
HealthFort: A Cloud-Based eHealth System
With Conditional Forward Transparency
and Secure Provenance via Blockchain

Shiyu Li, Yuan Zhang ,Member, IEEE, Chunxiang Xu ,Member, IEEE, Nan Cheng ,Member, IEEE,

Zhi Liu ,Member, IEEE, Yicong Du, and Xuemin Shen , Fellow, IEEE

Abstract—In this paper, we propose a servers-aided password-based subsequent-key-locked encryption mechanism to ensure the

confidentiality of outsourced electronic health records (EHRs). The encryption mechanism achieves conditional forward transparency:

a doctor can only access a patient’s EHRs related to the current diagnosis with the patient’s delegation. It also achieves portability: to

delegate a doctor for accessing a specific part of EHRs, the patient only needs to send one key (at most 256 bits) in addition to the

delegation information to the doctor; the patient does not need to maintain any secret in a local device. Then, we propose a blockchain-

based secure EHR provenance mechanism, where a data structure of EHR provenance record is designed to precisely reflect the

EHRs’ provenance information; a smart contract on a public blockchain is deployed to secure both EHRs and the corresponding

provenance records. Finally, we develop a cloud-based eHealth system, dubbed HealthFort, based on the two mechanisms. Security

analysis and comprehensive performance evaluation are conducted to demonstrate that HealthFort is secure and efficient.

Index Terms—Cloud-based eHealth system, EHR confidentiality, secure data provenance, blockchain

Ç

1 INTRODUCTION

AS modern eHealth systems are data-intensive, outsourc-
ing EHRs to a cloud server is practical and popular.

The wide deployment of cloud storage services has brought

great benefits in managing electronic health records (EHRs).
For instance, patients’ EHRs could be well maintained and
accessed in a flexible and convenient way [2], [3], [4], [5].
Actually, the recent outbreak of COVID-19 has made the
benefits more valuable than ever and demonstrated that
cloud-based eHealth systems play a vital role in fighting
against the virus [6].

Despite the appealing advantages of the cloud-based
eHealth systems, critical threats towards the outsourced
EHRs have been raised. Specifically, EHRs are the most sen-
sitive data for patients, and both external adversaries (hack-
ers) and internal adversaries (a compromised cloud server)
may always try to retrieve the contents of outsourced EHRs
for profits [7], [8], [9]. Moreover, the outsourced EHRs are
confronted with deletion and modification in many cases
[10], [11]. Typically, when a medical malpractice occurs, the
hospital and doctor may collude with the cloud server to
modify or delete a target patient’s outsourced EHRs for the
avoidance of responsibility.

To ensure the security of outsourced EHRs, two key tech-
niques, encryption [12], [13], [14], [15], [16] and data prove-
nance [17], [18], [19], [20], [21], [22], [23], could be utilized,
where the former guarantees EHRs’ confidentiality so as to
prevent the outsourced EHRs from leakage, and the latter
keeps track of what happens to the outsourced EHRs
throughout their lifecycle. Whereas, directly deploying
existing encryption techniques (including both symmetric-
key ones and public-key ones) cannot meet the functionality
requirements of actual cloud-based eHealth systems. Partic-
ularly, in a consultation, a doctor needs to access the
patient’s EHRs for diagnosing. However, for privacy protec-
tion, the doctor should only be able to access the EHRs that
are related to the current diagnosis. Such a requirement is

� Shiyu Li and Yicong Du are with the School of Computer Science and Engi-
neering, University of Electronic Science and Technology of China, Chengdu,
Sichuan 610056, China. E-mail: Shai_Li@yeah.net, xlwmfh@163.com.

� Yuan Zhang is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, Sich-
uan 610056, China, and also with the Fujian Key Laboratory of Financial
Information Processing, Putian University, Putian 351100, China.
E-mail: ZY_LoYe@126.com.

� Chunxiang Xu is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, Sich-
uan 610056, China, and also with the Yangtze Delta Region Institute
(Huzhou), University of Electronic Science and Technology of China, Huz-
hou 610056, China. E-mail: chxxu@uestc.edu.cn.

� Nan Cheng is with the Department of Telecommunication, Xidian Univer-
sity, Xi’an 710071, China. E-mail: dr.nan.cheng@ieee.org.

� Zhi Liu is with the Department of Computer and Network Engineering,
University of Electro-Communications, Chofugaoka 182-8585, Japan.
E-mail: liu@ieee.org.

� Xuemin Shen is with the Department of Electronic and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: sshen@uwaterloo.ca.

Manuscript received 21 February 2022; revised 22 July 2022; accepted 5
August 2022. Date of publication 16 August 2022; date of current version 3
October 2023.
This work was supported in part by the National Key R&D Program of China
under Grant 2021YFB3101100, in part by the National Nature Science Foun-
dation of China under Grant 62002050, in part by the Fujian Key Laboratory
of Financial Information Processing (Putian University) under Grant
JXC202202, in part by Key R&D Program of Sichuan under Grant
2021YFG0158, in part by Sichuan Science and Technology Program under
Grant 2020JDTD0007, and in part by Central University Basic Research
Funds Foundation under Grants A030202063008083 and ZYGX2020ZB027.
(Corresponding author: Yuan Zhang.)
Digital Object Identifier no. 10.1109/TMC.2022.3199048

6508 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7909-9845
https://orcid.org/0000-0002-7909-9845
https://orcid.org/0000-0002-7909-9845
https://orcid.org/0000-0002-7909-9845
https://orcid.org/0000-0002-7909-9845
https://orcid.org/0000-0002-5411-7621
https://orcid.org/0000-0002-5411-7621
https://orcid.org/0000-0002-5411-7621
https://orcid.org/0000-0002-5411-7621
https://orcid.org/0000-0002-5411-7621
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0001-7907-2071
https://orcid.org/0000-0003-0537-4522
https://orcid.org/0000-0003-0537-4522
https://orcid.org/0000-0003-0537-4522
https://orcid.org/0000-0003-0537-4522
https://orcid.org/0000-0003-0537-4522
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
https://orcid.org/0000-0002-4140-287X
mailto:Shai_Li@yeah.net
mailto:xlwmfh@163.com
mailto:ZY_LoYe@126.com
mailto:chxxu@uestc.edu.cn
mailto:dr.nan.cheng@ieee.org
mailto:liu@ieee.org
mailto:sshen@uwaterloo.ca

called “conditional forward transparency” and would be
detailed in Section 3.2. In addition, a patient always needs
to (delegate a doctor to) access parts of her/his EHRs. From
the perspective of practicality as well as security protection,
there should be no excessive costs and the key management
problem introduced on the patient side to access any part of
EHRs. Such a requirement is called “portability”, which
indicates that (a) all operations on the patient side can be
performed by using a resource-constrained device (e.g., a
smartphone) and (b) the patient can execute the prescribed
scheme using any device she/he can access (i.e., the patient
does not need to maintain any secret on her/his local
device).

Furthermore, directly integrating existing data prove-
nance mechanisms [21], [22], [23], [24], [25], [26] into cloud-
based eHealth systems could not be satisfactory due to the
lack of appropriate data structure of the provenance record.
Specifically, as regards privacy, in general provenance
mechanisms, privacy protection of personal information is
not considered in designing the data structure of prove-
nance records. Consequently, adopting these mechanisms
in cloud-based eHealth systems would cause the privacy
leakage from provenance records. As regards functionality,
in general provenance schemes, the data structure of prove-
nance records cannot accurately reflect the provenance
information about EHRs. Therefore, in addition to the
requirements on security and functionality of traditional
cloud storage systems, more specific requirements on
healthcare applications should be analyzed and considered
in developing secure cloud-based eHealth systems.

In this paper, we provide a comprehensive analysis of
the requirements of healthcare applications from the aspects
of security, efficiency, and functionality. According to
the analysis, we enumerate the primary requirements of
cloud-based eHealth systems. We propose two security
mechanisms to satisfy these requirements: a servers-aided
password-based subsequent-key-locked encryption mecha-
nism and a blockchain-based secure EHR provenance mech-
anism. Based on the two mechanisms, we develop a cloud-
based eHealth system, dubbed HealthFort, with conditional
forward transparency, portability, and secure EHR prove-
nance. The following is the summary of the main contribu-
tions of this paper:

1) We investigate actual cloud-based eHealth systems
and enumerate their primary requirements: EHR
confidentiality, conditional identity privacy preser-
vation, conditional forward transparency, backward
security, provenance record security, portability,
and efficient data access and auditing. We will detail
them in Section 3.2.

2) We propose a servers-aided password-based subse-
quent-key-locked encryption mechanism that inte-
grates the symmetric-key encryption [27] and a
servers-aided password-hardening protocol [7], [28],
[29]. Therefore, the proposed encryption mechanism
is highly-efficient and robust against off-line dictio-
nary guessing attacks (DGA). It enables the patients
to authenticate themselves with the cloud server
using their passwords as the sole factor and to permit
the doctor to view their specific parts of outsourced

EHRs using only one encryption key (at most 256
bits).

3) We propose a blockchain-based secure provenance
mechanism for EHRs, where (a) the data structure of
provenance records is designed to precisely reflect
the provenance information about the underlying
EHRs during their lifecycle and (b) a smart contract
is deployed on a public blockchain (e.g., Ethereum)
to assure the security of provenance records. With
the provenance mechanism, both the outsourced
EHRs and the corresponding provenance records are
securely maintained and can be efficiently audited.

4) We integrate the proposed two mechanisms into one
system, dubbed HealthFort, and develop it to pro-
vide a secure EHR storage service with efficient
provenance. We provide formal security analyses to
prove that HealthFort meets the security require-
ments. We implement a prototype of HealthFort and
present the implementation details. Based on the
prototype, we give a comprehensive evaluation to
show the high efficiency of HealthFort.

The remainder of this paper is organized as follows. In
Section 2, we review the related work and summarize the
changes between HealthFort and the primary work,
BESURE [1]. In Section 3, we present the problem statement.
We overview HealthFort and present its construction in Sec-
tions 4 and 5, respectively. In Section 6, we analyze the secu-
rity of HealthFort in terms of EHRs confidentiality and
provenance security. In Section 7, we implement HealthFort
and evaluate its performance. In Section 8, we draw the con-
clusion and outlook the future research directions.

2 RELATED WORK

2.1 EHRs Security in Cloud-Based eHealth Systems

Cloud-based eHealth systems provide a convenient and
efficient way to manage EHRs. It not only frees medical
institutions from deploying and maintaining local storage
devices [30], but also enables EHRs to be accessible in differ-
ent devices and locations. However, such an outsourcing
paradigm also introduces new threats towards the security
of EHRs [31], [32], [33].

In recent years, EHRs security has become a major con-
cern to both governments and individuals. For govern-
ments, several laws and regulations have been proposed.
For instance, the Health Insurance Portability and Account-
ability Act (HIPAA) [34] indicates that EHR confidentiality
is a fundamental requirement rather than an optional one;
General Data Protection Regulation (GDPR) indicates that
personal sensitive data, such as health data is subject to a
higher level of protection. For individuals, more and more
patients turn their attention to the security of their EHRs1.
Typically, there are 13 patient data breaches in the past year
that have resulted in lawsuits filed by patients2. As patients
demand increased security for their EHRs, many protection
mechanisms have been proposed [12], [16], [35], [36], [37],
[38], [39].

1. General data protection regulation. https://gdpr- info.eu
2. https://www.beckershospitalreview.com/cybersecurity/13-

patient-data-breach-lawsuits-in-the-past-year.html

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6509

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

https://gdpr

However, in existing works, several practical require-
ments of actual eHealth systems are not considered. For
example, in traditional encryption mechanisms for EHRs, a
patient has to send multiple decryption keys to enable a
doctor to access only a specific subset of the entire EHRs for
diagnosing [12], [16], [35], [40], [41], which introduces heavy
communication overhead on the patient side. Although the
attribute-based encryption (ABE) technique [32], [42], [43]
can be utilized to resolve this tension, it suffers from the sin-
gle-point-of-failure problem and causes heavy computation
overhead on both the patient and cloud server sides.

Moreover, in existing eHealth systems [36], [38], a patient
needs to manage the decryption keys of EHRs locally. To
free the patient from maintaining the decryption keys, a lay-
ered encryption mechanism could be utilized [44], where a
patient maintains a master key locally, encrypts the decryp-
tion keys of EHRs under the master key, and outsources the
ciphertexts of the decryption keys and the encrypted EHRs
to a cloud server. By doing so, the patient does not need to
manage the decryption keys of EHRs in her/his local devi-
ces. Nevertheless, in such a layered mechanism, the key
management problem on the patient side still exists: the
patient has to well maintain the master key for retrieving
outsourced EHRs. A feasible way to address the key man-
agement problem is to use a password-based layered
encryption technique: the patient encrypts the encryption
keys under a human-memorable password instead of the
master key [7], [29]. However, due to the low entropy of
human-memorable passwords, this mechanism is vulnera-
ble to DGA.

2.2 Secure Data Provenance in Cloud Storage

Data provenance has become an essential component for
cloud storage systems, where the outsourced data is under
threats from various aspects. Data provenance is a tech-
nique that describes the history of the actions performed on
some data during the lifecycle [45], which supports data
auditing and post-investigation.

In [46], Lynch first pointed out the necessity and impor-
tance of data provenance in digital systems. Muniswamy-
Reddy et al. then observed that the data provenance
technique is crucial for cloud storage systems [18], [19].
These works mainly focus on how to enhance the security
of cloud storage systems using the data provenance tech-
nique. However, the security of the data provenance tech-
nique itself is not considered. If the provenance information
can be arbitrarily modified, it is not useful in reality.

Hasan et al. [47] first identified the main challenges in
trustworthy of provenance information and defined the
main factors that impact the security of provenance. The
first formal definition and security notions of data prove-
nance for cloud storage systems were proposed by Lu
et al. [22], where the basic requirements of a secure
provenance scheme for outsourced data are first ana-
lyzed. Subsequently, several schemes with improvements
on security and efficiency were proposed [23], [48], [49].
However, all these schemes rely on a trusted identity
manager to ensure the security of the provenance infor-
mation and are confronted with the single-point-of-fail-
ure problem.

To address the single-point-of-failure problem, subse-
quent works [21], [24], [26] utilized blockchain as the key
technique: the provenance information is recorded to the
blockchain such that adversaries cannot tamper with it,
even if the adversary colludes with the cloud server. How-
ever, these schemes cannot be directly utilized in cloud-
based eHealth systems, since the underlying data structure
of provenance records cannot precisely reflect the EHRs’
provenance and some specific requirements of actual
healthcare applications are not considered.

2.3 Compared With BESURE

In the previous version of this paper [1], BESURE, a block-
chain-based cloud-assisted eHealth system with secure data
provenance, has been proposed. In BESURE, a servers-
aided password-based subsequent-key-locked encryption
framework is used to ensure the confidentiality of EHRs
and the conditional forward transparency, a blockchain-
based secure data provenance mechanism is used to track
all operations performed on EHRs during their lifecycle.
Compared with BESURE [1], we have made the following
improvements in this paper.

� Concrete instantiation. We instantiate the servers-
aided password-based subsequent-key-locked encryp-
tion mechanism based on CBC-mode of block cipher.
The ciphertext of a key is generated by inputting the
XOR of the plaintext of the current key and the cipher-
text of the previous key into a pseudorandom function.

� Security analysis. We provide a formal security anal-
ysis for the proposed encryption mechanism, which
proves that it is indistinguishable under the chosen-
plaintext attack (IND-CPA).

� Prototype implementation. We implement a Health-
Fort prototype and present the implementation
details. We evaluate the performance of HealthFort
in a comprehensive way and compare HealthFort
with existing systems in terms of security, function-
ality, and efficiency, which shows the high efficiency
and advantage of HealthFort.

3 PROBLEM STATEMENT

3.1 Notation and Basic Theory

In this paper, ‘ denotes the security parameter; given two bit
strings st1 and st2, st1jjst2 denotes their concatenation; z
F ð�Þ denotes that z is an output of the function F ð�Þ; iþþ
denotes that i ¼ iþ 1; r $ S denotes randomly choosing r
from the set S.

Bilinear pairing. Let G be an additive group with a primer
order p, GT is a multiplicative group with the same order as
G. e is a bilinear pairing if it has the following three proper-
ties: Bilinearity: 8 X;Y 2 G;8 v; w 2 Z, eðvX;wY Þ ¼
eðX; Y Þvw; Non-degeneracy: 8 X;Y 2 G;X 6¼ Y; eðX; Y Þ 6¼ 1;
Efficiency: 8 X;Y 2 G, exists an efficient algorithm to com-
pute eðX;Y Þ.

Threshold Cryptosystem. In a ðt; nÞ-threshold cryptosys-
tem, a secret s is split into n secret shares and each secret
share is kept by a participant. Any t participants can pool
their shares and perform certain cryptographic operations
(e.g., generating signatures, encryption/decryption), but a

6510 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

collusion of less than t participants cannot extract any infor-
mation about s from their shares.

Pseudorandom Function. Let F: f0; 1g� � f0; 1g� ! f0; 1g�
be an efficient, length-preserving, keyed function. F is a
pseudorandom function if for all probabilistic polynomial-
time (PPT)M, there is a negligible function negl s.t.

jPr½MFkð�Þð1‘Þ ¼ 1� � Pr½Mfð�Þð1‘Þ ¼ 1�j � neglð‘Þ;

where k $ f01g‘, f $ Func‘, and Func‘ is the set of all func-
tions mapping ‘-bit strings to ‘-bit strings.

Blockchain and Smart Contract.A blockchain is essentially a
distributed ledger maintained by a group of network nodes
and records the history of “transactions”. Each node can
share and verify the transaction data on the blockchain, but
no one can fully control the data to be recorded to the block-
chain [50]. The security of the blockchain ensures that any
“efficient” adversary cannot tamper with the data recorded
on the blockchain. Here, the definition of “efficient
adversary” depends on the underlying consensus algorithm.

In this paper, we construct HealthFort on the Ethereum
blockchain [51], since it is more expressive than others. Due
to space limitations, we would not elaborate on the con-
struction of the Ethereum blockchain, please refer to Ref.
[51], [52] for more details.

A smart contract is a computerized transaction protocol
that executes the terms of a contract [53]. In Ethereum, once
a contract is deployed, an account address is assigned to
store the smart contract code and the data generated during
the deployment and execution of the smart contract. A
smart contract can be triggered by sending transactions to
the address of its account. After being activated, miners
would run the smart contract code according to the data in
the “data field” of the corresponding transaction.

3.2 Analysis of Actual eHealth Systems

From the perspective of EHRs’ processing, the procedure of
a general cloud-based eHealth system with EHR prove-
nance is depicted in Fig. 1 and described as follows. When a
patient (say P) needs to consult a doctor, P first makes an
appointment to the hospital. The latter then delegates a spe-
cific doctor (say D) and sends the appointment information
(including the doctor information and treatment informa-
tion) to P. At the corresponding point in time, P consults D
and generates a delegation information to D. Dmay need to

view the existing EHRs of P for diagnosis, which requires D
(who has P’s delegation) to interact with the cloud server
(say CS) to access the EHRs. After the consultation, D gener-
ates some new EHRs for P and outsources them to the cloud
server. In addition, D needs to generate a corresponding
provenance record to describe how the P’s EHRs are
updated and the activities that D has performed. D also out-
sources the provenance record to CS. At any later point in
time when a medical disputation occurs, an auditor (say A)
who is subject to an authority can launch data investiga-
tion on the outsourced EHRs as well as the provenance
records.

The above procedure does not consider the security and
privacy issues in reality. We analyze actual cloud-based
eHealth systems and point out the requirements in terms of
security and privacy below.

EHR Confidentiality. As EHRs include privacy informa-
tion about their owners, it is very dangerous to store the
EHRs in the plaintext form. To preserve patient’s privacy,
EHRs should be encrypted before storing. We stress that
ensuring EHRs’ confidentiality is not just required by
patients themselves, it is also stipulated in laws and regula-
tions of most of governments, e.g., HIPAA [34] and GDPR.

Conditional Identity Privacy Preservation. For a specific
diagnosis, the doctor’s identity is also sensitive information.
If it can be extracted by the adversary, the patient’s privacy
could be easily violated. On the other hand, when a medical
disputation occurs, the doctor should not be able to deny
that he generated some EHRs for the patient. Therefore, for
a general diagnosis, the doctor’s identity should be well
protected in the corresponding provenance record, but for a
disputed diagnosis, the auditor can easily extract the
doctor’s identity from the provenance record in a non-repu-
diation way.

Conditional Forward Transparency. In actual eHealth sys-
tems, a doctor always needs to access the patient’s previous
EHRs for diagnosis, which requires that the patient’s EHRs
should be “forward-transparent” to the delegated doctor. In
other words, for the delegated doctor, she/he can access the
patient’s outsourced EHRs as needed. However, the for-
ward transparency should not cause the abuse of patient’s
EHRs. For example, in most cases, when a patient consults a
doctor from the department of Orthopedics, the doctor
should only able to access the patient’s EHRs generated by
the doctors from the same department, rather than those
generated by the doctors from other departments (e.g.,
department of Gastroenterology). Therefore, the forward
transparency to doctors should be conditional, any “over-
access” should be further permitted by the patient.

Backward Security. For privacy protection, after the diag-
nosis, the doctor should not be able to further access the out-
sourced EHRs of the patient, i.e., the contents of subsequent
EHRs generated by other doctors (even if they are from the
same department) should also be protected against the
doctor.

Provenance Record Security. Once a provenance record is
generated, it should not be forged or deleted, even though
the corresponding operation on EHRs is mistakenly per-
formed. This guarantees that the provenance records are
able to reflect what happens to the patient’s EHRs in a clear
and precise way.

Fig. 1. Data flow of eHealth systems with EHR provenance.

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6511

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

From the perspective of practicality, there are some con-
siderations as follows.

Portability. It is impractical to require patients to use spe-
cifically-crafted (powerful) devices in cloud-based eHealth
systems, even if for online diagnoses. Hence, patients
always desire an eHealth system to be friendly without
sacrificing the security: they can access their EHRs any-
where utilizing any device while a strong security assurance
still retains. We stress that the deployment of cloud storage
systems does not address this problem, since patients need
to keep a (long) secret key locally for authenticating them-
selves with the cloud server and decrypting the outsourced
EHRs. Therefore, portability, which means that patients free
from equipping specific (powerful) devices and do not need
to maintain any secret locally, is an important requirement
in actual eHealth systems.

Efficient Data Access and Auditing. In reality, the number
of a patient’s EHRs could be numerous. If the doctor wants
to access a specific part of these EHRs, she/he should not
need to download all of them. Moreover, as all provenance
records need to be validated by the auditor, when the audi-
tor checks the provenance records and EHRs for digital
investigations, the checking should be completed within a
short delay with low costs.

3.3 System Model

Based on the above analysis of cloud-based eHealth systems
with EHR provenance, we construct HealthFort. As shown
in Fig. 2, there are six different entities in HealthFort: doc-
tors, patient, cloud server, hospital, key servers, and authen-
ticated auditor.

Considering the portability on the patient side, in Health-
Fort, a patient only needs to use a password as the only
secret for the whole consultation process. Nevertheless, due
to the low entropy of the password, an adversary can easily
recover the patient’s password by DGA. Hence, in actual
systems, straightforward use of passwords cannot ensure
the security. HealthFort employs a servers-aided mecha-
nism [7], [29] to harden patients’ passwords against DGA.

3.4 Threat Model

In the threat model, we consider the auditor as a trusted
entity, since the checking result generated by the auditor
solely depends on the underlying EHRs and their prove-
nance records. If the checking result is biased, anyone in the
system could detect it.

Other entities (i.e., the cloud server, key servers, hospital,
and doctor) could misbehave in HealthFort. For the hospital
and doctor, they are fully trusted only during the diagnosing
period and might misbehave after a diagnosis. EHRs and the
corresponding provenance records are confronted with the
following attacks.

Leakage of EHRs Contents. The cloud server may extract
information about the contents of EHRs from the ciphertext
of the EHRs and corresponding keys. The doctors may
attempt to view EHRs that are generated subsequently or
not related to the current consultation.

DGA From key Servers and Cloud Server. Due to the low
entropy of patients’ passwords, both the key servers and
cloud server attempt to compromise patients’ passwords. If
they succeed, not only HealthFort, but also all other related
systems would suffer from critical threats, since patients
(i.e., users) always utilize sister passwords [54].

Forgery and Deletion Attacks on Provenance Records. The
doctor may collude with the cloud server to forge or delete
outsourced provenance records for profits.

Repudiation Attacks on Provenance Records. A doctor may
deny that some provenance records are generated by her/
him.

We suppose that a secure channel between a doctor and
the hospital can be established by default, and there is a
bound (i.e., a threshold determined by the security parame-
ter) on the number of key servers that an adversary can
compromise.

3.5 Design Goals

HealthFort should achieve following goals.

1) Functionality. HealthFort should provide a storage
service for cloud-based eHealth systems with porta-
bility and EHR provenance.

2) Security. HealthFort should guarantee EHR confi-
dentiality, conditional identity privacy preservation,
conditional forward transparency, backward secu-
rity, and provenance record security under the pro-
posed threat model.

3) Efficiency. HealthFort should achieve high efficiency
in terms of communication and computation on the
patient, doctor, and auditor sides.

4 OVERVIEW OF HEALTHFORT

We overview HealthFort, focusing on the challenges
addressed by this paper.

Ensuring EHR Confidentiality. EHRs’ confidentiality is a
fundamental requirement in cloud-based eHealth systems,
where the encrypt-then-outsource paradigm has been
widely deployed in reality. Traditional encryption (includ-
ing symmetric-key encryption and public-key encryption)
algorithms [12], [14], [32] can only ensure the confidential-
ity, but neither the portability on the patient side nor effi-
cient conditional forward transparency can be achieved. A
patient has to maintain at least one (long) secret key locally
to (1) authenticate herself/himself with the cloud server
and the hospital/doctor and (2) decrypt the outsourced
EHRs as needed.

Fig. 2. System model.

6512 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

Portability. The key observation behind HealthFort is that
passwords can serve as a fundamental role to achieve the
portability on the patient side. Specifically, patients can
authenticate themselves with the cloud server by only using
their password; they can also encrypt all their EHRs with
the password.

However, such a password-based protection mechanism
has an inherent vulnerability that an adversary can easily
compromise it by launching offline DGA. HealthFort
addresses this problem by utilizing a servers-aided para-
digm [28], [29]: the password is hardened with the aid of a
set of key servers (which hold a server-side secret in a
ðt; nÞ-threshold way) before being used in reality, which
protects the password from DGA while remaining its func-
tionality. The interactions between the patient and key serv-
ers are oblivious such that for a specific password, the
patient can compute a deterministic servers-hardened pass-
word but the key servers cannot extract anything about the
password from the interactive message. Such a servers-
hardened password is used for authentication between the
patient and cloud server and for encrypting/decrypting the
EHRs. By doing so, the only secret the patient needs to
maintain is a human-memorable password, which achieves
the portability on the patient side.

Conditional Forward Transparency and Backward Security.
The above mechanism still fails to achieve efficient con-
ditional forward transparency. If the doctor needs to
access a part of the patient’s EHRs, the patient has to
download the entire EHR set from the cloud server,
decrypt the target ones and sends the plaintexts to the
doctor. Note that directly sending the password to the
doctor would cause fully forward transparency and
make the backward security impossible, which contra-
dicts the design goals.

To address this problem, inspired by [27], we propose a
servers-aided password-based subsequent-key-locked
encryption, which is shown in Fig. 3, where Fðk; Þ denotes a
pseudorandom random function with a key k3. For the sake
of brevity, we only discuss the single-department case, i.e.,
all these EHRs are generated by the doctors from the same
department. To ensure the backward security, different
EHRs should be encrypted under different keys randomly
chosen by different doctors, these keys are denoted by
k1; k2; � � � ; kn, where the index of each key indicates the chro-
nological order. To achieve the forward transparency, an
encryption key is protected under its (in chronological
order) subsequent key corresponding to the subsequent

EHRs from the same department; the final key (i.e., the tail
key) is protected under the servers-hardened password spw.

At any point in time, when a doctor (say the iþ 1th doctor
Diþ1 for i 2 ½0; n� 1�) wants to access the patient’s EHRs, the
patient only needs to download the ciphertext of ki from the
cloud server, retrieve ki by using her/his password and
sends ki to Diþ1. The latter is able to obtain all previous keys
k1; k2; � � � ; ki�1 and further decrypt the ciphertexts to get all
the previous EHRs.

We further stress that the forward transparency should
be conditional, i.e., without the patient’s permission, the
doctor cannot access the EHRs that are generated by doctors
from other departments. Therefore, in reality, the patient’s
EHRs have the form as shown in Fig. 4.

Secure EHR Provenance. To secure EHR provenance, two
challenges should be addressed. The first one is to propose
a data structure of EHRs’ provenance records. The second
one is to design a security mechanism to protect provenance
records from various attacks.

Algorithm 1. SC

1: i = 0;
2: data[][];
3: function StoreðIDP , perD, data):

// perD denotes a permit generated by P for D
4: if (perD is valid):
5: data[IDP][i]= data;
6: i + +;
7: end if;
8: function AuditðIDP , i):
9: return data[IDP][i];

To address the first challenge, we investigate EHRs from
actual eHealth systems and extract provenance require-
ments from them. Based on W3C PROV Ontology [55], we
propose a data structure of provenance records for EHRs.

To address the second challenge, we propose a secure
EHR provenance mechanism based on a smart contract that
is deployed on a public blockchain (i.e., Ethereum). The key
technique behind the mechanism is to store all EHR prove-
nance records in chronological order by using an authenti-
cated way in the contract storage, which enables the auditor
to check the validity of all EHRprovenance recordswithmin-
imal costs (only one signature verification and several hash
computations) without the single-point-of-failure problem.

We integrate all above mechanisms and implement a
prototype called HealthFort, which provides secure EHRs
storage and provenance for cloud-based eHealth systems.

Fig. 3. Server-aided password-based subsequent-key-locked encryption.

Fig. 4. The form of EHRs corresponding to multiple departments.

3. We assume that AES is a pseudorandom function and replace F
with AES in our construction.

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6513

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

5 PROPOSED HEALTHFORT

A patient P with identity IDP , a doctor Dwith identity IDD,
a hospitalHwith identity IDH, a cloud server CS with iden-
tity IDCS , a set of key servers fKS1; :::;KSng with identities
fIDKS1 ; :::; IDKSng and an authenticated auditor A are
involved in HealthFort. Practically, there are many doctors
in the system. For the sake of brevity, we only show the sin-
gle-doctor case. Other doctors would follow the same pro-
cess. We provide the notations used in this section and the
corresponding explanations in Table 1.

Phase 1. EHR Generation.
Setup. Based on the security parameter ‘, system parame-

ters fp; P;G;GT ; e;H1; H2; h; �h;Eð�Þ;Encð�Þ; Sigð�Þ; n; tg are
determined, SC is deployed on Ethereum.

Registration. In this algorithm, P registers with KSi ði 2
½1; n�Þ, CS, and H. This algorithm is depicted in Fig. 5 and
detailed as follows.

� P creates a password pwP and sends IDP to
KSi; i ¼ 1; 2; :::; n.

� For i ¼ 1; 2; :::; n, if IDP exists in KSi’s local storage,
it means that IDP has been registered; Otherwise, all
key servers jointly execute Algorithm 2 to generate
and share a server-side secret s in a distributed way.

� P requests a servers-hardened password spwP by
executing Algorithm 3.

� P computes aui and sends aui to KSi; i ¼ 1; :::; n
through a secure channel. P encrypts skP under
spwP to obtain cskP and sends fcskP ; ðIDP ; auCSÞg to
CS. P computes auH and sends ðIDP ; auHÞ toH.

� If P did not register with KSi, CS, andH before, KSi,
CS, and H store ðIDP ; auiÞ, ðIDP ; auCSÞ, and
ðIDP ; auHÞ, respectively, as the authentication cre-
dential. CS stores cskP .

Algorithm 2. secShare

1: Each KSi ði 2 ½1; n�Þ randomly chooses ai;0 2 Z�p and a poly-
nomial fiðxÞ over Zp with degree at most t� 1, such that
fið0Þ ¼ ai;0, where fiðxÞ ¼ ai;0 þ ai;1xþ :::þ ai;t�1xt�1.

2: Each KSi ði 2 ½1; n�Þ calculates ai;gP , and fiðjÞ, then sends
them to KSj ðg ¼ 0; 1; :::; t� 1; j ¼ 1; 2; :::; n; j 6¼ iÞ.

3: After receiving fjðiÞ, and aj;gP ðj 2 ½1; n�; j 6¼ i; g 2 ½0; t� 1�Þ,
KSi verifies fjðiÞ, if Eq. (1) holds, KSi accepts fjðiÞ, other-
wise, KSi rejects.

fjðiÞP ¼
Xt�1
g¼0

ig � aj;gP (1)

4: KSi calculates the server-side key secret share si ¼Pn
j¼1 fjðiÞ and the corresponding public share Qi ¼ siP .

5: The server-side secret key s ¼Pn
i¼1 ai;0 is shared among

KS1; :::;KSn in a ðt; nÞ-threshold secret-sharing way. The
public servers-hardened key is Q ¼ sP .

Appointment. As depicted in Fig. 6, P makes an appoint-
ments withH, andH designates D for P.
� P executes Algorithm 3 to request spwP from KSi.
� P computes auH. With ðIDP ; auHÞ, P and H can

establish a secure channel.4 Using this channel, P
can authenticate with H, and the following interac-
tions are in this channel.

TABLE 1
Summary of Notations

Notation Explanation

e The bilinear pairing e : G�G! GT

P A generator of G
p The order of G and GT

H1; H2 Hash functions mapping into G
h A hash function mapping into 0; 1‘

�h A hash function mapping into Zp

EðK;MÞ A symmetric-key encryption algorithm takes as input a keyK and a plaintextM
Encðepk;MÞ A public-key encryption algorithm takes as input a key epk and a plaintextM
Sigðssk;MÞ A signature algorithm takes as input a key ssk and a messageM
n The number of key servers
t A threshold determined by ‘
skP P’s private key randomly chosen from Z�p
skH H’s private key randomly chosen from Z�p
pkP P’s public key computed as skP � P
pkH H’s public key computed as skH � P
SC A smart contract shown in Algorithm 1
Add The address of SC on Ethereum

Fig. 5. Description of registration.

4. After a successful authentication, the transmission between P and
H can be protected by authenticated encryption (e.g., AES-GCM),
where the symmetric keys are derived by auH.

6514 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

� H chooses a treatment key tk 2 Z�p randomly, gener-
ates a pseudonym PIDD for D using tk, sends
appointment information to P, and sends fPIDD; tkg
to D through a secure channel.

� H stores tk locally, which is used to attach IDD to the
pseudonym PIDD during the audit.

� P obtains IDD, the validity period TPD, and other
auxiliary information AuxD, such as the department
De of D and tk from the appointment information.

� D maintains fPIDD; tkg locally for the subsequent
consultation and provenance generation.

Algorithm 3. reqSpw

1: P chooses r 2 Z�p randomly, blinds pwP by computing pw�P ¼
r �H1ðpwPÞ, and sends ðIDP ; pw�PÞ to KSi ði 2 ½1; n�Þ.

2: After receiving ðIDP ; pw�PÞ, each KSiði 2 ½1; n�Þ computes
s�i ¼ si � pw�P , and sends s�i to P.

3: P verifies s�i by eðs�i ; P Þ ¼? eðpw�P ; QiÞ. If s�i is valid, P accepts
it.

4: After receiving t valid signatures, P computes spw by

spw ¼ r�1 �
Xt

l¼1

Y
1���t
� 6¼l

�

�� l

0
B@

1
CA � s�l ;

and obtains spwP by spwP ¼ �hðspwjjpwPÞ.

Consultation. In this algorithm, P consults D, authorizes
D to access parts of EHRs related to the current diagnosis. D
creates a new EHR for P. The interactions between P and D
are protected by tk. A schematic diagram is shown in Fig. 7,
where the steps in the gray dotted box are executed when D
needs to access existing EHRs of P.
� P takes pwP as input to request spwP from KSi ði ¼

1; 2; :::; nÞ by executing Algorithm 3 and computes
auCS .

� With ðIDP ; auCSÞ, a secure channel can be estab-
lished. Using this channel, P can authenticate with
CS and download cskP from CS, decrypts cskP using
spwP to get skP .

� P generates a permission perD to delegate D, perD
includes permission data and the corresponding sig-
nature, and sends perD to D.

� If perD is valid, D accepts it and randomly chooses

k
ðDeÞ
yþ1 2 Z�p as the encryption key on the EHR gener-

ated in this diagnosis, encrypts it to ek
ðDeÞ
yþ1 using tk,

and sends the ciphertext to P.

� P decrypts ek
ðDeÞ
yþ1 to obtain k

ðDeÞ
yþ1 .

If D needs to view P’s EHRs that have been outsourced
before for reference, D requests a permission to access these
EHRs from P as follows.

� P downloads ~ckðDeÞ
y ¼ EðspwP ; kðDeÞ

y Þ from CS, where
kðDeÞ
y is the tail of the corresponding key chain. P

decrypts the ciphertext to obtain kðDeÞ
y , computes

ckðDeÞ
y , and sends it to D.

� D obtains kðDeÞ
y by decrypting ckðDeÞ

y and sends perD
to CS for authentication.

� CS verifies the validity of perD to check whether the
doctor is delegated by the patient. If the verification
passes, CS allows D to download the ciphertexts of
the EHRs from De and the ciphertexts of the corre-
sponding encryption keys.

� D can obtain k
ðDeÞ
y�1 ; k

ðDeÞ
y�2 ; :::; k

ðDeÞ
1 by decrypting

ck
ðDeÞ
y�1 ; ck

ðDeÞ
y�2 ; :::; ck

ðDeÞ
1 successively using kðDeÞ

y , fur-
ther decrypt the ciphertexts of EHRs. By doing so, D
can view EHRs fromDe.

� Finally, D creates EHR
ðDeÞ
yþ1 for P and encrypts

EHR
ðDeÞ
yþ1 as C

ðDeÞ
yþ1 ¼ EðkðDeÞ

yþ1 ; EHR
ðDeÞ
yþ1 Þ.

Phase 2. Provenance generation.
The procedure of Phase 2 is shown in Fig. 8.
ProvGen. In this algorithm, D generates a provenance

record PRi and requests a signature on PRi from H. The
structure of a provenance record is given in Fig. 9, where
exd, exp, exh denote the specific namespace prefixes used
byDe, P, andH, respectively.

Fig. 7. Description of consultation.

Fig. 6. Description of appointment.

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6515

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

� D generates a provenance record PRi as shown in
Fig. 9.

� If EHR
ðDeÞ
yþ1 is P’s first EHR (i.e., i ¼ 1), EHRViewAc-

tivity and EHRVi fields are set to “NULL”; if it is the
first time that P comes to this department (i.e.,
yþ 1 ¼ 1), EHRViewActivity is set to “NULL”.

� For i ¼ 1, D sends PRi to H via a secure channel; for

i 	 2, D sends fPRi; s
ðPRÞ
i�1 g to H through a secure

channel, where s
ðPRÞ
i�1 is a signature generated by H

on the previous provenance record.

� If i 	 2, H verifies s
ðPRÞ
i�1 . If the verification passes, H

signs on PRi as s
ðPRÞ
i ¼ skH �H2ðPRiÞ and sends

s
ðPRÞ
i to D.

� If s
ðPRÞ
i is valid, D accepts it as the signature of H on

PRi.
Store. In this algorithm, D outsources EHR

ðDeÞ
yþ1 and the

corresponding provenance information to CS.
� D computes data ¼ hðhðPRiÞjjsðPRÞi Þ, invokes

SC:StoreðIDP ; perD; dataÞ to integrate the prove-
nance information into the blockchain by sending
the transaction Txi to Add as shown in Fig. 10.

� After Txi is recorded into the blockchain, D sends

fPRi; s
ðPRÞ
i ; C

ðDeÞ
yþ1 ; perDg to CS.

� CS accepts and stores fPRi; s
ðPRÞ
i ; C

ðDeÞ
yþ1 ; perDg if perD

and s
ðPRÞ
i are valid.

� P computes ~ck
ðDeÞ
yþ1 ¼ EðspwP ; kðDeÞ

yþ1 Þ and outsources

f ~ckðDeÞ
yþ1 ; ck

ðDeÞ
y g to CS. (k

ðDeÞ
yþ1 has been sent to P as

shown in Fig. 7.)

� CS stores ~ck
ðDeÞ
yþ1 and replaces ~ckðDeÞ

y with ckðDeÞ
y .

Finally, P’s EHRs corresponding to De and the prove-
nance information have the following form:

< C
ðDeÞ
1 ; C

ðDeÞ
2 ; :::; C

ðDeÞ
yþ1 > ;

< fPR1; s
ðPRÞ
1 g; fPR2; s

ðPRÞ
2 g; :::; fPRi; s

ðPRÞ
i g > :

Phase 3. Provenance verification.
Audit. Given the provenance information

< fPR1; s
ðPRÞ
1 g; fPR2; s

ðPRÞ
2 g; :::; fPRi; s

ðPRÞ
i g > ;

A can verify the validity as follows.

� A verifies PRi by checking

eðsðPRÞi ; P Þ ¼? eðH2ðPRiÞ; pkHÞ:

� A extracts the data information from the blockchain
by invoking SC:AuditðIDP ;mÞ;m 2 ½1; i�.

Fig. 9. Data structure of a provenance record.

Fig. 10. A schematic diagram of Txi.

Fig. 8. Description of phase 2. Provenance generation.

6516 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

� A computes hðhðPRmÞjjsðPRÞm Þ for each m ¼ 1; 2; :::; i;
and verifies the integrity and timeliness of prove-
nance by checking whether the provenance record’s
hash value matches the extracted data.

� If all the provenance records pass all the above
checking, the provenance can be accepted.

6 SECURITY ANALYSIS

We analyze the security of HealthFort in terms of EHR con-
fidentiality and provenance security.

6.1 EHR Confidentiality

In our servers-aided password-based subsequent-key-
locked encryption mechanism, in the nth stage, a key ki is
encrypted under the subsequent key kiþ1, and the tail key
kn is encrypted under the hardened password spw. In each
encryption, a random initialization vector is needed to pro-
vide the randomness, or it is vulnerable to CPA. Since an
adversary can easily choose a challenge plaintext kn that he
has queried for the corresponding ciphertext under the
hardened password spw.

Therefore, as shown in Fig. 11, the construction in
BESURE (the conference version [1] of this paper) is choos-
ing a fresh initialization vector for each encryption, which
has been proven to achieve EHR confidentiality in [1]. How-
ever, such a construction requires patients to carefully
choose a random initialization vector for each encryption
and thereby the costs for generating randomness increase
linearly with the number of keys in a chain (i.e., OðnÞ).

To free patients from multiple choosing random initiali-
zation vectors, inspired by CBC mode, we utilize the previ-
ous ciphertext as the initialization vector in the current
encryption. These two constructions are detailed in Table 2.
By doing so, patients only need to choose one initialization
vector for a key chain. The costs for generating randomness
are independent of the number of keys in a chain (i.e., Oð1Þ)
without breaking the IND-CPA property of the servers-
aided password-based subsequent-key-locked encryption
mechanism. We prove its security as follows.

Intuitively, EHR confidentiality captures the property
that even if a malicious cloud server obtains an encryption
key of an EHR, the cloud server cannot do better than per-
forming online password guessing attacks to retrieve the
subsequent keys to further obtain contents of corresponding
EHRs. In HealthFort, EHR confidentiality is achieved by the
servers-aided password-based subsequent-key-locked
encryption mechanism, where EHRs are encrypted under
the corresponding random-chosen keys, a key is encrypted
under the subsequent key, and the tail key is encrypted
under the servers-hardened password.

The security of the proposed mechanism relies on a pass-
word-hardening protocol [28], [56], which requires (on the
premise that no more than threshold number of key servers
are compromised by an adversary) (1) Pseudorandomness.
The adversary cannot distinguish spw from a random string
with a non-negligible probability, (2) Unpredictability. When
pw is randomly chosen from a password space PW , given
the interaction information between the patient P and a set
of key servers KSi ði ¼ 1; :::; nÞ (who assist to harden the
password), the adversary cannot obtain more information
about the spw from the interaction than from a random
string, and (3) Obliviousness. The adversary cannot extract
more information about the password pw from spw than
from a random string. These properties rely on the Gap
Threshold One More Diffie-Hellman (Gap-TOMDH)
assumption provided in the following.

Definition 1 (Gap Threshold One-More Diffie-Hellman
assumption). Let Ct0;tðq1; :::; qnÞ be the largest value of v such
that there exists binary vectors ~u1; :::; ~uv 2 f0; 1gn such that
each ~ui has t� t0 number of 1 in it and ðq1; :::; qnÞ 	

Pv
i¼1 ~ui

(all operations on vectors are component-wise integer opera-
tions). A solver S is given a group G with a prime order p and
a generator P , a set R ¼ fP1; :::; Png, where Pi $ G for i 2
½1; n�, access to oracles TOMDHð�; �Þ for a random polynomial
fðxÞ ¼Pt�1

i¼0 ai � xi over Zp and DDHð�; �; �; �Þ. S only can out-
put a0 � Pj for q þ 1 different elements Pi in R with a negligible
probability, where q 	 Ct0;tðq1; :::; qnÞ for t0 < t, and qi is the
number of S queries to TOMDHði; �Þ.
� TOMDHði; QiÞ: input i 2 ½1; n� and Qi 2 G, output

fðiÞ �Qi.
� DDHðPi; Pj; Qi; QjÞ: input Pi; Pj; Qi; Qj 2 G, output 1

iff 9m 2 Zp such that Pj ¼ mPi ^Qj ¼ mQi.
Formally, with the Gap-TOMDH assumption, we have

Lemma 1 described below.

Lemma 1. The hardened password spw is pseudorandom, unpre-
dictable, and oblivious under the Gap-TOMDH assumption in
the random oracle model.

Proof. The proof appears in Section 3.3 of [56] and Appen-
dix A of [28]. Here we would not repeat it. tu
With Lemma 1, we treat the password-hardening proto-

col as an “ideal functionality”, model spw as the answer of a
random oracle with the input pw to capture these properties.

A formal definition of EHR confidentiality is as follows.

Fig. 11. The construction in the conference version.

TABLE 2
Two Constructions of the Servers-Aided Password-Based

Subsequent-Key-Locked Encryption Mechanism

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6517

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

Definition 2 (EHR confidentiality). HealthFort achieves
IND-CPA secure for encrypted EHRs iff for any probabilistic
polynomial-time (PPT) adversary CS?

, any polynomial number
of keys n, and any password space PW , the following equation
holds, where qð‘Þ is an upper bound on the number of queries
CS?

makes to the oracles, pð‘Þ is a polynomial,

jPr½EConfcpaCS? ð1‘; n; PWÞ ¼ 1�j � qð‘Þ
jPW j þ

1

2

þ pð‘Þ
2‘
þ neglð‘Þ:

As shown in Fig. 12, the adversary CS?
is actually a mali-

cious cloud server, CS?
can choose an arbitrary encryption

key and query O on the key to obtain its ciphertext and the
ciphertexts of subsequent keys. Finally, CS?

chooses two
keys k0;1; k1;1 with the same length as the challenge plain-
texts and obtains the ciphertext of kb;1 and the ciphertexts of
subsequent keys, where b is randomly chosen from the set
f0; 1g. The goal of CS?

is to correctly guess the value of b,
i.e., winning the game. We further stress that in the game,
we allow the malicious cloud server to collude with several
(less than the threshold number of) key servers.

Theorem 1. If Fð�Þ is a pseudorandom function, �hð�Þ is modeled
as a random oracle, then HealthFort achieves IND-CPA secure
for encrypted EHRs.

Proof. The proof of Theorem 1 consists of two steps.
In the first step of the proof, we first define G0, which

is a game that is exactly the same as EConf except that
spw is replaced with a random string. In EConf, the hash
function is actually modeled as a random oracle HO.

Specifically, HO maintains a list Q½ � that is initially
empty. When HO receives a query pw from CS?

, it first
checks whether Q½pw� exists in the list, if so, the corre-
sponding value Q½pw� is returned. Otherwise, a uniform
string is chosen and returned, and the oracle stores
Q½pw�. In such a case, if CS?

does not query the random
oracle on the correct password, EConf is identical with
G0. If CS?

queries the random oracle on the challenge
password and obtains the corresponding spw, CS?

can
easily succeed in the experiment.

Let Same denote the event that the challenge password
is the same as the one that CS?

queries HO. Then, we
have

Pr½EConfcpaCS? ð1‘; n; PWÞ ¼ 1�
¼Pr½EConfcpaCS? ð1‘; n; PWÞ ¼ 1 ^ Same�
þ Pr½EConfcpaCS? ð1‘; n; PWÞ ¼ 1 ^ Same�
¼Pr½Same� þ Pr½GCS?0 ð1‘; n; PWÞ ¼ 1�

� qð‘Þ
jPW j þ Pr½GCS?0 ð1‘; n; PWÞ ¼ 1�:

In the second step of the proof, we demonstrate that

Pr½GCS?0 ð1‘; n; PWÞ ¼ 1� � 1

2
þ pð‘Þ

2‘
þ neglð‘Þ:

Let G1 be an experiment that is identical with G0,
except that the pseudorandom function Fð�Þ is replaced
with a random function fð�Þ with the same domain and
range. We prove that

Fig. 12. The game for EHR confidentiality.

6518 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

jPr½G0ð1‘; n; PW Þ ¼ 1�
�Pr½G1ð1‘; n; PWÞ ¼ 1�j � neglðnÞ:

We use CS?
to construct a distinguisher M for the

pseudorandom function Fð�Þ.M is given oracle access to
some function O, and its goal is to determine whether
the first of the returned strings is generated by Fð�Þ or the
truly random function fð�Þ.

In detail:
M is given input ð1‘; n; PW Þ and access to an oracle O.
1) Run CS?

. Whenever CS?
queries the oracles O on

k1, M queries O, obtains a response and returns
the response.

2) When CS?
chooses the challenge message k0;1; k1;1,

M chooses a uniform bit b 2 f0; 1g, queries
Oðkb;1Þ, obtains a response, and returns the strings
to CS?

.
3) Continue answering queries of CS?

as before until
CS?

outputs b0. Outputs 1 if b ¼ b0, and 0
otherwise.

If O returns strings generated by Fð�Þ,

Pr½Mck1;:::; ~cknð1‘; n; PW Þ) 1� ¼ Pr½G0ð1‘; n; PW Þ ¼ 1�: (2)

If O returns strings generated by fð�Þ,
Pr½Mrs1;:::;rsnð1‘; n; PWÞ) 1� ¼ Pr½G1ð1‘; n; PWÞ ¼ 1�: (3)

The possibility forM to distinguish whether a string out-
put by the pseudorandom function or the truly random
function is negligible. Therefore,

jPr½Mck1;:::; ~cknð1‘; n; PWÞ) 1�
� Pr½Mrs1;:::;rsnð1‘; n; PW Þ) 1�j � neglðnÞ: (4)

Furthermore, in G1, rs1; rs2; :::; rsn are output by a ran-
dom function, CS?

learns nothing about kb;1 from them.
Thus,

Pr½G1ð1‘; n; PWÞ ¼ 1� ¼ 1

2
þ pð‘Þ

2‘
;

where pð‘Þ=2‘ is essentially the possibility that CS?

guesses spw correctly.
Combined with Eqs. (2), (3), and (4), we have

Pr½G0ð1‘; n;PWÞ ¼ 1�
�Pr½G1ð1‘; n; PWÞ ¼ 1� þ neglð‘Þ

¼ 1

2
þ pð‘Þ

2‘
þ neglð‘Þ:

This concludes the proof. tu
Note that Theorem 1 implies the security against DGA. In

terms of online DGA, the possibility of success is qð‘Þ
jPW j , where

qð‘Þ can be limited to a small constant by limiting the times
that the adversary fails to guess pw correctly [7], [29], such
that the possibility is negligible. In terms of offline DGA, the

possibility of success is pð‘Þ
2‘

, which is also a negligible value.
Therefore, HealthFort is able to resist against DGA.

6.2 Provenance Security

Resistance Against Forgery and Deletion. In HealthFort, when
a doctor colludes with the cloud server to forge a prove-
nance record, the doctor needs to store its information on
Ethereum with the corresponding patient’s permission.
Without the permission, the provenance record cannot be
integrated into the blockchain and cannot be valid neither.
If a provenance record is deleted, its corresponding infor-
mation stored on Ethereum needs to be deleted. However,
due to the tamper-proof property of the blockchain, launch-
ing attacks on data stored on Ethereum requires more than
half of the computational power of the entire network,
which may not be even cost worthy.

Identity Privacy Preservation. A doctor’s identity in a diag-
nosis is privacy information and is included in several prov-
enance records. As provenance records are publicly stored,
a malicious adversary may extract the information about
the doctor’s identity from provenance records by following
strategies:

1) The adversary obtains the real identity of the doctor
in a diagnosis.

2) The adversary determines which provenance records
are generated by the same doctor.

For the first strategy, instead of the doctor’s real identity,
a pseudorandom identity is included in the provenance
records. The pseudorandom identity is generated by the
hospital by encrypting the real identity with a random treat-
ment key. The adversary cannot retrieve the real identity of
the doctor without the treatment key. For the second strat-
egy, each time a pseudorandom identity is generated, the
hospital randomly chooses a treatment key as the encryp-
tion key. In such case, among different provenance records,
which includes the pseudorandom identity corresponding
to the same doctor cannot be determined.

Non-Repudiation. In HealthFort, if a doctor repudiates a
provenance record generated by her/him, there are two
possible strategies:

1) The doctor claims that the pseudonym included in
the provenance record does not belong to her/him.

2) The doctor claims that others use her/his pseudo-
nym to generate and publish the provenance record.

For the first strategy, the hospital generates the pseudo-
nym that is derived from the doctor’s real identity. The hos-
pital can prove that the pseudonym belongs to the doctor
by extracting the identity from the provenance record. For
strategy 2, before the provenance record is outsourced, the
creator of the provenance record sends it to the hospital, the
hospital verifies the provenance record, where the pseudo-
nym is included. If the pseudonym does not match the real
identity of the creator, the hospital rejects to sign on the
provenance record. Without the signature of the hospital on
it, the cloud server will not accept the provenance record.
Therefore, both strategies are infeasible, the doctor cannot
repudiate the provenance record generated by her/him.
Due to the activities recorded in the provenance record, the
doctor cannot deny that she/he generated some EHRs for

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6519

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

the patient either. With identity privacy preservation and
non-repudiation, in other words, HealthFort satisfies condi-
tional identity privacy preservation.

7 IMPLEMENTATION AND EVALUATION

We implement a HealthFort prototype in Java, JavaScript,
and Solidity in more than 32000 lines of code. Specifically,
Java is used to implement the back-end of HealthFort, Java-
Script is utilized to implement the front-end of HealthFort,
and Solidity is used to implement the smart contract. A
component diagram of the prototype is shown in Fig. 13
and our source code is available on the following address:
https://github.com/sssshai/HealthFort

In the implementation, the security level is chosen to be
80 bits, where the underlying elliptic curve is an alt_bn128
curve whose base field size is 128 bits. The cryptography
algorithms are implemented based on JPBC library5, h and
�h are implemented by using SHA256, the encryption algo-
rithm Eð�Þ is chosen to be AES-256 [57], the signature algo-
rithm Sigð�Þ is chosen to be BLS [58].

We conduct experiments on a laptop with macOS, an
Intel Core i5 CPU, and 16 GB DDR4X of RAM. We consider
the network latency and transaction synchronous under the
public blockchain network, evaluate the performance of our
scheme in the Ethereum public test network Ropsten using
MetaMask as the wallet App.

7.1 Implementation

Now we introduce the methods for each algorithm inter-
preted in Section 5, a detailed list of the methods is pro-
vided in Table 3.

Registration. We implement blindPWð�Þ for a patient to
blind the password. Key servers invoke genSpwð�Þ to gener-
ate and share a servers-hardened key, which outputs s�i and
Qi. Then the patient can obtain a servers-hardened pass-
word spwP invoking getSpwð�Þ, and further compute
auKS ; auCS ; auH, and cskP to register invoking regis-

terPð�Þ. After the key servers, the cloud server, and the hos-
pital invoke saveUserð�Þ to store the patient’s information,
the registration is completed.

Appointment. The patient invokes authenticateð�Þ to
authenticate with the hospital, and the hospital invokes
checkUserð�Þ to validate the validity of the patient’s iden-
tity. After authentication, the hospital invokes appointHð�Þ
to designate a doctor for the patient and to send appoint-
ment information to the patient. On the patient side,
parseð�Þ is used to parse the appointment information sent
from the hospital.

Consultation. The patient invokes authenticateð�Þ to
authenticate with the cloud server and consultPð�Þ to con-
sult the doctor. After validating the validity of auCS , the
cloud server allows the patient to download cskP and ~ckðDeÞ

y .
The doctor invokes consultDð�Þ to validate the validity of
a permission sent from the patient, generate an encryption
key of the EHR generated in the current consultation and
encrypt the encryption key. If the doctor needs to view the
patient’s previous EHRs, the patient sends ckðDeÞ

y to the doc-
tor by invoking sendCkToDð�Þ. Then the doctor can use
getEHRð�Þ to compute kðDeÞ

y and further obtain the plain-
texts of previous EHRs. After the consultation, the doctor
creates an new EHR for the patient by createEHRð�Þ.

ProvGen. We implement sendPRToHð�Þ and genSigð�Þ
for this algorithm. After generating a provenance record,
the doctor invokes sendPRToHð�Þ to request a signature of
the hospital on the provenance record. The hospital invokes
genSigð�Þ to compute a signature on the provenance
record.

Store. The doctor sends a transaction to the address of
the smart contract by callContractð�Þ to store the
information of the provenance record on Ethereum. After
the transaction is recorded into Ethereum, the doctor uses
outsourceð�Þ to outsource the ciphertext of the gener-
ated EHR, the corresponding provenance record, and the
signature of the hospital on the provenance record to the
cloud server. The patient uses updKeyð�Þ to update the
encryption keys of EHRs. The cloud server invokes
receiveProvð�Þ to store the ciphertext of generated
EHR, the corresponding provenance record, the signature
of the hospital on the provenance record, and the cipher-
texts of updated keys.

Audit. In this algorithm, an audit can invoke checkSigð�Þ
to validate the validity of the signature of the hospital on the
latest provenance record, and invoke checkHashð�Þ to
extract the information from Ethereum to verify the integrity
and timeliness of provenance records.

HealthFort employs a set of independent key servers
to harden passwords. It seems that the patients have to
bear the additional costs to employ them. In the practical
deployment of HealthFort, the hospitals can serve as the
key servers due to the following observations. In reality,
patients always go to the hospitals in a fixed area, which
means that they always interact with fixed hospitals in
most cases. To meet the related regulations, multiple
hospitals always utilize same cloud server to manage
patients’ data and even share a patient’s data with each
other (under the patient’s permission). The hospitals are
independent of each other and are not fully trusted by
patients, this essentially follows the same threat model
as the key servers in HealthFort. As such, patients do
not need to bear additional costs to employ independent
key servers.

Fig. 13. The component diagram of the HealthFort prototype.

5. The Java Pairing Based Cryptography Library (JPBC). http://gas.
dia.unisa.it/projects/jpbc/#.Yg9TnC-KFqs

6520 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

https://github.com/sssshai/HealthFort
http://gas.dia.unisa.it/projects/jpbc/#.Yg9TnC-KFqs
http://gas.dia.unisa.it/projects/jpbc/#.Yg9TnC-KFqs

7.2 Comparison and Evaluation

We compare HealthFort with existing works in terms of
security and functionality. The comparison with eHealth
systems, e.g., JMEK09 [14], SAGE [59], SMR10 [32],
HealthDep [12], and ASBKS [38] is shown in Table 4. As
regards efficiency, we compare the computation costs of

the provenance mechanism in HealthFort with existing
provenance mechanisms, e.g., LLLS10 [22], CCHZD12
[23], ProvChain [24], ZLX18 [26] and SECProv [21]. The
comparison with provenance mechanisms is provided
in Table 5. The notations used in this two tables are
described in Table 6.

TABLE 4
Comparison With eHealth Systems

JMEK09
[14]

SAGE [59] SMR10
[32]

HealthDep
[12]

ASBKS
[38]

HealthFort

Underlying encryption mechanism for EHR
confidentiality

Public-key Symmetric-
key

Public-
key

Symmetric-
key

Public-
key

Symmetric-
key

Portability N N N N N Y
Conditional forward transparency Y N Y N Y Y
No single point of failure Y N N Y N Y
Backward security N N Y Y Y Y

TABLE 3
Details of Methods Implemented in HealthFort

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6521

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

Now we present the evaluation results of the HealthFort
prototype, focusing on three aspects: 1) Computational
costs; 2) Communication costs; 3) Practicality.

1) Computational costs. On the patient side, we notice that
the computation costs change with the total number n and
the threshold number t of key servers. The patient needs to
compute the servers-hardened password spw using the t
signatures sent from key servers. Therefore, we evaluate the
computation costs of the whole procedure on the patient
side with different ðt; nÞ, and the results of experiments are
shown in Fig. 14a. According to the experiment results, we
can observe that when t ¼ 7 and n ¼ 20, the computation
delay of the whole procedure, including registering, is no
more than 1.2 seconds, which is acceptable for patients. In
addition, we evaluate the computation costs of the patient
with different consultation times, and the results of experi-
ments are shown in Fig. 14b, where we fix n ¼ 20. Accord-
ing to the experiment results, we observe that the
computation delay for a registered patient to consult a doc-
tor is about 0.16 seconds.

On the key server side, the main computation costs are
ðt; nÞ-threshold secret generating and sharing, which are
one-time costs. Once a secret has been generated and shared
between key servers, each of them only needs to generate a
signature on the blinded password when the patient
requests a servers-hardened password. We evaluate the
computation delay of each key server with different ðt; nÞ,
the results are shown in Fig. 14c. According to the results
of the experiments, we observe that when t ¼ 7 and n ¼

20, the computation delay for a key server to assist a patient
with a consultation is about 6.5 seconds.

On the doctor side, the computation delay is shown in
Fig. 14d, being consulted by 100 patients only takes about
15 seconds. In reality, there are at most 80 patients diag-
nosed by one doctor per day.

On the hospital side, the computation delay is mainly
caused by generating a signature on a provenance record.
We conduct experiments on the computation delay of the
hospital with different patients, which is shown in Fig. 14d.
According to the results of experiments, we can observe
that providing service for 100 patients takes no more than 4
seconds.

2) Communication costs. Patients interact with all key serv-
ers to request the service of password hardening. On the
patient side, the communication costs increase with the
increase of the number of key servers n. We conduct experi-
ments on the communication costs of a patient, the results
are shown in Fig. 15a. We can observe that when n ¼ 20, the
communication costs for a patient to complete a consulta-
tion are about 12 KB.

When a patient requests password hardening, each key
server communicates with others to generate server-side

TABLE 5
Comparison With Provenance Mechanisms

Fig. 14. Computational delay.

TABLE 6
Notations Used in Table 4 and Table 5

Notation Description

Y The system fulfills the requirement.
N The system does not fulfill the requirement.
? The system does not focus on the requirement.
N The RSA module.
AddS Addition in the set S.
MulS Multiplication in the set S.
ExpS Exponentiation in the set S.
HS Hashing a value into the set S.
Pair Bilinear pairing.
E Symmetrical encryption.

6522 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

secret distributed into t parts. Therefore, on the key server
side, the communication costs change with n and t. We con-
duct experiments on communication costs on the key
server, the results are shown in Fig. 15b. Once the key serv-
ers complete the secret sharing, the service for a patient
only takes each of them about 0.3 KB every time.

On the doctor side, the communication costs are mainly
sending the provenance record to the hospital to request a
signature, calling the smart contract, and outsourcing the
new EHR and the corresponding provenance to the cloud
server. The communication costs on the doctor side are
within 200 KB when he/she diagnoses 100 patients.

3) Practicality. The practicality of HealthFort is evaluated
in three aspects. First, the time consumption that a prove-
nance record PR to be valid after being generated, which
mainly consists of two aspects. The first one is the time to
record the transaction to the blockchain; The second one is
the confirmation time for the transaction. We conduct 20
transactions by invoking the smart contract that we
deployed in our system, and the evaluation results are
shown in Fig. 16. The time consumption of validating a
provenance record is around 2.8 minutes. Since the block-
chain system would dynamically adjust the difficulty, gen-
erally the time consumption would not exceed 300 seconds.

Second, the monetary costs to deploy a smart contract
and to invoke the storage function of the smart contract are
measured. On Ropsten, deploying the smart contract costs
783379 gas and invoking the storage function once costs
298390 gas. As of Sep. 2021, deploying the smart contract
requires about 0.0423025 ETH, and storing the information
about a provenance record requires about 0.0161131 ETH.
This can be acceptable to patients in respect of the value of
the provenance record protected by HealthFort.

Third, in HealthFort, the security of the provenance relies
on a blockchain (i.e., the Ethereum blockchain in this paper),

the requirement for the blockchain is to perpetually store
hash values of the provenance information. As tamper-
proof is a basic feature for blockchain systems, HealthFort is
compatible with other secure blockchains.

From the results of the evaluation, it is demonstrated that
HealthFort is efficient and practical in terms of computa-
tion, communication, and monetary costs.

8 CONCLUSION

In this paper, we have proposed a servers-aided password-
based subsequent-key-locked encryption mechanism to
ensure EHRs’ confidentiality, and a blockchain-based
secure data provenance mechanism for eHealth systems.
Based on the two mechanisms, we have developed Health-
Fort, to provide a secure storage services for EHRs with effi-
cient provenance. We have conducted a formal analysis and
comprehensive evaluation on HealthFort to demonstrate
that it is secure, efficient, and practical for implementation
and development. For the future work, we will design a
secure data provenance mechanism for cyber supply chain,
e-science, and database, etc.

REFERENCES

[1] S. Li, Y. Zhang, C. Xu, N. Cheng, Z. Liu, and X. Shen, “BESURE:
Blockchain-based cloud-assisted ehealth system with secure data
provenance,” in Proc. IEEE/ACM 29th Int. Symp. Qual. Serv., 2021,
pp. 1–6.

[2] L. Guo, C. Zhang, J. Sun, and Y. Fang, “A privacy-preserving attri-
bute-based authentication system for mobile health networks,”
IEEE Trans. Mobile Comput., vol. 13, no. 9, pp. 1927–1941, Sep.
2014.

[3] X. Shen et al., “Blockchain for transparent data management
towards 6G,” Engineering, vol. 8, pp. 74–85, 2022.

[4] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing of a com-
puting access point for multi-user mobile cloud offloading with
delay constraints,” IEEE Trans. Mobile Comput., vol. 17, no. 12,
pp. 2868–2881, Dec. 2018.

[5] S. Moulik, S. Misra, and A. Gaurav, “Cost-effective mapping
between wireless body area networks and cloud service providers
based on multi-stage bargaining,” IEEE Trans. Mobile Comput.,
vol. 16, no. 6, pp. 1573–1586, Jun. 2016.

[6] X. Li, H. Wang, C. Chen, and J. Grundy, “An empirical study on
how well do COVID-19 information dashboards service user
information needs,” IEEE Trans. Serv. Comput., vol. 15, no. 3,
pp. 1178–1192, May/Jun. 2022.

[7] Y. Zhang, C. Xu, N. Cheng, and X. Shen, “Secure password-pro-
tected encryption key for deduplicated cloud storage systems,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2789–2806,
Jul./Aug. 2022.

[8] J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and secure
decision tree classification for cloud-assisted online diagnosis
services,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 4,
pp. 1632–1644, Apr. 2019.

[9] J. Liu, C. Zhang, K. Xue, and Y. Fang, “Privacy preservation in
multi-cloud secure data fusion for infectious-disease analysis,” IEEE
Trans. Mobile Comput., early access, Jan. 25, 2022, doi: 10.1109/
TMC.2022.3145745.

[10] Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu, “Identity-
based data outsourcing with comprehensive auditing in clouds,”
IEEE Trans. Inf. Forensics Secur., vol. 12, no. 4, pp. 940–952, Apr.
2017.

[11] X. Li, S. Liu, R. Lu, M. K. Khan, K. Gu, and X. Zhang, “An efficient
privacy-preserving public auditing protocol for cloud-based med-
ical storage system,” IEEE J. Biomed. Health Inform., vol. 26, no. 5,
pp. 2020–2031, May 2022.

[12] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “HealthDep:
An efficient and secure deduplication scheme for cloud-assisted
ehealth systems,” IEEE Trans. Ind. Informat., vol. 14, no. 9,
pp. 4101–4112, Sep. 2018.

Fig. 15. Communication costs.

Fig. 16. Evaluation of timeliness.

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6523

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/TMC.2022.3145745
https://doi.org/10.1109/TMC.2022.3145745

[13] J. Wei, X. Chen, J. Wang, X. Hu, and J. Ma, “Enabling (end-to-end)
encrypted cloud emails with practical forward secrecy,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2318–2332,
Jul./Aug. 2022.

[14] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient con-
trolled encryption: Ensuring privacy of electronic medical
records,” in Proc. ACM Workshop Cloud Comput. Secur., 2009,
pp. 103–114.

[15] M. Shen, J. Zhang, L. Zhu, K. Xu, X. Du, and Y. Liu, “Encrypted
traffic classification of decentralized applications on ethereum
using feature fusion,” in Proc. Int. Symp.Qual. Serv., 2019, pp. 47–52.

[16] W. Lee and C. Lee, “A cryptographic key management solution
for hipaa privacy/security regulations,” IEEE Trans. Informat.
Technol. Biomed., vol. 12, no. 1, pp. 34–41, Jan. 2008.

[17] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Selt-
zer, “Provenance-aware storage systems,” in Proc. Annu. Conf.
USENIX Annu. Tech. Conf., 2006, pp. 43–56.

[18] K.-K. Muniswamy-Reddy and M. Seltzer, “Provenance as first
class cloud data,” ACM SIGOPS Operating Syst. Rev., vol. 43, no. 4,
pp. 11–16, 2010.

[19] K.-K. Muniswamy-Reddy, P. Macko, and M. I. Seltzer,
“Provenance for the cloud,” in Proc. FAST, 2010, pp. 15–14.

[20] M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “Securing data
provenance in the cloud,” in Proc. Int. Workshop Open Problems
Netw. Secur., 2012, pp. 145–160.

[21] S. Zawoad, R. Hasan, and K. Islam, “SECProv: Trustworthy and
efficient provenance management in the cloud,” in Proc. IEEE
Conf. Comput. Commun., 2018, pp. 1241–1249.

[22] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure provenance: The
essential of bread and butter of data forensics in cloud
computing,” in Proc. 5th ACM Symp. Inf. Comput. Commun. Secur.,
2010, pp. 282–292.

[23] S. S. Chow, C. Chu, X. Huang, J. Zhou, and R. H. Deng, “Dynamic
secure cloud storage with provenance,” in Proc. Cryptography
Secur. From Theory Appl., 2012, pp. 442–464.

[24] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in
cloud environment with enhanced privacy and availability,” in
Proc. 17th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2017,
pp. 468–477.

[25] R. Neisse, G. Steri, and I. Nai-Fovino, “A blockchain-based
approach for data accountability and provenance tracking,” in
Proc. 12th Int. Conf. Availability Rel. Secur., 2017, pp. 1–10.

[26] Y. Zhang, X. Lin, and C. Xu, “Blockchain-based secure data prove-
nance for cloud storage,” in Proc. Int. Conf. Inf. Commun. Secur.,
2018, pp. 3–19.

[27] N. Tyagi, I. Miers, and T. Ristenpart, “Traceback for end-to-end
encrypted messaging,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2019, pp. 413–430.

[28] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee, “Pasta: Pass-
word-based threshold authentication,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 2042–2059.

[29] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and X. Shen, “Protect:
Efficient password-based threshold single-sign-on authentication
for mobile users against perpetual leakage,” IEEE Trans. Mobile
Comput., vol. 20, no. 6, pp. 2297–2312, Jun. 2020.

[30] S. Shang, X. Li, R. Lu, J. Niu, X. Zhang, and M. Guizani, “A pri-
vacy-preserving multi-dimensional range query scheme for edge-
supported industrial IoT,” IEEE Internet Things J., vol. 9, no. 16,
pp. 15285–15296, Aug. 2022.

[31] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “Dataclouds:
Enabling community-based data-centric services over the Internet
of Things,” IEEE Internet Things J., vol. 1, no. 5, pp. 472–482, Oct.
2014.

[32] S. Narayan, M. Gagn�e, and R. Safavi-Naini, “Privacy preserving
EHR system using attribute-based infrastructure,” in Proc. ACM
Workshop Cloud Comput. Secur. Workshop, 2010, pp. 47–52.

[33] K. Zhang, K. Yang, X. Liang, Z. Su, X. Shen, and H. H. Luo,
“Security and privacy for mobile healthcare networks: From a
quality of protection perspective,” IEEE Wireless Commun., vol. 22,
no. 4, pp. 104–112, Apr. 2015.

[34] A. Act, “Health insurance portability and accountability act of
1996,” Public Law, vol. 104, 1996, Art. no. 191.

[35] J. Sun, X. Zhu, C. Zhang, and Y. Fang, “HCPP: Cryptography
based secure EHR system for patient privacy and emergency
healthcare,” in Proc. 31st Int. Conf. Distrib. Comput. Syst., 2011,
pp. 373–382.

[36] Y. Chen, J. Lu, and J. Jan, “A secure EHR system based on hybrid
clouds,” J. Med. Syst., vol. 36, no. 5, pp. 3375–3384, 2012.

[37] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “FS-PEKS: Lat-
tice-based forward secure public-key encryption with keyword
search for cloud-assisted industrial internet of things,” IEEE
Trans. Dependable Secure Comput., vol. 18, no. 3, pp. 1019–1032,
May-Jun. 2019.

[38] L. Xu et al., “ASBKS: Towards attribute set based keyword search
over encrypted personal health records,” IEEE Trans. Dependable
Secure Comput., vol. 18, no. 6, pp. 2941–2952, Nov.-Dec. 2021.

[39] H. Huang, X. Sun, F. Xiao, P. Zhu, and W. Wang, “Blockchain-
based ehealth system for auditable EHRs manipulation in cloud
environments,” J. Parallel Distrib. Comput., vol. 148, pp. 46–57,
2021.

[40] J. Wei, X. Chen, X. Huang, X. Hu, andW. Susilo, “RS-HABE: Revoca-
ble-storage and hierarchical attribute-based access scheme for secure
sharing of E-health records in public cloud,” IEEE Trans. Dependable
Secure Comput., vol. 18, no. 5, pp. 2301–2315, Sep./Oct. 2021.

[41] J. Wei, X. Chen, J. Ma, X. Hu, and K. Ren, “Communication-effi-
cient and fine-grained forward-secure asynchronous messaging,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2242–2253, May 2021.

[42] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attri-
bute-based encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 1, pp. 131–143, Jan. 2012.

[43] Y. Miao et al., “Privacy-preserving attribute-based keyword
search in shared multi-owner setting,” IEEE Trans. Dependable
Secure Comput., vol. 18, no. 3, pp. 1080–1094, Mar. 2019.

[44] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou, “Secure dedupli-
cation with efficient and reliable convergent key management,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun.
2013.

[45] B. Lee, A. Awad, and M. Awad, “Towards secure provenance in
the cloud: A survey,” in Proc. IEEE/ACM 8th Int. Conf. Utility Cloud
Comput., 2015, pp. 577–582.

[46] C. A. Lynch, “When documents deceive: Trust and provenance as
new factors for information retrieval in a tangled web,” J. Amer.
Soc. Informat. Sci. Technol., vol. 52, no. 1, pp. 12–17, 2001.

[47] R. Hasan, R. Sion, and M. Winslett, “Introducing secure prove-
nance: Problems and challenges,” in Proc. ACM Workshop Storage
Secur. Survivability, 2007, pp. 13–18.

[48] O. Q. Zhang, M. Kirchberg, R. K. Ko, and B. S. Lee, “How to track
your data: The case for cloud computing provenance,” in Proc.
IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., 2011, pp. 446–453.

[49] R. K. Ko and M. A. Will, “Progger: An efficient, tamper-evident
kernel-space logger for cloud data provenance tracking,” in Proc.
IEEE 7th Int. Conf. Cloud Comput., 2014, pp. 881–889.

[50] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Bus. Rev., p. 21260, 2008.

[51] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project Yellow Paper, vol. 151,
no. 2014, pp. 1–32, 2014.

[52] Y. Zhang, C. Xu, N. Cheng, H. Li, H. Yang, and X. Shen, “Chronos
+: An accurate blockchain-based time-stamping scheme for cloud
storage,” IEEE Trans. Serv. Comput., vol. 13, no. 2, pp. 216–229,
Feb. 2019.

[53] N. Szabo, “Smart contracts: Building blocks for digital markets,” J.
Transhumanist Thought, vol. 18, no. 2, pp. 50–53, 1996.

[54] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted
online password guessing: An underestimated threat,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1242–1254.

[55] T. Lebo et al., “PROV-O: The prov ontology,” W3C Recommenda-
tion, vol. 30, 2013.

[56] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “TOPPSS: Cost-
minimal password-protected secret sharing based on threshold
OPRF,” in Proc. Int. Conf. Appl. Cryptography Netw. Secur., 2017,
pp. 39–58.

[57] M. J. Dworkin et al., “Advanced encryption standard (AES),” 2001.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.197.pdf

[58] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Proc. Int. Conf. Theory Appl. Cryptology Inf. Secur.,
2001, pp. 514–532.

[59] X. Lin, R. Lu, X. Shen, Y. Nemoto, and N. Kato, “SAGE: A strong
privacy-preserving scheme against global eavesdropping for
ehealth systems,” IEEE J. Sel. Areas Commun., vol. 27, no. 4,
pp. 365–378, Apr. 2009.

6524 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Shiyu Li received the BSc degree from the Univer-
sity of Electronic Science Technology of China
(UESTC), in 2021. She is currently working toward
the master degree with the School of Computer
Science and Engineering, University of Electronic
Science Technology of China. Her research inter-
ests are applied cryptography, data security, and
blockchain technology.

Yuan Zhang (Member, IEEE) received the BSc
degree and PhD degree from the University of
Electronic Science Technology of China
(UESTC), in 2013 and 2019, respectively. He is
currently working toward the PhD degree from
2017 to 2019 in BBCR Lab, Department of ECE,
University of Waterloo, Canada. He is currently
an associate professor with the School of Com-
puter Science and Engineering with UESTC. His
research interests are applied cryptography, data
security, and blockchain technology.

Chunxiang Xu (Member, IEEE) received the BSc
and MSc degrees in applied mathematics from
Xidian University, Xi’an, China, in 1985 and 2004,
respectively, and the PhD degree in cryptography
from Xidian University, in 2004. She is currently a
professor with the Center for Cyber Security,
School of Computer Science and Engineering,
UESTC. Her research interests include informa-
tion security, cloud computing security, and
cryptography.

Nan Cheng (Member, IEEE) received the BE and
MS degrees from Tongji University, Shanghai,
China, in 2009 and 2012, respectively, and the PhD
degree from the University of Waterloo, Waterloo,
ON, Canada, in 2016. He is currently a professor
with the School of Telecommunication, Xidian Uni-
versity. His current research focuses on big data in
vehicular networks and self-driving system.

Zhi Liu (Member, IEEE) received the PhD degree
in informatics fromNational Institute of Informatics.
He is currently anAssociate Professor with theUni-
versity of Electro-Communications. His research
interest includes video network transmission and
mobile edge computing. He is now an editorial
board member of Springer wireless networks and
IEEEOpen Journal of the Computer Society.

Yicong Du received the BSc and MSc degree
from the University of Electronic Science Technol-
ogy of China, in 2018 and 2021, respectively. He
is currently working toward the PhD degree with
the School of Computer Science and Engineer-
ing, University of Electronic Science and Technol-
ogy of China. His research interests are applied
cryptography and blockchain technology, with the
current focus on physical layer security.

Xuemin Shen (Fellow, IEEE) received the PhD
degree in electrical engineering from Rutgers Uni-
versity, New Brunswick, NJ, USA, in 1990. He is
currently a University professor with the Depart-
ment of Electrical andComputer Engineering, Uni-
versity of Waterloo, Waterloo, ON, Canada. His
research focuses on resource management in
interconnected wireless/wired networks, wireless
network security, social networks, smart grid, and
vehicular ad hoc and sensor networks. He is a reg-
istered Professional Engineer of Ontario, Canada,

an Engineering Institute of Canada Fellow, a Canadian Academy of Engi-
neering Fellow, a Royal Society of Canada Fellow, and a Distinguished
Lecturer with the IEEE Vehicular Technology Society and Communica-
tions Society. He received the R.A. Fessenden Award in 2019 from IEEE,
Canada, the James Evans Avant Garde Award in 2018 from the IEEE
Vehicular Technology Society, the Joseph LoCicero Award in 2015 and
the Education Award in 2017 from the IEEE Communications Society. He
has also received the Excellent Graduate Supervision Award in 2006 and
theOutstanding PerformanceAward 5 times from theUniversity ofWater-
loo and the Premier’s Research Excellence Award (PREA) in 2003 from
the Province of Ontario, Canada. He served as the Technical Program
Committee Chair/Co-Chair for the IEEE Globecom’16, the IEEE
Infocom’14, the IEEE VTC’10 Fall, the IEEE Globecom’07, the Symposia
Chair for the IEEE ICC’10, the Tutorial Chair for the IEEE VTC’11 Spring,
the Chair for the IEEE Communications Society Technical Committee on
Wireless Communications, and P2P Communications and Networking.
He is the Editor-in-Chief of the IEEE Internet Of Things Journal and the
Vice President on Publications of the IEEECommunications Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: HEALTHFORT: A CLOUD-BASED EHEALTH SYSTEMWITH CONDITIONAL FORWARD TRANSPARENCYAND SECURE 6525

Authorized licensed use limited to: University of Waterloo. Downloaded on January 13,2024 at 08:59:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

