delay for each task.
Note that we neglect the feeder link transmission delay of
satellites since the capacity of feeder link is usually much
higher than that of user link in satellite communication.

3) Delay of UBO Path: The delay of UBO path consists
of two components: 1) UTB link delay and 2) backhaul
delay. Similarly as derived above, UTB link delay of all tasks
offloaded by user u at slot (v, t) is expressed as

oUTB
u (v, t) = Mu(v, t)

(
Z

RUTB
u (v, t)

)
∀u, v, t, cUTB

u (v, t) �= 0.

(18)

As BSs may access to satellites for additional backhaul links,
the equivalent backhaul capacity of BS b at slot (v, t) is given
by CE

b (v, t) = CBS + RBTS
b (v, t), where CBS is the capacity

of terrestrial backhaul link. We ignore the propagation delay
of terrestrial backhaul links and UTB links due to the short
transmission distance. Then, the equivalent backhaul delay of
all tasks offloaded by user u at slot (v, t) is expressed as

oBAU
u (v, t) = opgMu(v, t)

RBTS
cUTB

u (v,t)
(v, t)

CE
cUTB

u (v,t)
(v, t)

+Mu(v, t)
Z

CE
cUTB

u (v,t)
(v, t)

∀u, v, t, cUTB
u (v, t) �= 0 (19)

where the first term on the right-hand side of (19) is the
satellite backhaul delay, and the second term is the terrestrial
backhaul delay. When RBTS

cUTB
u (v,t)

(v, t) = 0, BS b = cUTB
u (v, t)

only uses terrestrial backhaul links, and the equivalent back-
haul propagation delay does not exist. Then, the uplink delay
of all offloaded tasks by user u at slot (v, t) through UBO path
is calculated as

oUBO
u (v, t) = oUTB

u (v, t)+ oBAU
u (v, t) ∀u, v, t, cUTB

u (v, t) �= 0.

(20)

Given the queuing delay, the delay of UBO path, and the
delay of USO path, the total offloading delay of all tasks of
each user u at slot (v, t) is calculated as

ou(v, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wu(v, t)μ+ oUSO
u (v, t) ∀u, v, t, cUTS

u (v) �= 0
cUTB

u (v, t) = 0
Wu(v, t)μ+ oUBO

u (v, t) ∀u, v, t, cUTS
u (v) = 0

cUTB
u (v, t) �= 0

Wu(v, t)μ, otherwise.

(21)

E. Problem Formulation

Due to spatial–temporal network environment variations, it
is imperative for network operators to minimize the time-
average task delay over VT slots while satisfying the back-
haul capacity and spectrum allocation constraints. Thus, the
problem is formulated as

P0 : min{
cUTB,cBTS,cUTS,

aUTB,aBTS,aUTS

} lim
V→∞

1

VT

V∑

v=1

T∑

t=1

U∑

u=1

ou(v, t) (22)

s.t. (1) and (2)

aUTB
u,b (v, t) ∈ [0, 1], cUTB

u (v, t) ∈ Bu ∪ {0} ∀u, b, v, t

(22a)

aBTS
b,n (v) ∈ [0, 1], cBTS

b (v) ∈ NBTS
b (v) ∪ {0} ∀b, n, v

(22b)

aUTS
u,n (v) ∈ [0, 1], cUTS

u (v) ∈ NUTS
u (v) ∪ {0} ∀u, n, v

(22c)

cUTB
u (v, t)cUTS

u (v) = 0 ∀u, v, t (22d)

RBS
b (v, t) ≤ CE

b (v, t) ∀b, v, t (22e)

where cUTB = {cUTB
u (v, t)}, cBTS = {cBTS

b (v)}, cUTS =
{cUTS

u (v)}, aUTB = {aUTB
u,b (v, t)}, aBTS = {aBTS

b,n (v)}, aUTS =
{aUTS

u,n (v)} ∀u ∈ U ∀b ∈ B ∀n ∈ N ∀v ∈ V ∀t ∈ T .
Constraints (1), (2), and (22a)–(22c) guarantee the feasibility
of offloading link selection and bandwidth allocation deci-
sions. Constraint (22d) implies that each user can only be
associated with at most one BS or satellite within each slot,
which shows the coupling relations between associations of
UTB and UTS links. Constraint (22e) guarantees that the
received data rate of each BS cannot exceed the capacity of
backhaul link.

IV. TWO-TIMESCALE H-MDP FRAMEWORK AND

PROBLEM TRANSFORMATION

The formulated problem P0 is a mixed-integer non-
linear optimization problem with dynamic task arrivals.
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Fig. 2. Illustration of the proposed two-timescale H-MDP structure.

In the considered ISTN, obtaining the optimal solution
via per-slot real-time optimization without future network
information is nontrivial. To accommodate network dynam-
ics for performance optimization over time, one potential
solution is to apply RL-based methods. However, traditional
RL-based methods are usually suitable for long-term stochastic
decision-making problems without constraints, which may not
work well for problems of multitimescales with coupled con-
straints. In this case, it is pivotal to develop a tailored solution
to the underlying problem. In this section, we first propose
a two-timescale H-MDP framework to capture the problem
dynamics. Then, a problem transformation is presented with
two agents operated in different timescales.

A. Two-Timescale H-MDP

As shown in Fig. 2, we extend the standard MDP setup [2]
to a two-timescale H-MDP structure, which includes a large-
timescale agent (LTA) and a short-timescale agent (STA)
jointly interacting with the environment. Specifically, at the
beginning of each time window v, LTA on large-timescale
state š(v) takes a large-timescale action ǎ(t) following its pol-
icy π̌ . At each slot (v, t), after observing a short-timescale state
observation s(v, t) including the processed large-timescale
action ǎ(t), STA takes a short-timescale action a(v, t) by sam-
pling from its policy π . The environment then immediately
returns a short-timescale reward r(v, t) to STA and yields tran-
sitions to a new short-timescale state s(v, t + 1) according to
the state transition probability Pr(s(v, t + 1)|a(v, t), s(v, t)).
After STA executes the short-timescale actions for T slots,
a large-timescale reward ř(v) including the cumulative T-
step short-timescale reward is received by LTA. Concurrently,
the large-timescale state proceeds to š(v + 1) according to
Pr(š(v + 1)|ǎ(v), š(v)). The objectives of LTA and STA are
to maximize the expected return Eπ̌ [

∑
v≥1 γ v−1ř(v)] and

Eπ [
∑

t≥1
∑

v≥1 γ ((v−1)T+t−1)r(v, t)], through which the best
policy will be learned. In the above expected return functions,
γ ∈ [0, 1] is the discount factor representing the preference
between the current reward and the future reward.

Remark 1: The proposed H-MDP is to efficiently solve the
problem with two-timescale actions, which is different from

previous works related to hierarchical RL [29], [30]. The dif-
ference is twofold: 1) actions in the H-MDP are designed
specifically for different timescales and the short-timescale
policy is a subpolicy conditioned on π̌ and 2) the tailored
rewards ř(v) and r(v, t) ensures the stable coordination of LTA
and STA, which will be illustrated later in Section IV-B.

B. Problem Transformation With H-MDP

In the ISTN, STA and LTA are implemented by the soft-
warized controller. The specific definitions of states, actions,
and rewards of H-MDP are illustrated as follows.

1) Action: Corresponding to (22), as offloading link selec-
tion and bandwidth allocation decisions are made at different
timescales, actions for LTA and STA are defined as

ǎ(v) =
[
cBTS

b (v), cUTS
u (v), aBTS

b,n (v), aUTS
u,n (v)

]
, and

a(v, t) = [cUTB
u (v, t), aUTB

u,b (v, t)
] ∀u, b, n. (23)

Note that the action space of STA and LTA both contain
discrete actions and continuous actions.

2) State: For STA, the decision making at slot (v, t)
depends on the equivalent backhaul capacity of each BS, the
task backlog length, the distance between user u and BS b, and
the channel state of UTB links. Meanwhile, constraint (22d)
implies that decision cUTB

u (v, t) is made under the guidance
of cUTS

u (v). Thus, the system state of STA at slot (v, t) is
denoted by

s(v, t) =
[
CE

b (v, t), Iu(v, t), dUTB
u,b (v, t), hUTB

u,b (v, t), cUTS
u (v)

]
.

(24)

For LTA, the decision making at time window v depends on
the remaining contact time of UTS and BTS links, distance
from satellite n to BS b and user u, the task backlog length, the
elevation angles of BTS links and UTS links, and the chan-
nel state of UTB, BTS, and UTS links. To better capture the
dynamic channel condition in the large timescale, the average
channel states of UTB, BTS, and UTS links during time win-
dow v − 1 are also observed by LTA. Thus, the system state
of LTA in time window v is denoted by

š(v) =
[
TUTS

u,n (v), TBTS
b,n (v), dBTS

b,n (v), dUTS
u,n (v), kUTS

u,n (v)

1

T

T∑

t=1

(
hUTB

u,b (v− 1, t), hBTS
b,n (v− 1, t), hUTS

u,n (v− 1, t)
)

Iu(v, t), hUTB
u,b (v, 1), hBTS

b,n (v, 1), hUTS
u,n (v, 1), kBTS

b,n (v)
]
.

(25)

3) Reward: For STA, to evaluate the performance of action
taken under the observed state and minimize the overall delay,
the reward function is defined as

r(v, t) = −
U∑

u=1

ou(v, t) ∀u, cUTS
u (v) = 0. (26)

For LTA, the reward for taking action ǎ(t) consists of two
parts. The first part is the overall delay of users who use USO
path for service offloading. The second part is the cumulative
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T-step STA reward during time window v, which is the eval-
uation of action ǎ(t) on STA. Therefore, the reward function
is defined as

ř(v) = −
T∑

t=1

U∑

u=1

ou(v, t) ∀u ∈ U . (27)

Based on the proposed H-MDP, problem P0 can be decom-
posed into two MDP-based subproblems for LTA and STA,
which are formulated as

P1 : max
π̌

E

[
lim

V→∞
1

VT

V∑

v=1

γ v−1ř(v)

]
(28)

s.t. (2), (22b), and (22c)

and

P2 : max
π

E

[
lim

V→∞
1

VT

V∑

v=1

T∑

t=1

γ ((v−1)T+t−1)r(v, t)

]
(29)

s.t. (1), (22a), (22d), and (22e).

It can be found that P0 can be approximated by P1 when policy
π is fixed and discount factor γ is close to one. Meanwhile,
solving P0 can be approximated by solving P2 when policy
π̌ is fixed and discount factor γ is close to one. In addi-
tion, the system state of STA at slot (v, t) includes the actions
chosen by LTA at time window (v). The reward function of
LTA contains the reward function of STA. Therefore, jointly
training STA and FTA to get the optimal objective value of
P1 is approximately equal to obtaining the optimal decision
variables for P0. An intuitive idea is to train LTA and STA sep-
arately by leveraging off-policy RL-based methods, which can
make full use of training data through the experience replay
technique. However, one fundamental issue occurs when off-
policy RL-based methods are applied. The Markov property
of H-MDP will not be held since the state transition of LTA
is not only dependent on actions of LTA but also impacted
by the subsequent actions of STA. If LTA is trained by sam-
pling trajectories from the experience replay buffer, the policy
of STA is changing, which results in a nonstationary training
process.

Obviously, when policy π̌ is fixed, the optimization of pol-
icy π leads to the improvement in the objective value of P2.
Meanwhile, the objective value of P1 can be improved by
optimizing π̌ when policy π is fixed. To this end, P0 can be
optimized monotonically under the premise of two conditions:
1) policy π is optimized monotonically with fixed policy π̌

and 2) policy π̌ is optimized monotonically with fixed policy
π . Therefore, to improve the stationarity of training process,
the on-policy RL algorithms are considered, which use the
data sampled by the current policy for updating. Moreover,
STA and LTA are trained based on the two above conditions.
Specifically, when STA or LTA samples trajectories for policy
updating, the policies of STA or LTA should keep unchanged.

V. H-PPO-BASED ALGORITHM

Although P0 can be tackled by optimizing policy π̌ and
policy π iteratively, it is still challenging to directly solve P1
and P2 by applying typical RL algorithms. On the one hand, it

is intractable to improve the objective value and guarantee the
constraints simultaneously with unknown state transition prob-
abilities. On the other hand, most RL algorithms are designed
for either continuous or discrete action space, while both prob-
lems have parameterized action space [31]. Specifically, it
requires LTA and STA first to select offloading link selec-
tion actions from a discrete list of actions and then choose
the continuous bandwidth allocation actions under constraints
(1) and (2). Some RL-based solutions directly convert the
discrete action into a continuous action space or transform
continuous actions into discrete ones, which will inevitably
lead to the curse of dimensionality or lose the advantages of
fine-grained control.

In this section, we first select the proper DRL algorithm as
a primary solution. Then, we propose an H-PPO-based algo-
rithm with an H-AC architecture to efficiently solve P1 and
P2 to get the optimal policy for P0.

A. Primary Algorithm Design

As stated in the previous section, the on-policy DRL algo-
rithms should be considered to improve the stationarity of
policy updating process. In the ISTN network, the state tran-
sition probability is unknown due to the stochastic network
environment. Furthermore, the setup of H-MDP indicates that
the sizes of action space and state space of STA and LTA are
infinite. Therefore, the model-free policy gradient (PG)-based
DRL algorithm, which makes action decisions according to
actions’ probabilities [32], is adopted to efficiently solve P1
and P2.

The core idea of the PG methods is to control the action pol-
icy of the agent through the parameter θ , which is expressed
as πθ . As the expected value can be estimated through the
statistical trajectory collected from the environment, action
policy can be updated by repeatedly estimating the gradi-
ent. However, one big downside of the PG method is the
low sample efficiency since the collected trajectory following
the current policy can be used only once for gradient update,
which means once the parameter θ is updated, new trajectories
sampled following the new updated policy are required to esti-
mate the gradient. Meanwhile, PG methods suffer from high
variance due to the long sample trajectory and large reward
value scale of different states, which leads to an unstable
learning process and invalid policy updates.

To ameliorate the above drawbacks, trust region policy
optimization (TRPO) [33] is proposed to improve performance
reliability and data efficiency of learning by leveraging impor-
tance sampling techniques and regularization of KL diver-
gence. Stem from TRPO, PPO [34] is then proposed as a
state-of-the-art on-policy RL method which is much simpler
for implementation. Basically, PPO enables multiple epochs of
minibatch updates by optimizing a surrogate objective function
given by

Lclip(θ) = Êt

[
min

(
ζt(θ)Ât, clip(ζt(θ), 1− ε, 1+ ε)Ât

)]
(30)

where ζt(θ) is the probability ratio calculated by

ζt(θ) = πθ (at|st)

πθold(at|st)
. (31)
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Fig. 3. Overview of the proposed H-AC architecture.

Here, ε is a hyperparameter that measures the degree of
deviation between the new policy and the old policy.

B. H-PPO-Based Algorithm Design

Generally, PPO is implemented based on the AC architec-
ture, where one actor learns a stochastic policy π and one
critic works as an estimator of the state-value function V(s).
However, directly applying the basic DNN model to make
action selections is not suitable for parameterized action space
and cannot meet constraints for P1 and P2. Inspired by [35],
we design an H-AC architecture with an action mask layer
and an action shaping function to generate suitable actions
for LTA and STA when interacting with the environment. The
proposed H-AC architecture is shown in Fig. 3.

1) H-AC Architecture Design: Considering that action
space of LTA and STA is similar with each other, we
take STA as an example to elucidate the implementation
of the proposed H-AC architecture. For notation simplicity,
(v, t) ∀v ∈ V, t ∈ T is replaced by (t), 1 ≤ t ≤ VT to
represent all slots in the H-AC architecture design. Different
from basic AC architecture, we devise two independent actor
networks with respective parameters θd and θc to make dis-
crete actions and continuous actions in parallel for STA in the
proposed H-AC architecture. The short-timescale policy π is
decomposed into discrete policy πd [choosing discrete action
ad(t)] and continuous policy πc [choosing continuous action
ac(t)], where π(a(t)|s(t)) = πd(ad(t)|s(t))πc(ac(t)|s(t)). For
discrete actor network, the observed state s(t) is mapped to
U heads through shared hidden layers. Each head produces
(N + 1) digits which is then passed to the softmax func-
tion to generate an (N + 1)-dimension vector πd

u(s(t)) =
[πd

u(0|s(t)), . . . ,πd
u(N|s(t))]. Parameters of πd

u(s(t)) are the
probability value of possible discrete actions that can be
selected for user u. The discrete action for user u to take at slot
(t) is sampled from the πd

u(s(t)) distribution. To this end, the
probability value of taking discrete action ad(t) for all users is
πd(ad(t)|s(t)) =∏U

u=1 πd
u(c

UTB
u (t)|s(t)). For continuous actor

network, the stochastic policy πc is generated by outputting
the means and variances of a total number of U Gaussian
distributions for all continuous actions.

Similar to the typical PPO method, a single-critic network
with parameter φ is adopted in the proposed H-AC archi-
tecture. To stabilize and smooth the learning process with
multidimension action space, generalized advantage estima-
tor for calculating advantage function Â(t) is implied in (30),
which is given as

Â(t) = δ(t)+ (γ η)δ(t + 1)+ · · · + (γ η)VT−t+1δ(VT − 1).

(32)

Here, δ(t) = r(t) + γ Vφ(s(t + 1)) − Vφ(s(t)), η is a dis-
count hyperparameter. Vφ(s(t)) is the state-value function
approximated by the critic network.

For the jth iteration of training, the continuous policy πc

and discrete policy πd are updated separately by maximizing
their respective surrogate objective functions

θc
j+1 = arg max

θc

1

|D|VT

∑

σ∈D

VT∑

t=1

min
(
ζt
(
θc)Âθc

(t)clip
(
ζt
(
θc), 1− ε, 1+ ε

)
Âθc

(t)
)

(33)

and

θd
j+1 = arg max

θd

1

|D|VT

∑

σ∈D

VT∑

t=1

min
(
ζt

(
θd
)

Âθd
(t)clip

(
ζt

(
θd
)
, 1− ε, 1+ ε

)
Âθd

(t)
)

(34)

via gradient ascent methods, where D is the buffer memory.
The parameter φ of the critic network is updated by minimiz-
ing the loss function, i.e.,

φj+1 = arg min
φ

1

|D|VT

(
Vφ(s(t))− R̂(s(t))

)2
(35)

where R̂(s(t)) is the cumulative rewards starting from state s(t).
2) Action Mask Layer Design: Due to the distance and

communication window length constraints, the available dis-
crete action sets of STA and LTA vary at different states.
Added to that, (22d) needs to be guaranteed and requires the
valid discrete action set for STA at different states. However,
the output size of the discrete actor network is fixed, which is
incorrect for action selection. Therefore, we design an action
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mask layer between the output layer and the softmax layer for
each head in discrete actor network. Each action mask layer
helps to avoid sampling invalid actions by adding a large neg-
ative number (e.g., −1 × 1010) to the outputted logits of the
invalid actions [36].

3) Action Shaping Function Design: Although con-
straints (22a)–(22d) are satisfied by adopting the action mask
layer, the resource constraint (22e) is still left to be guaran-
teed. In this context, we design an action shaping function to
generate feasible actions for STA when interacting with the
environment. In the action shaping function, a U-dimension
binary coding vector (in which the uth parameter is equal to 0
when cUTB

u (v, t) = 0; otherwise, the uth parameter is equal to
1) and a shaping function are included. The core idea is that
the selected continuous action ac(v, t) is first passed through
a U-dimension binary coding vector to get a feasible action.
Then, if (22e) is not satisfied, the selected continuous action
processed by coding vector is shaped by the shaping function
until RBS

b (v, t) = CE
b (v, t) ∀b, v, t. Specifically, the achievable

rate, i.e., RU
u,b(v, t), from each user u to BS b at slot (v, t)

calculated with the selected continuous action is first divided
by RBS

b (v, t)/CE
b (v, t). Then, the continuous action for each user

can be derived by solving (3) using Newton’s method [37].
Note that the action shaping function is only applied when
interacting with the environment to get the reward.

Based on the design of the H-AC architecture, the action
mask layer, and the action shaping function, we propose
an H-PPO-based algorithm to efficiently solve P0. The
detailed procedure is demonstrated in Algorithm 1. First,
the actor networks and the critic networks of STA and
LTA are initialized with parameters θc, θd, φ, θ̌

c
, θ̌

d
,

and φ̌, respectively. Buffer Ď and D are initialized for
storing trajectories of LTA and STA, respectively (lines 1
and 2). Then, during each iteration, trajectories for LTA,
i.e., a sequence of transitions (š(v), ǎ(v), ř(v), š(v+ 1), ǎc

(v),
ǎd

(v)), and trajectories for STA, i.e., a sequence of transi-
tions (s(v, t), a(v, t), r(v, t), s(v, t + 1), ac(v, t), ad(v, t)), are
obtained through interactions between the softwarized con-
troller and the environment (lines 4–18). Based on the acquired
trajectories, the actor and critic networks of STA and LTA
are updated in parallel via gradient ascent (descent) methods
(lines 19–27). Note that to make timely decisions, STA and
LTA are first trained offline by Algorithm 1 until LTA can
obtain a good value of the episode reward (accumulation of
immediate rewards of each time window within one episode).
After the offline training, the softwarized controller then
directly utilizes the trained LTA and STA to make offloading
link selection and bandwidth allocation decisions in the ISTN.

VI. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the performance of the proposed H-PPO-based algorithm
and ISTN architecture for supporting task offloading.

A. Simulation Setup

Our simulations are conducted in a remote scenario where
a satellite constellation and four BSs cooperatively provide

Algorithm 1: H-PPO-Based Algorithm

1 Initialize the actor networks and critic networks for STA and

LTA with parameters θc, θd , φ, θ̌
c
, θ̌

d
, and φ̌;

2 Initialize buffer D← ∅, Ď← ∅;
3 foreach iteration do
4 Initialize environment;
5 for v ∈ {1, 2, . . . , V} do
6 Observe state š(v);
7 Select action ǎ(v) based on ǎc(v) ∼ π̌c(·|š(v)) and

ǎd(v) ∼ π̌d(·|š(v));
8 Get action ǎ(v) processed by action shaping function;
9 Execute action ǎ(v);

10 for t ∈ {1, 2, . . . , T} do
11 Observe state s(v, t);
12 Select action a(v, t) based on

ac(v, t) ∼ πc(·|s(v, t)) and ad(v, t) ∼ πd(·|s(v, t));
13 Get action a(v, t) processed by action shaping

function;
14 Execute action a(v, t);
15 Receive reward r(v, t) and observe new state

s(v, t + 1);
16 Store (s(v, t), a(v, t), r(v, t), s(v, t +

1), ac(v, t), ad(v, t)) into buffer D;

17 Receive reward ř(v) and observe new state š(v+ 1);
18 Store (š(v), ǎ(v), ř(v), š(v+ 1), ǎc(v), ǎd(v)) into buffer

Ď;

19 Read trajectories in buffer D, πc
old ← πc, πd

old ← πd;
20 Update the policy πc with eq. (33) via gradient ascent

methods;
21 Update the policy πd with eq. (34) via gradient ascent

methods;
22 Update the critic network parameter φ with eq. (35) via

gradient descent methods;
23 Read trajectories in buffer Ď, π̌c

old ← π̌c, π̌d
old ← π̌d;

24 Update the policy π̌c similarly with eq. (33) via gradient
ascent methods;

25 Update the policy π̌d similarly with eq. (34) via gradient
ascent methods;

26 Update the critic network parameter φ̌ similarly with eq.
(35) via gradient descent methods;

27 Reset buffer Ď← ∅, D← ∅

service offloading for 40 users. We use the satellite tool kit to
construct the whole topology system. All users are randomly
distributed in a square area of 4 km × 4 km. All BSs are evenly
distributed in the target area with a coverage radius of 1 km.
The latitude and longitude of the center of the target area are
set to be (32.5◦N, 118.6◦E). The satellite constellation consists
of 60×40 LEO satellites with an inclination of 96.5◦ orbiting
at the height of 550 km, which ensures the seamless coverage
of the target area with at least three satellites. The simulated
time horizon is from 2022-6-8 08:00:00 to 2022-6-8 08:10:00.
The minimum elevation angle is set to be 30◦ for guaranteeing
the transmission quality. The backhaul capacity of each BS is
20 Mb/s [15], and each task has the same size of 0.5 Mb. At
each slot, the task generation of each user follows a Poisson
process with λ = 8. For UTB links, the transmit power of each
user is set as 0.5 W, and pathloss exponent is set as 3.5 [28].
The bandwidth for sub-6 GHz band communication is set to
20 MHz. For UTS and BTS links, the transmit power of each
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(a) (b) (c)

Fig. 4. Convergence performance of the proposed algorithm. (a) Training process with different learning rates. (b) Training process with different clipping
ratios. (c) Training process of SAC and the proposed algorithm.

BS and user are set as 10 W and 3 W according to the terminal
of Starlink [38], respectively. Since the satellite constellation
is responsible for providing service globally, only a portion of
communication resources is allocated to the target area. We
set the available bandwidth for Ka-band communication as
10 MHz. The antenna gain of users, BSs, and satellites are
set as 30, 40, and 43 dBi [38]. Rician fading is considered for
UTS and BTS links with K = 7 whilst normalized Rayleigh
fading is adopted for UTB links [39]. The atmospheric loss
and the polarization loss are set as 0.5 and 1 dB [9].

For STA, we deploy a three-layer fully connect neural
network (FCNN) with [512, 512, 256] neurons for the dis-
crete actor network, a three-layer FCNN with [512, 256, 64]
neurons for the continuous actor network, and a three-layer
FCNN with [512, 256, 64] neurons for the critic network. For
LTA, we deploy a three-layer FCNN with [1024, 512, 256]
neurons for the discrete actor network, a three-layer FCNN
with [1024, 512, 64] neurons for the continuous actor network,
and a three-layer FCNN with [1024, 256, 64] neurons for the
critic network. Tanh function is adopted as the activation func-
tion for the FCNNs. Additionally, parameters of all networks
are trained by adopting Adam optimizer. Each episode con-
sists of 120 slots or 40 time windows. To demonstrate the
effectiveness of the proposed H-PPO-based algorithm, we use
the following benchmark algorithms for comparison.

1) SAC: In this algorithm, LTA and STA learn the offload-
ing link selection and bandwidth allocation policy based
on the SAC method [40] with the same action mask layer
and action shaping function.

2) Equal Bandwidth Allocation and Best Channel
Condition Association (EB): The second benchmark is
a general algorithm for access association and resource
allocation, which is based on neither RL nor an
optimization approach. Specifically, in this algorithm,
each user is first associated to the BS or satellite
with the best channel condition. Each BS is associated
to the satellite with the best channel condition.3 Then,
the available spectrum resources of BSs or satellites
are equally allocated to their associated users or BSs
and users.

3To avoid the situation that all BSs are associated with a single satellite,
each satellite can only be linked with less than a total of two BSs, which have
more tasks to be offloaded.

3) Random: In this algorithm, the offloading link selection
and bandwidth allocation decisions for UTS and BTS
links are first selected with the same probability. Based
on the above decisions, the offloading link selection and
bandwidth allocation decisions for UTB links are then
randomly selected in the feasible decision space.

B. Performance Evaluation

The performance evaluation of the proposed H-PPO-based
algorithm contains two stages. We first show the learning
procedure of the proposed algorithm. Then, the well-learned
models are employed and tested under different available
network resources to validate the superiority of our developed
algorithm.

1) Convergence Performance: The convergence
performance of the proposed H-PPO-based algorithm is
shown in Fig. 4. The average delay (i.e., the overall offload-
ing delay of all tasks divided by the amount of time slots)
with different learning rates is illustrated by Fig. 4(a), where
LR1 is the learning rate for LTA, and LR2 is the learning rate
for STA. To highlight the convergence trend, points of delay
are processed by a 20-point moving average. Additionally,
we plot the curve of average delay with LR1 = 0.0001 and
LR2 = 0.0005 (i.e., gray curve) to show the learning process.
We can observe that all curves decline with the increase of
the number of training episodes and gradually saturate at their
corresponding optimal values, which verifies the convergence
property of the proposed H-PPO-based algorithm. Moreover,
a large learning rate leads to a fast convergence speed of
delay. However, unstable convergence performance will be
resulted with too large learning rate. In addition, it can be
observed that setting a larger learning rate for STA than LTA
results in efficient convergence performance, which can be
taken as a reference for learning rate setup in the simulations
with different resources and environment conditions. The
average delay with different clip ratios is illustrated by
Fig. 4(b), where Clip1 is the clip ratio for LTA and Clip2
is the clip ratio for STA. Note that points of delay are also
processed by a 20-point moving average. It can be seen that
the average delay converges faster with a larger clip ratio
due to the more aggressive update of policy in each iteration.
However, the average delay with too large clip ratio is apt to
premature convergence and trap in local optimum. Therefore,
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Fig. 5. Impact of task arrival rate on delay performance.

we choose 0.3 as the clip ratios of STA and LTA in the
remaining simulations.

To further study the convergence and the effectiveness
of the proposed H-PPO-based algorithm, we compare the
convergence performance of the proposed H-PPO-based algo-
rithm with the SAC algorithm as shown in Fig. 4(c). Ten
independent random seeds are deployed for the experiments
to show the performance in a stochastic environment. The
mean average delay value processed by a 20-point moving
average is represented as solid curves, whilst the min–max
bounds of performance are indicated by light-colored regions.
It can be observed that the converged value achieved by our
proposed algorithm is 74.5% lower than that of the SAC algo-
rithm. Although the SAC algorithm can achieve optimal level
of performance after 2000 episodes with certain seeds, the
performance of the proposed algorithm shows smaller variance
and higher stability in the training process. The reason is that
the proposed algorithm updates the policy of STA and LTA
in an on-policy manner, which eliminates the bias incurred by
applying the off-policy RL methods.

2) Impact of Task Arrival Rate: Fig. 5 shows the
performance of different algorithms with respect to the task
arrival rate. As expected, the average delay increases with
larger task arrival rates since the unchanged amount of
resources is shared by more tasks. In addition, our proposed H-
PPO-based algorithm achieves the lowest average delay among
all algorithms. The superiority of our proposed algorithm is
more remarkable in heavy task scenarios. Specifically, the
average delay achieved by the proposed algorithm is 72.8%
lower than that by the best benchmark algorithm with λ = 12.

3) Impact of Spectrum Resources: The amount of spec-
trum resources is of the utmost importance in deciding the
performance of different algorithms in the ISTN. Fig. 6 shows
the performance of different algorithms with respect to avail-
able Ka-band spectrum resources. As shown in Fig. 6(a), our
proposed algorithm outperforms all benchmark algorithms on
average delay, especially, with inadequate spectrum resources.
For instance, the average delay of the proposed algorithm for
the case with B1 = 8 MHz is 78.9% lower than that of the best
benchmark algorithm. Meanwhile, Fig. 6(b) depicts the delay
ratio (i.e., the average delay achieved by LTA divided by the
average delay achieved by STA) versus the available Ka-band
spectrum resources. With the increase of Ka-band spectrum
resources, the ratio value of the proposed algorithm shows

(a)

(b)

Fig. 6. Performance versus the available Ka-band spectrum resources.
(a) Average delay performance. (b) Delay ratio performance.

an overall trend of decrease. This indicates that the proposed
algorithm allocates more spectrum resources to BSs to allevi-
ate the shortage of backhaul capacity, which is the reason for
the superior performance of the proposed algorithm shown in
Fig. 6(a).

Fig. 7(a) shows the average delay performance of different
algorithms with respect to available sub-6 GHz band spectrum
resources. The backhaul capacity of each BS is set as 60 Mb/s.
The results show that the obtained average delays by the
proposed algorithms, SAC algorithm, and EB algorithm first
decrease sharply with the increase of the available sub-6 GHz
band spectrum resources, and almost saturate at small values
after B0 = 14 MHz. The reason is that the spectrum resources
allocated to UTB links are reduced once constraint (22e)
is not satisfied, which sets a rate bound for UTB links. It
can also be seen that our proposed algorithm surpasses the
benchmarks over the entire horizontal axis. Specifically, when
B0 = 20 MHz, the 40.5%, 45%, and 90.9% improvements in
the average delay are achieved by the proposed algorithm com-
pared with benchmark algorithms, i.e., SAC, EB, and random,
respectively. In addition, the delay ratio versus the available
sub-6 GHz band spectrum resources is illustrated by Fig. 7(b).
The ratio value of the proposed algorithm shows an overall
trend of increase, which endorses that the proposed algorithm
can make wise decisions to adapt to the increase of sub-6 GHz
band spectrum resources.

Fig. 8 shows the impact of the available terrestrial backhaul
capacity of each BS on the average delay. With the increase of
the available terrestrial backhaul capacity, the obtained average
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(a)

(b)

Fig. 7. Performance versus the available sub-6 GHz band spectrum resources.
(a) Average delay performance. (b) Delay ratio performance.

Fig. 8. Delay performance versus the available backhaul capacity of each BS.

delays by all algorithms decrease. In addition, we can observe
that the average delay is improved slowly when CBS is larger
than 40 MHz, which implies that favorable backhaul resources
should be arranged in the ISTN to gain a high resources uti-
lization rate. Moreover, our proposed algorithm outperforms
all benchmarks in the average delay. For example, the average
delay obtained by the proposed algorithm is 63.3% lower than
that by the best benchmark algorithm with CBS = 5 MHz.

4) Performance Evaluation With Different Network
Architectures: In addition to the comparisons with three
offloading link selection and bandwidth allocation benchmark
algorithms, we also conduct the experiment to demonstrate
the effectiveness of the proposed ISTN architecture with three
different network architectures: 1) satellites are limited to pro-
viding connections for users only, which is called as “only UTS

Fig. 9. Average delay performance versus task arrival rate of different
network architectures.

links”; 2) satellites are limited to providing connections for BSs
only, which is called as “only BTS links”; and 3) only BSs are
available to provide service offloading for users, which is called
as “traditional terrestrial network.” For fairness, in this network
architecture, the available bandwidth of Ka-band is added to
that of sub-6 GHz band, and the backhaul of each BS is set
as 50 Mb/s. As depicted in Fig. 9, the proposed architecture
achieves lower average delay compared with the other three
network architectures. Specifically, the average delay obtained
by the proposed architecture is improved by 26.3% compared
with that of the best benchmark architecture in the heaviest
traffic scenario. The reason is that the proposed architecture
can not only mitigate the scarcity of backhaul capacity but
also provide UTS links as a supplement for users with bad
UTB channel conditions. Moreover, the backhaul capacity in
traditional terrestrial networks is increased to 50 Mb/s, it still
gains the worst performance among all network architectures,
which endorses the indispensable function of satellites in the
future networks.

VII. CONCLUSION

In this article, we have proposed an ISTN architecture to
support task offloading for remote IoT users. An H-PPO-based
algorithm has been proposed to make offloading link selection
and bandwidth allocation decisions in real time to minimize
the overall task offloading delay while accommodating the
dynamic task arrivals and channel conditions without future
information. From the numerical results, the proposed H-PPO-
based algorithm can reduce the delay with different task arrival
rates and spectrum resources by 63.87% and 84.23% on average
compared with SAC and EB algorithms. Furthermore, the
proposed ISTN architecture can achieve up to 75.68% delay
reduction compared with the terrestrial network only. The ISTN
architecture can also be applied to serve remote IoT users to
achieve low-latency task offloading in scenarios with heavy
traffic loads. For the future work, we will further investigate
the task offloading scheduling for mobile users in the ISTN to
cope with the spatial–temporal variations of user density.
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