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Abstract— Split learning (SL) is a collaborative learning frame-
work, which can train an artificial intelligence (AI) model
between a device and an edge server by splitting the AI model into
a device-side model and a server-side model at a cut layer. The
existing SL approach conducts the training process sequentially
across devices, which incurs significant training latency especially
when the number of devices is large. In this paper, we design a
novel SL scheme to reduce the training latency, named Cluster-
based Parallel SL (CPSL) which conducts model training in
a “first-parallel-then-sequential” manner. Specifically, the CPSL
is to partition devices into several clusters, parallelly train
device-side models in each cluster and aggregate them, and then
sequentially train the whole AI model across clusters, thereby
parallelizing the training process and reducing training latency.
Furthermore, we propose a resource management algorithm
to minimize the training latency of CPSL considering device
heterogeneity and network dynamics in wireless networks. This
is achieved by stochastically optimizing the cut layer selection,
device clustering, and radio spectrum allocation. The proposed
two-timescale algorithm can jointly make the cut layer selection
decision in a large timescale and device clustering and radio
spectrum allocation decisions in a small timescale. Extensive
simulation results on non-independent and identically distributed
data demonstrate that the proposed solution can greatly reduce
the training latency as compared with the existing SL bench-
marks, while adapting to network dynamics.

Index Terms— Split learning, parallel model training, device
clustering, resource management.

I. INTRODUCTION

WITH the wide deployment of Internet of things (IoT)
devices and advanced sensing technologies, mobile

devices are generating an unprecedented amount of data
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Fig. 1. SL splits the whole AI model into a device-side model (the first four
layers) and a server-side model (the last six layers) at a cut layer (the fourth
layer).

every day. Leveraging such voluminous data, state-of-the-art
artificial intelligence (AI) techniques, especially deep neural
networks (DNNs), have facilitated tremendous progress across
a wide range of mobile applications, such as audio recognition,

image classification, and object detection [1], [2]. However,
the traditional centralized learning that collects device data is
difficult or sometimes impossible, because privacy laws and

regulations shelter device data [3], [4]. Distributed learning
frameworks, e.g., federated learning (FL), train AI models
without sharing device data, such that data privacy can be

preserved [5]. In FL, devices parallelly train a shared AI model
on their respective local dataset and upload only the shared
model parameters to the edge server. However, FL suffers
from significant communication overhead since large-size AI
models are uploaded and prohibitive device computation work-
load since the computation-intensive training process is only
conducted at devices.

Split learning (SL), as an emerging collaborative learning
framework, can effectively address the above issues. As shown
in Fig. 1, the basic idea of SL is to split an AI model at a
cut layer into a device-side model running on the device and a
server-side model running on the edge server. The procedure
of SL is as follows. First, the device executes the device-side
model with local data and sends intermediate output associated
with the cut layer, i.e., smashed data, to the edge server, and
then the edge server executes the server-side model, which
completes the forward propagation (FP) process. Second, the
edge server updates the server-side model and sends smashed
data’s gradient associated with the cut layer to the device,
and then the device updates the device-side model, which
completes the backward propagation (BP) process. In this way,
the SL process for one device is completed. Next, the updated
device-side model is transferred to the next device to repeat the
above process until all the devices are trained. In SL, small-
size device-side models, smashed data, and smashed data’s
gradients are exchanged between devices and the edge server,
resulting in reduced communication overhead as compared
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Fig. 2. The communication overhead and device computation workload of
SL with different cut layers for a LeNet example.

with uploading the whole AI model in FL. In addition, the
device computation workload is reduced, since devices only
train a part of the AI model. In the LeNet example shown in
Fig. 2, compared with FL, SL with cut layer POOL1 reduces
per-round communication overhead by 97.8% from 16.49 MB
to 0.35 MB, and per-round device computation workload for
processing one data sample by 93.9% from 91.6 MFlops to
5.6 MFlops. Due to its superior efficiency, SL is potentially

suitable to resource-constrained IoT devices [6]. However,
when multiple devices participate in SL, all the devices interact
with the edge server in a sequential manner, incurring signif-
icant training latency especially when the number of devices
is large. To reduce the training latency, can we conduct the
training process in a more efficient manner?

In this paper, we propose a novel low-latency SL scheme,
named Cluster-based Parallel SL (CPSL), which parallelizes
the device-side model training. At the beginning of the training
process, all the devices are partitioned into several clusters,
i.e., device clustering. The procedure of the CPSL operates in
a “first-parallel-then-sequential” manner, including: (1) intra-
cluster learning - In each cluster, devices parallelly train
respective device-side models based on local data, and the edge
server trains the server-side model based on the concatenated
smashed data from all the participating devices in the cluster.
Then, the device-side models are uploaded to the edge server
and aggregated into a new device-side model; and (2) inter-
cluster learning - The updated device-side model is transferred
to the next cluster for intra-cluster learning. In this way, the AI
model is trained in a sequential manner across clusters. In the
CPSL, device-side models in each cluster are parallelly trained,
which overcomes the sequential nature of SL and hence greatly
reduces the training latency. We establish mathematical models
to theoretically analyze the training latency of the CPSL.

Furthermore, we propose a resource management algorithm
to efficiently facilitate the CPSL over wireless networks.

Device heterogeneity and network dynamics lead to a sig-
nificant straggler effect in CPSL, because the edge server
requires the updates from all the participating devices in
a cluster for server-side model training. To overcome this
limitation, we investigate the resource management problem
in the CPSL, which is formulated into a stochastic opti-
mization problem to minimize the training latency by jointly
optimizing cut layer selection, device clustering, and radio
spectrum allocation. Due to the correlation among decision
variables, network dynamics, and implicit objective function,
the problem is difficult to solve. We decompose the problem
into two subproblems by exploiting the timescale separation of
the decision variables, and then propose a two-timescale algo-
rithm. Specifically, in the large timescale for the entire training
process, a sample average approximation (SAA) algorithm
is proposed to determine the optimal cut layer. In the small
timescale for each training round, a joint device clustering and
radio spectrum allocation algorithm is proposed based on the
Gibbs sampling theory. Extensive simulation results on real-
world non-independent and identically distributed (non-IID)
data demonstrate that the newly proposed CPSL scheme with
the corresponding resource management algorithm can greatly
reduce training latency as compared with the state-of-the-art
SL benchmarks, while adapting to network dynamics. The
main contributions of this paper are summarized as follows:

• We propose a novel low-latency CPSL scheme by intro-
ducing parallel model training. We further theoretically
analyze the training latency of the CPSL;

• We formulate resource management as a stochastic opti-
mization problem to minimize the training latency con-
sidering network dynamics and device heterogeneity;

• We propose a two-timescale resource management algo-
rithm to jointly determine cut layer selection, device
clustering, and radio spectrum allocation.

The remainder of this paper is organized as follows. Related
works and system model are presented in Sections II and III,
respectively. The CPSL scheme is proposed in Section IV,
along with training latency analysis in Section V. We formu-
late the resource management problem in Section VI, and the
corresponding algorithm is presented in Section VII. Simula-
tion results are provided in Section VIII. Finally, Section IX
concludes this research.

II. RELATED WORK

Federated learning is arguably the most popular distributed
learning method in recent years, which has been widely inves-
tigated. Extensive works are devoted to optimizing FL perfor-
mance from different research directions, such as multi-tier
FL framework design to accommodate a large number of

devices [7], [8], and model aggregation and compression

techniques to reduce communication overhead [9], [10]. More
importantly, to facilitate FL over dynamic wireless networks,
several pioneering works develop tailored resource allocation
algorithms for FL considering communication link unrelia-

bility [11], [12] and energy efficiency [13], [14]. We refer
interested readers to recent comprehensive surveys on FL [15],

[16], [17], [18].
Different from FL, the research on SL is still in its infancy.

The idea of SL (or collaborative DNN training) is first
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TABLE I

SUMMARY OF NOTATIONS

introduced in [19]. For the basic knowledge on SL, one can

refer to a tutorial paper and references therein [20]. Under
some assumptions, SL is functionally equivalent to centralized
learning on the aggregated datasets [19]. Recently, due to its
superior efficiency and simplicity, SL is gaining substantial
interest from industry and academia. In industry, an SL frame-
work is implemented in some open-source applications [21],

[22], and relevant services are developed by start-ups [23].
In academia, there are a growing body of research works
investigating SL. A line of works conduct empirical studies in
different scenarios. Koda et al. apply SL to depth-image based
millimeter-wave received power prediction, in which a signif-

icant communication latency reduction gain is achieved [24].
A few works apply SL in medical fields, such as X-ray image

classification [25]. Another work investigates SL performance
in IoT devices [6]. An early empirical work compares the
performance of SL with FL in terms of communication over-

head [26]. The preceding works have attested SL performance
gain in various settings. Recently, some works are investigating
privacy and security issues in SL. A pioneering work states that
SL achieves a higher privacy level than FL, since devices can-
not access the server-side model and hence AI model privacy is

preserved [27]. Pasquini et al. study detailed privacy issues and
attack schemes in the SL framework, by taking insecure edge
servers and structural vulnerabilities of the SL protocol into

consideration [28]. Another line of works focus on designing
and optimizing SL schemes. An SL variant with two cut layers
is proposed, in which the first and the last layers are kept at
devices, thereby avoiding sharing both data samples and their

labels [29]. A pioneering work proposes an online learning
algorithm to determine the optimal cut layer to minimize the

Fig. 3. The SL framework in wireless networks.

training latency [30]. An extended work in [31] studies a
more complicated SL scheme with multiple cut layers, using
a low-complexity algorithm to select the optimal set of cut
layers. As most of the existing studies do not incorporate
network dynamics, e.g., channel conditions, as well as device
computing capabilities, they may fail to identify the optimal
cut layer in the long-term training process. Moreover, while the
above works can enhance SL performance, they focus on SL
for one device and do not exploit any parallelism for training
multiple devices, thereby suffering from long training latency
when multiple devices are considered.

Recently, a few early research works are proposed to reduce

training latency [27], [32], [33]. More prominently, a pioneer-
ing work combines the ideas of SL and FL to parallelize the
training process [27]. This work deploys multiple server-side
models to parallelize the training process at the edge server,
which speeds up SL at the cost of abundant storage and
memory resources at the edge server, especially when the
number of devices is large. Different from the existing works,
we focus on a parallel SL solution with only one shared
server-side model for supporting a large number of devices.
Furthermore, taking network dynamics and device heterogene-
ity into account, we propose a resource management algorithm
to optimize the performance of the proposed solution over
wireless networks.

III. SYSTEM MODEL

As shown in Fig. 3, we consider a typical SL scenario over a
wireless network comprising an access point (AP) and multiple
devices.

• AP: The AP is equipped with an edge server that can
perform server-side model training. A server-side model,
denoted by we, is deployed at the AP. In addition, it is
in charge of collecting network information, such as
device computing capabilities and channel conditions, for
making resource management decisions.

• Device: The set of devices is denoted by N =
{1, 2, . . . , N} where N denotes the number of devices.
Each device is deployed with a device-side model,
denoted by wd. The whole AI model is denoted by

w = {wd;we}. (1)

The devices are endowed with computing capabilities,
which can perform device-side model training. Each
device possesses a local dataset, Dn = {zi, yi}Dn

i=1,∀n ∈
N . Here, zi ∈ R

Q×1 and yi ∈ R
1×1 represent an input

data sample and its corresponding label, respectively,
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Fig. 4. (a) In the vanilla SL, devices are trained sequentially; and (b) in the
CPSL, devices are trained parallelly in each cluster while clusters are trained
sequentially.

where Q denotes the dimension of the input data sample.
The aggregated dataset over all devices is represented by
D = ∪N

n=1Dn. A summary of important notations in this
paper is given in Table I.

In SL, the AP and devices collaboratively train the con-
sidered AI model without sharing the local data at devices.
Let l (zi, yi;w) represent the sample-wise loss function
that quantifies the prediction error of data sample zi with
regard to its label yi given model parameter w.1 The aver-
age loss function for device n is given by Ln(w) =

1
|Dn|

∑
{zi,yi}∈Dn

l (zi, yi;w) ,∀n ∈ N . The global loss func-

tion, L(w), is the average with weights proportional to the
number of data samples in each dataset, which is given by

L(w) =
∑

n∈N |Dn|Ln(w)∑
n∈N |Dn|

. (2)

The problem of SL boils down to identifying optimal
model parameter w� with minimum global loss, i.e., w� =
arg minw L(w).

To this end, the model parameter is sequentially trained
across devices in the vanilla SL scheme, i.e., conducting
model training with one device and then moving to another
device, as shown in Fig. 4(a). Sequentially training behaviour
may incur significant training latency since it is proportional
to the number of devices, especially when the number of
participating devices is large and device computing capabilities
are limited. Such limitation motivates the following design of
a parallel version of SL for training latency reduction.

1There are several types of loss functions in model training, such as cross-

entropy, mean squared error, and log likelihood [14], [34]. In the simulation,
the log likelihood loss function is adopted.

Algorithm 1 Cluster-Based Parallel Split Learning

(CPSL) Scheme

Input: B, ηd, ηe, and, K;

Output: w�;

1 Initialize model parameter and determine the cut layer

using Alg. 2;

2 for training round t = 1, 2, . . . , T do
3 AP collects computing capabilities and channel

conditions of all the devices;

4 AP partitionss devices into clusters using Alg. 4;

5 for cluster m = 1, 2, . . . , M do
6 AP broadcasts the latest device-side model to

participating devices in cluster m;

7 for local epoch l = 1, 2, . . . , L do
8 for each device in parallel do
9 Draw a mini-batch of data samples;

10 Execute device-side model and obtain

smashed data via (4);

11 Transmit smashed data to the AP with

allocated radio spectrum using Alg. 3;

12 end
13 AP concatenates smashed data and executes

the server-side model via (5);

14 AP updates the server-side model via (6);

15 AP transmits smashed data’s gradient to

participating devices;

16 for each device in parallel do
17 Update the device-side model using (7);

18 end
19 end
20 for each device in parallel do
21 Upload the device-side model to the AP

with allocated radio spectrum;

22 end
23 AP aggregates device-side models into a new

device-side model via (8);

24 end
25 end

IV. CPSL SCHEME DESIGN

In this section, we present the low-latency CPSL scheme,
as illustrated in Fig. 4(b). The core idea of the CPSL
is to partition devices into several clusters, parallelly train
device-side models in each cluster and aggregate them, and
then sequentially train the whole AI model across clusters.
The detailed procedure of the CPSL is presented in Alg. 1.

A. Initialization
In the initialization stage, the model parameter is initialized

randomly, and the optimal cut layer for minimizing training
latency is selected using Alg. 2 (to be discussed). After ini-
tialization, the CPSL operates in consecutive training rounds
until the optimal model parameter is identified. It is assumed
that all the participating devices in one training round stay
in AP’s coverage with unchanged device channel conditions
and computing capabilities. At each training round, t ∈ T =
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{1, 2, . . . , T}, the following intra-cluster learning and inter-
cluster learning stages are performed.

B. Intra-Cluster Learning Stage

The intra-cluster learning stage is to facilitate parallel model
training for devices within a cluster, consisting of the following
steps.

Step 1 - Device clustering (Lines 3-4). In this step, the
AP collects information including computing capabilities and
channel conditions of participating devices, and then partitions
devices into multiple clusters. The device clustering decision
making algorithm is detailed in Alg. 4 (to be discussed). Let
M denote the number of clusters, and M is the set of clusters.
The set of devices of cluster m is denoted by Km,∀m ∈ M.
We have ∪M

m=1Km = N , and Kn ∩ Km = ∅ if n �= m.
The following steps are to facilitate parallel device-side model
training in a cluster.

Step 2 - Device-side model distribution (Line 6). In this
step, the AP broadcasts the initial device-side model, denoted
by wd

m(t), to all the participating devices in cluster m. The
AI model is trained for L local epochs, indexed by l ∈ L =
{1, 2, . . . , L}. Let wd

m,k(t, l) denote the device-side model
parameters of device k in cluster m at epoch l in training
round t. In the first local epoch, we have

wd
m,k(t, 1) ← wd

m(t), ∀k ∈ Km. (3)

All participating devices in a cluster share the same server-side
model at each local epoch, denoted by we

m(t, l).
Step 3 - Model execution (Lines 8-13). This step is to

execute the model to compute the predicted results based on
drawn data samples, i.e., the FP process. Steps 2 and 3 are
repeated for L times. The whole AI model execution is split
into two phases, including device-side model execution and
server-side model execution.

• Device-side model execution: Firstly, each device ran-
domly draws a mini-batch of data samples, denoted by
Bm,k(t, l) ⊆ Dm,k, from its local dataset. Here, B =
|Bm,k(t, l)| is the mini-batch size, and Dm,k denotes
the dataset possessed by device k. Let Zm,k(t, l) ∈
R

B×Q,∀k ∈ Km denote the aggregated input of the
mini-batch of data samples in device k. Secondly, each
device executes its respective device-side model with
the drawn data samples, and obtains smashed data
Sm,k(t, l) ∈ R

B×P , i.e.,

Sm,k(t, l) = f
(
Zm,k(t, l);wd

m,k(t, l)
)
,

∀k ∈ Km, l ∈ L (4)

where f (z;w) represents the mapping function between
input z and output given model parameter w. Here, P
is the dimension of smashed data for one data sample.
Thirdly, each device transmits its smashed data to the AP
with the allocated radio spectrum determined by Alg. 3
(to be discussed).

• Server-side model execution: The AP receives
the smashed data from participating devices and
then concatenates them into matrix Scon

m (t, l) =
[Sm,1(t, l);Sm,2(t, l); . . . ;Sm,Km

(t, l)] ∈ R
KmB×P ,

which is fed into the server-side model we
m(t, l).

As such, the predicted result from the server-side model
is given by

ŷ(t, l) = f (Scon
m (t, l);we

m(t, l)) ∈ R
KmB×1, ∀l ∈ L.

(5)

With (4) and (5), the one-round FP process of the whole
model is completed.

Step 4 - Model update (Lines 14-18). This step is to update
the whole AI model by minimizing the loss function, which
is the BP process. Similar to model execution, the model
update includes device-side model update and server-side
model update.

• Server-side model update: Given the predicted results and
the corresponding ground-truth labels, the average gradi-
ent of the loss function can be calculated and denoted by
∇l (w). Then, the server-side model is updated by using
the stochastic gradient descent (SGD) method:

we
m(t, l + 1) ← we

m(t, l) − ηe∇l (we
m(t, l)), ∀l ∈ L

(6)

where ηe is the learning rate for the server-side model
update. The model parameters are updated layer-wise
from the last layer to the cut layer according to the
chain rule for gradient calculation. When the gradient
calculation proceeds to the cut layer, the gradient of
a minibatch of data samples, namely smashed data’s
gradient, is sent back to its corresponding device.

• Device-side model update: With the received smashed
data’s gradient, each device-side model is updated by
using the SGD method:

wd
m,k(t, l + 1) ← wd

m,k(t, l) − ηd∇l
(
wd

m,k(t, l)
)
,

∀k ∈ Km, l ∈ L (7)

where ηd is the learning rate for the device-side model
update. With (6) and (7), the one-round BP process is
completed.

Step 5 - Model aggregation (Lines 20-23). This step is
to aggregate the device-side models of participating devices
in a cluster. After completing L local epochs, the trained
device-side models are uploaded to the AP and then aggregated
via the FedAvg algorithm [5], i.e.,

w̄d
m(t) =

∑
k∈Km

|Dm,k|wd
m,k(t, L + 1)∑

k∈Km
|Dm,k|

. (8)

In (8), device-side models are averagely aggregated based on
the number of possessed data samples at each device.

C. Inter-Cluster Learning
This stage is to transfer the aggregated device-side model

from one cluster to another cluster for continuing the training
process, i.e.,

wd
m+1(t) ← w̄d

m(t), ∀m = 1, 2, . . . , M − 1. (9)

Then, the AP broadcasts the updated device-side model
to devices in the next cluster. Each cluster conducts the
intra-cluster learning stage until all clusters complete the
training process. In this way, the inter-cluster learning stage
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is performed in a sequential manner across clusters, which is
similar to SL.

It is worth noting that, different from the vanilla SL scheme
that only operates in a sequential manner, the proposed CPSL
operates in a “first-parallel-then-sequential” manner. Devices
in each cluster are trained parallelly, while clusters are trained
sequentially, thereby folding the entire training process and
reducing the training latency. Extensive simulation results
in Section VIII validate that the training latency can be
significantly reduced.

D. Terminating Condition
The AP is in charge of terminating the training process.

During the intra-cluster learning stage, AP measures the
evaluation accuracy on the evaluation dataset, by comparing
predicted results and the corresponding ground-truth labels.
When all clusters are trained, the average evaluation accuracy
is measured, denoted by θ(t). When θ(t) is larger than model
accuracy threshold θth, the training process is terminated.

Discussion 1: In practical systems, device-side operations
can be interrupted due to network disconnections, device
interruption, etc. If the device disconnects during device-side
model training, other devices have to wait for the disconnected
device, thereby incurring a long training delay. To address
this issue, a timeout mechanism can be incorporated in the
CPSL scheme. Given the collected device-specific large-scale
channel condition and computing capability, the timeout value
of each participating device can be accurately estimated. Once
the timeout of a device occurs, the update from this device can
be disregarded. The edge server continues to conduct server-
side operations, thereby avoiding a long training delay.

V. TRAINING LATENCY ANALYSIS

In this section, we present the decision variables in the
proposed CPSL, based on which we analyze its training
latency.

A. Decision Variables in CPSL
In the CPSL, the following decision variables should be

determined.

• Cut layer selection: At the beginning of the entire training
process, the cut layer selection decision, denoted by v,
is determined beforehand based on historical data of com-
puting capabilities and channel conditions of participating
devices. The decision is constrained by

v ∈ V (10)

where V = {2, 3, . . . , V } is the set of available cut
layers in the considered AI model. Here, we consider a
chain-topology DNN in this paper, and V is the number
of DNN layers. It is worth noting that the cut layer can
not be the input layer for device data privacy preservation
consideration. A special case is that cut layer v = V
means an empty server-side model. In other words, the
CPSL scheme degrades to the FL scheme with Km

devices.
• Device clustering: At each training round, the device clus-

tering decision is made based on the collected devices’

Fig. 5. The procedure of the model training process in each cluster consists
of a starting phase, multiple inner phases, and an ending phase.

channel conditions and computing capabilities, denoted
by binary matrix At ∈ R

N×M ,∀t ∈ T . Each element is
constrained by

at
n,m ∈ {0, 1}, ∀n ∈ N , m ∈ M, t ∈ T ,

(11a)∑
m∈M

at
n,m = 1, ∀n ∈ N , t ∈ T . (11b)

In (11a), an,m = 1 indicates that device n is associated
to cluster m, and an,m = 0 otherwise. Here, constraint
(11b) guarantees each device is associated to only one
cluster.

• Radio spectrum allocation: In each intra-cluster learning
stage, we consider the frequency-division multiple access
for data transmission. Let {xt

1,x
t
2, . . . ,x

t
M} denote the

radio spectrum allocation decision where xt
m ∈ Z

Km×1

represents the decision for cluster m. Each element

xt
m,k ∈ Z

+, ∀k ∈ Km, m ∈ M, t ∈ T (12)

represents the number of subcarriers allocated to device
k in cluster m, where Z

+ is the set of positive integers.
Note that the number of allocated subcarriers should not
exceed the radio spectrum capacity, i.e.,∑

k∈Km

xt
m,k ≤ C, ∀m ∈ M, t ∈ T (13)

where C represents the total number of subcarriers.

B. Training Latency
The training latency of the CPSL is analyzed given the

above decisions. The entire training process consists of multi-
ple rounds, and each round consists of multiple stages in each
cluster. To characterize the overall training latency, per-cluster
training latency is analyzed.2 For notation simplicity, we omit
t in this subsection.

In the CPSL scheme, the AP waits for the update from
all the participating devices, including two cases: (1) in each
local epoch training, the AP waits for smashed data to perform
server-side model execution; and (2) in each intra-cluster
learning, the AP waits for device-side models to perform
model aggregation. According to the AP’s operation, the

2We assume that the propagation latency is negligible in the training latency.
This is because the propagation latency in existing 5G networks (less than

1 ms [35], [36]) is much smaller than the computation and communication
latency in the training process.
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per-cluster training process can be divided into L + 1 phases
in a chronological manner, whose detailed structure is shown
in Fig. 5. The first one is a staring phase, which spans from
device-side model distribution to server-side model update in
the first local epoch. The last one is an ending phase, which
spans from smashed data’ gradient transmission in the last
local epoch to device-side model aggregation. The remaining
ones are L−1 identical inner phases, each of which spans from
smashed data’s gradient transmission in the previous local
epoch to server-side model update in the next local epoch.
Note that if the number of local rounds equals 1, no inner
phase exists. The detailed analysis is as follows.

1) Starting Phase: The latency of the starting phase
includes the following four components.

• Model distribution (MD) latency: At the beginning of the
CPSL scheme, the latest device-side model is broadcast
to all the participating devices in the cluster using all
subcarriers. Let ξd (v) denote the data size (in bits) of
the device-side model, depending on cut layer v. The
average downlink transmission rate of a subcarrier from

the AP to device k is given by [37], [38]

RDL
k = Ehk

[
W log2

(
1 +

PDL |hk|2
NoW

)]
, ∀k ∈ Km

(14)

where W , PDL, hk, and No represent the subcarrier
bandwidth, AP’s transmission power, channel gain, and
thermal noise spectrum density, respectively. Hence, the
MD latency is given by

τb,k =
ξd (v)
CRDL

k

, ∀k ∈ Km. (15)

• Device-side model execution (DME) latency: The
device-side model execution refers to the device-side
model’s FP process. Let γF

d (v) denote the computa-
tion workload (in FLOPs) of device-side model’s FP

process for processing one data sample [39], [40].
The device-side model execution needs to process a
mini-batch of data samples, and the overall computation
workload is BγF

d (v). The DME latency is given by

τd,k =
BγF

d (v)
fkκ

, ∀k ∈ Km (16)

where fk denotes the central processing unit (CPU)
capability of device k, and κ denotes the computing
intensity.3

• Smashed data transmission (SDT) latency: Each device
transmits the smashed data to the AP using the allocated
radio spectrum. Let ξs(v) denote the smashed data size
with respect to one data sample, also depending on
cut layer v. For a minibatch of B data samples, the
transmitted smashed data size in bits is represented by
Bξs(v). For device k, the number of allocated subcarriers
is given by xm,k. Similar to (14), the average uplink

3The value of κ represents the number of FLOPs can be completed in one
CPU cycle, which is determined by the processor architecture. Note that the
above latency analysis that can be readily extended to the case using graphics
processing units (GPUs), in which GPUs take a different value of κ [39],
[40].

transmission rate of a subcarrier for device k is given by

RUL
k = Ehk

[
W log2

(
1 + PUL |hk|2/NoW

)]
, where

PUL represents transmission power of a device.4 Hence,
the SDT latency is given by

τs,k =
Bξs(v)

xm,kRUL
k

, ∀k ∈ Km. (17)

• Server-side model execution (SME) and server-side model
update (SMU) latency: The latency component includes
two parts: (1) the SME latency represents the time taken
for performing the server-side model’s FP process. Let
γF

s (v) denote the computation workload of the server-
side model’s FP process for processing one data sample.
Since all the smashed data are fed for training the server-
side model, the number of the concatenated smashed data
samples is KmB, and the overall computation workload
is KmBγF

s (v). Similar to (16), the SME latency is
given by KmBγF

s (v)/fsκ, where fs denotes the CPU
capability of the edge server; and (2) the second part
is the time taken for performing the BP process of the
server-side model. Let γB

s (v) represent the computation
workload of the server-side model’s BP process for one
data sample. Similarly, the SMU latency is given by
KmBγB

s (v)/fsκ. Taking the two parts into account, the
overall latency is given by

τe =
KmB

(
γF

s (v) + γB
s (v)

)
fsκ

. (18)

Taking the latency components in (15), (16), (17), and (18)
into account, the overall latency of the starting phase is given
by

dS
m = max

k∈Km

{τb,k + τd,k + τs,k} + τe, ∀m ∈ M (19)

where the first term, maxk∈Km
{τb,k+τd,k+τs,k}, is to account

that all the smashed data should be received before server-side
model execution.

2) Inner Phase: The latency of each inner phase includes
components from smashed data’s gradient transmission
(SDGT), device-side model update (DMU), DME, SDT, SME,
and SMU. The last four latency components have been ana-
lyzed above, and we analyze the first two components.

• SDGT latency: After SME and SMU are performed,
smashed data’s gradient is sent back to each device using
the allocated radio spectrum. Let ξg(v) denote the data
size of smashed data’s gradient. Similar to (17), the
latency is given by

τg,k =
ξg(v)

xm,kRDL
k

, ∀k ∈ Km. (20)

• DMU latency: The device-side model update refers to the
BP process updating device-side model parameters. Let
γB

d (v) represent the computation workload of the device-
side model’s BP process for one data sample. Similar to
(18), we have

τu,k =
BγB

d (v)
fkκ

, ∀k ∈ Km. (21)

4Note that we consider the time division duplex in the network, such that
uplink and downlink channel conditions can be assumed to be identical by
utilizing channel reciprocity.
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The cut layer affects the computation workload distribu-
tion between the device and the edge server. The total
computation workload in the BP process is given by
γb = γB

d (v) + γB
s (v).5 A shallow cut layer means heavy

computation workloads on the edge server, while a deep
cut layer means heavy computation workloads on the
device.

Similar to (19), taking all latency components into account,
the overall latency in each inner phase is given by

dI
m = max

k∈Km

{τg,k + τu,k + τd,k + τs,k} + τe, ∀m ∈ M.

(22)

3) Ending Phase: The ending phase includes four latency
components from SDGT, DMU, device-side model transmis-
sion (DMT), and model aggregation (MA). The first two
components are analyzed above, and we analyze the rest
two components. Regarding the DMT latency, each device
transmits its device-side model to the AP using the allocated
radio spectrum, and the corresponding latency is given by

τt,k =
ξd(v)

xm,kRUL
k

, ∀k ∈ Km. (23)

The MA latency is negligible since aggregating models using
the FedAvg algorithm incurs a relatively low computational
complexity. Taking all the latency components into account,
the overall latency in the ending phase is given by

dE
m = max

k∈Km

{τg,k + τu,k + τt,k}, ∀m ∈ M (24)

where the maximization operation is to account that MA has
to wait for the straggler device.

4) Overall Training Latency: With the results of all the
phases in (19), (22), and (24), the per-cluster training latency
is given by Dm (v,At,xt

m) = dS
m + (L − 1) dI

m + dE
m. The

overall training latency of the CPSL scheme in one training
round with M clusters is given by

Dt
(
v,At, {xt

m}m∈M
)

=
∑

m∈M
Dm

(
v,At,xt

m

)
, (25)

which depends on device clustering decision At, radio spec-
trum allocation decision {xt

m}m∈M, and cut layer selection
decision v. Considering all training rounds, the overall latency
is

D̄ =
∑
t∈T

Dt
(
At, {xt

m}m∈M, v
)
. (26)

In the following, these decisions are optimized to minimize
the training latency.

Remark 1: The cut layer selection decision determines not
only communication overhead since the data sizes of the
device-side model, smashed data, and smashed data’s gradient
depend on the cut layer, but also computation workload
distribution between the device and the edge server. As such,
the cut layer selection plays an important role in optimizing
the training latency.

5Regarding the FP process, γF = γF
d (v) + γF

s (v), where γF is the
computation workload of the whole FP process.

VI. RESOURCE MANAGEMENT PROBLEM FORMULATION

AND DECOMPOSITION

A. Problem Formulation
Since device computing capabilities and channel conditions

vary temporally, minimizing the long-term overall training
latency is paramount. The proposed CPSL scheme requires
jointly making cut layer selection, device clustering, and radio
spectrum allocation decisions. To this end, we formulate the
resource management problem to minimize the overall training
latency:

P : min
v,{At}t∈T ,

{xt
m}m∈M

t∈T

∑
t∈T

Dt
(
v,At, {xt

m}m∈M
)

(27a)

s.t.
∑
n∈N

at
n,m = Km, ∀m ∈ M, t ∈ T , (27b)

(10), (11), (12), and (13).

Constraint (27b) guarantees the number of devices in each
cluster satisfies cluster capacity limit, and constraints (10),
(11), (12), and (13) guarantee feasible decision variables.

Problem P is a stochastic mix-timescale optimization prob-
lem. The problem is “stochastic” because the decisions are
determined in presence of temporal dynamics of device com-
puting capabilities and channel conditions during the training
process. The problem is “mix-timescale” because the decisions
are made in different timescales. The cut layer selection is
determined for the entire training process (i.e., in a large
timescale), while the device clustering and radio spectrum
allocation are determined for each training round (i.e., in a
small timescale). The device clustering and radio spectrum
allocation decisions are coupled with each other, which further
complicates the problem.

B. Problem Decomposition
To solve problem P , we first decompose it into two sub-

problems in different timescales by exploiting the timescale
separation of the decision variables.

Subproblem 1: Large-timescale cut layer selection sub-
problem. The optimal cut layer is selected for the entire
training process to minimize the overall training latency, i.e.,

PL : min
v

∑
t∈T

Dt
(
v,At, {xt

m}m∈M
)

s.t. (10).

The above objective function is non-convex, because not only
the data sizes of smashed data, smashed data’s gradient, and
the device-side model, but also the computation workloads
of the device-side model’s FP and BP processes are arbitrary
functions with respect to the cut layer.

Subproblem 2: Small-timescale device clustering and
radio spectrum allocation subproblem. At each training
round t, the device clustering and radio spectrum allocation
decisions are jointly optimized to minimize the one-round
training latency:

PS : min
At,{xt

m}m∈M
Dt

(
v,At, {xt

m}m∈M
)

s.t. (11), (12), (13), and (27b).
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Fig. 6. Relationship among different components in the resource management
algorithm.

In the subproblem, the optimization variables are integer.
Hence, the problem is a combinatorial optimization problem,
which is NP-hard (one of Karp’s 21 NP-complete prob-

lems [41]). Moreover, according to the definitions of latency
components in (22) and (24), the objective function is to
minimize the maximum latency among all the participating
devices in different stages, which is non-convex. As such,
a low-complexity algorithm is desired.

The relationship between the above two subproblems
is as follows. Given optimal cut layer v� by solving
Subproblem PL, the optimal device clustering decision,
(At)�, and radio spectrum allocation decision, {xt

m}�
m∈M,

can be obtained via solving Subproblem PS based on
the collected network information at each training round.
As such,

{
v�, (At)�, {xt

m}�
m∈M

}
is the optimal solution for

problem P .

VII. TWO-TIMESCALE RESOURCE MANAGEMENT

ALGORITHM

In this section, a two-timescale resource management algo-
rithm is proposed to jointly solve problem P , consisting of
an SAA-based cut layer selection algorithm and a Gibbs
sampling-based joint device clustering and radio spectrum
allocation algorithm.

For clarity, the relationship among different components in
the proposed resource management algorithm is illustrated in
Fig. 6. At the beginning of the entire training process, Alg. 2
determines the optimal cut layer decision, in which Alg. 4 is
incorporated to measure the training latency performance over
different data samples. At the beginning of each training round,
Alg. 4 determines the joint device clustering and spectrum
allocation decisions, in which Alg. 3 is incorporated to allocate
radio spectrum for each cluster.

A. Large Timescale: Cut Layer Selection Algorithm

In this subsection, we present the SAA-based algorithm to
determine the optimal cut layer, consisting of the following
steps.

Firstly, the objective function in problem PL can be approx-
imated by∑
t∈T

Dt
(
v,At, {xt

m}m∈M
)
≈ TEf ,h [D (v,A, {xm}m∈M)] .

(28)

In (28), Ef ,h [D (v,A, {xm}m∈M)] represents the average
per-round training latency, where f = [f1, f2, . . . , fN ] and h =

Algorithm 2 SAA-Based Cut Layer Selection Algo-

rithm

1 Randomly draw J samples of device computing

capabilities and channel conditions from historical

data;

2 for each cut layer v ∈ V do
3 Calculate the expected training latency

Δ (v) = 1
J

∑J
j=1 Dt

(
v,Aj , {xj

m}m∈M
)

based

on J data samples using Alg. 4;

4 end
5 v� = arg minv∈V{Δ (v)}.

[h1, h2, . . . , hN ] denote random variables of device computing
capabilities and channel conditions, respectively. We assume
that fn follows a Gaussian distribution with mean μn,f and

variance σ2
f , i.e., fn ∼ N

(
μn,f , σ2

f

)
,∀n ∈ N , due to

time-varying device computation workloads. Similarly, assume
that hn ∼ N

(
μn,h, σ2

h

)
due to shadowing effect in wireless

channels. It is worth noting that the proposed algorithm can be
applied to arbitrary distribution settings since the distribution
information is not leveraged in the algorithm. The number of
training rounds, T , depends on many factors, such as model
structure and data distribution, which are independent of the
decision variables. In this way, we aim to minimize the average
per-round training latency.

Secondly, we leverage the SAA method [42], [43], [44] to
approximate the average per-round training latency. The core
idea of the SAA is to approximate the expectation of a random
variable by its sample average. Specifically, several samples
are drawn from the historical data of device computing capa-
bilities and channel conditions to approximately compute the
average per-round training latency. Let J denote the number of
samples. For sample j, given the device computing capabilities
and channel conditions, the corresponding device clustering
and radio spectrum allocation decisions, Aj and {xj

m}m∈M,
can be obtained using Alg. 4. As such, the sample-wise
training latency is represented by D

(
v,Aj , {xj

m}m∈M
)
, and

the average per-round training latency can be approximated by

Ef ,h [D (v,A, {xm}m∈M)] ≈ 1
J

J∑
j=1

D
(
v,Aj , {xj

m}m∈M
)
.

(29)

For a large value of J , such approximation is valid. Thus, the
problem of finding the optimal cut layer can be converted into:

PC : min
v

1
J

J∑
j=1

D
(
Aj , {xj

m}m∈M, v
)

s.t. (10).

Thirdly, the problem can be solved via an exhaustive search
method for a finite number of DNN layers. The detailed
procedure of the proposed SAA-based algorithm is presented
in Alg. 2. Specifically, given a cut layer, we can leverage
the device clustering and radio spectrum allocation algorithm
to calculate the average per-round training latency for all J
samples. After examining all the possible cut layers, optimal
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cut layer v� can be determined. The exhaustive search based
algorithm can be conducted by the AP equipped with a
high-end edge server in an offline manner, such that the
computational complexity is affordable.

B. Small Timescale: Joint Device Clustering and Radio
Spectrum Allocation Algorithm

In each training round, device clustering and radio spectrum
allocation decisions are jointly determined to minimize instan-
taneous one-round training latency based on device computing
capabilities and channel conditions. For notation simplicity,
we omit t in At and {xt

m}m∈M in this subsection.
The device clustering and radio spectrum allocation deci-

sions exhibit different properties. Given the device clustering
decision, radio spectrum allocation decisions in each clus-
ter are made independently. Moreover, the optimal spectrum
allocation decision can be easily obtained via a greedy-
based subroutine. Leveraging such property, we can decouple
problem PS into a device clustering subproblem in the outer
layer and multiple radio spectrum allocation subproblems in
the inner layer, and propose a joint solution for them.

1) Radio Spectrum Allocation Subproblem: The proposed
CPSL scheme sequentially trains clusters, such that the train-
ing latency is accumulated across clusters. In addition, radio
spectrum allocation decisions are independent among clusters.
As such, optimizing the per-round training latency problem
can be converted to individually optimizing the training latency
in each cluster. The radio spectrum (subcarrier) allocation
subproblem for each cluster in the inner layer can be for-
mulated as:

PS : min
xm

Dm (v�,A,xm)

s.t. (12), and (13). (30a)

Objective function Dm (v�,A,xm) represents the training
latency in cluster m, given optimal cut layer decision v� and
device clustering decision A. Since optimizing variable xm is
integer, problem PS is an integer optimization problem with
a non-convex objective function, which cannot be solved via
existing convex optimization methods.

To solve the problem efficiently, we propose a greedy-based
radio spectrum allocation subroutine by leveraging the dimin-
ishing gain property of the problem. The diminishing gain

property [45] means that, in the subcarrier allocation problem,
the gain of reducing latency decreases with the number of allo-
cated subcarriers. Hence, the available radio spectrum should
be allocated to the device that can achieve the maximum
gain. Specifically, the radio spectrum allocation decision is
first initialized by allocating each device with one subcarrier.
Then, an additional subcarrier is allocated to the device that
can reduce the per-cluster training latency most until all the
subcarriers have been allocated, as detailed in Alg. 3.

Computational Complexity: The algorithm needs to calcu-
late Dm (v�,A, x̂m) (Line 7) for Km (C − Km) times before
the optimal spectrum allocation decision is identified. As such,
we analyze the computational complexities of Dm (v�,A, x̂m)
and Km (C − Km), respectively. Firstly, the computational
complexity of Dm (v�,A, x̂m) is relatively low. The spectrum
allocation decision only impacts transmission-related latency

Algorithm 3 Greedy-Based Radio Spectrum Alloca-

tion Subroutine

1 Initialization: xm,k = 1,∀k ∈ Km;

2 for iteration = 1, 2, . . . , C − Km do
3 Ω = Dm (v�,A,xm);
4 for k = 1, 2, . . . , Km do
5 x̂m,k = xm,k + 1;

6 x̂m = {xm,1, xm,2, . . . , x̂m,k, . . . , xm,Km
};

7 Ωk = Dm (v�,A, x̂m);
8 end
9 k� = arg maxk∈Km{Ω − Ωk};

10 xm,k� = xm,k� + 1;

11 end

components, including smashed data transmission latency τs,k

in (17), smashed data’s gradient transmission latency τg,k in
(20), and device-side model update latency τg,k in (23), all of
which are simple division operations. Secondly, the number
of devices in each cluster Km is limited, e.g., the optimal
cluster size over MNIST dataset in Fig. 9(a) is only 5, thereby
resulting in a relative small number of iterations. Therefore,
the computational complexity of Alg. 3 is affordable.

2) Device Clustering Subproblem: The device clustering
subproblem in the outer layer is to determine the opti-
mal device clustering decision, which can be formulated as
follows:

PD : min
A

D (v�,A, {xm}m∈M)

s.t. (11), and (27b). (31a)

Objective function D (v�,A, {xm}m∈M) represents the
one-round training latency, given optimal cut layer v�. The
optimization variable is the binary device clustering decision
which depends on device computing capabilities and channel
conditions. Hence, the subproblem is a binary optimization
problem with the cluster capacity constraint. To solve the
problem efficiently, we propose a device clustering algorithm
based on the Gibbs sampling method, which can determine the

optimal device clustering in an iterative manner [46], [47]. Let
G denote the number of iterations until convergence. The radio
spectrum allocation subroutine is embedded into the device
clustering algorithm, such that the device clustering and radio
spectrum allocation decisions are jointly determined.

3) Joint Device Clustering and Radio Spectrum Allocation
Algorithm: The joint algorithm is presented in Alg. 4, which
consists of the following two steps.

• New decision generation: Two random devices are
selected from two random clusters, denoted by device
m in cluster n and device m′ in cluster n′. The
corresponding device clustering decisions are swapped
such that the capacity constraint in (11) is not vio-
lated, i.e., ân,m ← an′,m′ , ân′,m′ ← an,m. As such,

we obtain a new device clustering decision Â =
{a1,1, a1,2, . . . , ân,m, . . . , ân′,m′ , . . . , aN,NN

}. Given the
new device clustering decision, the optimal radio spec-
trum allocation decisions for each cluster {x̂m}m∈M can
be solved using Alg. 3.
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Algorithm 4 Joint Device Clustering and Radio Spec-

trum Allocation Algorithm

Input: Device computing capabilities f and channel

conditions h;

Output: A and {xm}m∈M;

1 Initialization: Randomly take a feasible device

clustering decision A, and obtain objective function

value Θ = D (v�,A, {xm}m∈M);
2 for iteration = 1, 2, . . . , G do
3 � New decision generation

4 Randomly choose device n ∈ Km and device

n′ ∈ Km′ in two random clusters m and m′;
5 Swap device association via ân,m = an′,m′ ,

ân′,m′ = an,m;

6 Obtain a new device clustering decision Â =
{a1,1, a1,2, . . . , ân,m, . . . , ân′,m′ , . . . , aN,M};

7 for each cluster m ∈ M do
8 Obtain the optimal radio spectrum allocation

decision {x̂m} in each cluster using Alg. 3;

9 end
10 � Decision update

11 Obtain objective function value by

Θ̂ = D
(
v�, Â, {x̂m}m∈M

)
given Â and

{x̂m}m∈M;

12 Set ε according to (32);

13 Set {A, Θ} = {Â, Θ̂} with probability ε;

otherwise, keep A and Θ unchanged.
14 end

• Decision update: Given the joint device clustering and
radio spectrum allocation decisions, the corresponding
objective function value can be obtained via Θ̂ ←
D (v�,A, {x̂m}m∈M). Determine the probability of
decision update via

ε =
1

1 + e(Θ̂−Θ)/δ
. (32)

In (32), δ is the smooth factor to control the tendency
of new decision exploration. A larger value of δ tends
to explore new decisions with a higher probability. Then,
with probability ε, the updated device clustering decision
is taken; otherwise, the device clustering decision remains
the same.

When δ approaches 0, the algorithm converges to the global
optima with probability 1 [47].

VIII. SIMULATION RESULTS

A. Simulation Setup
We conduct extensive simulations to evaluate the perfor-

mance of the proposed CPSL scheme and the resource man-
agement algorithm. Below we introduce the key components
of the simulation. The main simulation parameters are listed
in Table II.

The computing capability of the edge server is set to
100×109 cycles/s. The number of devices is set to 30, and the
radio spectrum bandwidth is set to 30 MHz, unless otherwise

TABLE II

SIMULATION PARAMETERS

TABLE III

LETNET MODEL STRUCTURE

specified. The subcarrier bandwidth is set to 1 MHz. Two
image classification datasets are used in the simulation: (1)
MNIST dataset, where each data sample is an image associated
with a label from ten classes of handwritten digits from “0”

to “9” [48]; (2) Fashion-MNIST dataset, where each data
sample is an image with a label associated with ten clothing

classes, such as “Shirt” and “Trouser” [49]; and (3) CIFAR-10
dataset, where each data sample is a colour image with a label
associated with ten classes, such as “Airplane” and “Auto-

mobile” [50]. All datasets consist of a training dataset with
50,000 data samples for model training and a test dataset with
10,000 data samples for performance evaluation. In addition,
data distribution at devices is non-IID, which widely exists in
practical systems. We assume that each device has only three
classes of data samples, and these three classes are randomly
selected among ten classes. Each device possesses 180 data
samples.

For MNIST and Fashion-MNIST datasets, we adopt a

12-layer chain-topology LeNet model [48], [51], which con-
sists of six convolution (CONV) layers, three max-pooling
(POOL) layers, and three fully-connected (FC) layers. The
detailed model structure and model parameters are shown in
Table III. The whole model has around 4.3 million parameters,
and each parameter is quantized into 32 bits, leading to a data
size of about 16.49 MB. The smashed data and its gradient
are also quantized into 32 bits. There are 5 devices in a
cluster. The mini-batch size is set to 16. For CIFAR-10 dataset,
a 27-layer convolution neural network (CNN) consisting of
20 convolution layers followed by 7 fully-connected layers is
adopted.6 The seventh convolution layer is set to the cut layer.

6The CNN model for the CIFAR-10 dataset: https://zhenye-
na.github.io/blog/2018/09/28/pytorch-cnn-cifar10.html.
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Fig. 7. Training performance comparison among different schemes over
non-IID MINIST dataset.

The whole model has around 5.8 million parameters, whose
data size of about 22.32 MB.

B. Performance Evaluation of the Proposed CPSL Scheme
To better elaborate the performance evaluation of the pro-

posed CPSL algorithm, we consider that devices are identical
in terms of computing and communication capabilities. The
computing capabilities and the received signal to noise (SNR)
threshold of each device are set to 0.5×109 cycles/s and 17 dB,
respectively. Given the selected cut layer, the data size of the
device-side model is 0.67 MB. The data sizes of smashed
data and its gradient for one data sample are 18 KB and
9 KB, respectively. The FP computation workloads of the
device-side model and the server-side model are 5.6 MFlops
and 86.01 MFlops, respectively. The computation workloads
of FP and BP processes are assumed to be the same for
simplicity.

We compare the proposed CPSL algorithm with the follow-
ing benchmark schemes: (1) centralized learning (CL), which
can achieve the optimal model convergence and accuracy.
In practice, it is difficult to implement due to privacy leakage
concerns and prohibitive communication overhead; (2) vanilla
SL, where the AI model is sequentially trained across all
the devices [19]; and (3) FL, where all the devices train the
shared model locally, and then send the trained models to the
edge server for new model aggregation in each iteration [5].
For fair comparison, all the schemes adopt the same model
initialization. The learning rates of CL, vanilla SL, and FL
schemes are optimized, which are set to 0.05, 0.05, and 0.1,
respectively.

1) Training Performance: Fig. 7(a) shows the training per-
formance of the proposed scheme and all the benchmarks.

Fig. 8. Training latency comparison between the CPSL and SL over the
CIFAR-10 dataset.

Several important observations can be obtained. Firstly, the
proposed scheme can achieve nearly the same accuracy as CL
and SL, which validates its remarkable performance, at the
cost of more training rounds. This is because device-side
model aggregation in each cluster slows down the model
convergence. Specifically, the proposed scheme takes about
twice training rounds to converge. Secondly, FL converges
much slower than other algorithms due to model aggregation
among a large number of devices. In addition, due to a
heavy device computation workload, FL takes extremely long
training latency before convergence.

Since the per-round training latency of different schemes is
different, we further evaluate the overall training latency in
Fig. 7(b). The overall training latency is the product of the
per-round training latency and the number of training rounds.
The proposed scheme takes a shorter training latency than
the SL to reach convergence. Specifically, the time consumed
by the proposed scheme is about 600 seconds, while that by
SL is about 1,200 seconds. The reason is that the per-round
training latency of the proposed scheme is much smaller than
that of the SL. Specifically, the per-round training latency of
the CPSL, SL, and FL are 3.78 seconds, 13.90 seconds, and
33.43 seconds, respectively.

The CPSL performance is further evaluated on different
datasets with different DNN models. Fig. 8 shows the training
latency performance over the CIFAR-10 dataset. We can
clearly see that the proposed CPSL converges faster than
the vanilla SL benchmark while achieving similar model
accuracy, which is similar to the observations on MNIST and
Fashion-MNIST datasets. These simulation results validate the
robustness of the proposed CPSL scheme.

2) Impact of Cluster Size: Fig. 9(a) compares the perfor-
mance with respect to different numbers of devices Nm in a
cluster. Several key observations can be obtained. Firstly, the
number of devices in a cluster affects the training latency to
achieve convergence. Specifically, the proposed scheme with
5 devices in a cluster achieves the lowest training latency
at about 950 seconds, indicating the optimal cluster size is
5 for the MINIST dataset, which is much shorter than of
the vanilla SL scheme (about 2,500 seconds). Secondly, the
proposed scheme for different numbers of devices from 3 to
10 can converge faster than SL because device-side models
are trained in parallel in the proposed scheme. Thirdly, all
the schemes achieve nearly the same accuracy at the end of
the training process. This indicates that the proposed scheme
does not incur any accuracy loss while reducing the training
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Fig. 9. Overall training latency with respect to the number of devices in a
cluster.

Fig. 10. Per-round training latency with respect to different cut layers. Error
bars show the 95 percentile performance.

latency. A similar simulation is conducted on the Fashion-
MNIST dataset, with results shown in Fig. 9(b). It can be
seen that the proposed scheme effectively reduces overall
training latency as compared with SL while preserving model
accuracy. Specifically, we can observe the proposed scheme
with 6 devices takes about 1,150 seconds until the model
converges, while the vanilla SL scheme takes about 2,600
seconds. For the Fashion-MINIST dataset, the optimal cluster
size is 6. The difference of optimal cluster size implies that
the optimal cluster size is related to input data type, as well
as data distribution.

C. Performance Evaluation of the Proposed Resource
Management Algorithm

We evaluate the performance of the proposed resource man-
agement algorithm by taking device heterogeneity and network

Fig. 11. Performance comparison among the proposed algorithm and
benchmarks.

dynamics into account. In the following simulations, the mean
values of device computing capability and the SNR of the
received signal are randomly drawn from uniform distributions
within [0.1, 1]×109 cycles/s and [5, 30] dB, respectively. Stan-
dard deviation σf and σh are set to 0.05 × 109 cycles/s and
2 dB, respectively.

Figure 10 presents per-round training latency with respect
to different cut layers over 300 simulation runs. The cut layer
POOL1 layer achieves the minimum average per-round train-
ing latency, which is selected as the optimal cut layer. This is
because this layer results in a small amount of communication
overhead and balances the computation workload between the
device and the edge server.

Figure 11(a) shows the convergence process of the proposed
resource management algorithm. When smooth factor δ =
0.0001, the proposed algorithm converges after about 1,000
iterations, although it stays in several local optima for a
while before identifying the global optimum. However, further
increasing the value of smooth factor (e.g., δ = 0.01) may
impede the identification of global optimum and result in the
convergence to inferior solutions.

Figure 11(b) compares the proposed algorithm with two
benchmarks: (1) heuristic device clustering algorithm, where
devices with similar computing capabilities are partitioned
into clusters; and (2) random device clustering algorithm,
which partitions devices into random clusters. We see that the
proposed algorithm can significantly reduce per-round training
latency as compared with the benchmarks, because device
clustering and radio spectrum allocation are optimized. Specif-
ically, the proposed algorithm reduces the training latency
on average by 80.1% and 56.9% as compared with the

Authorized licensed use limited to: University of Waterloo. Downloaded on May 25,2023 at 17:03:42 UTC from IEEE Xplore.  Restrictions apply. 



1064 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

Fig. 12. Overall performance comparison taking parallel design and resource
management into account.

heuristic and random benchmarks, respectively. In addition,
the performance gain achieved in spectrum-limited scenarios
(e.g., 10 MHz) is higher than that in the scenarios with more
radio spectrum resources (e.g., 60 MHz), highlighting the
significance of the proposed resource management algorithm
in alleviating the straggler effect of CPSL in spectrum-limited
wireless networks.

D. Overall Performance Evaluation
Figure 12 shows the overall performance of the proposed

scheme taking both parallel design and resource management
into account. The training latency of the proposed scheme is
about 550 seconds, which is much smaller than that of the
CPSL with heuristic device clustering (about 870 seconds), the
CPSL with random device clustering (about 1,000 seconds),
and the vanilla SL (about 1,200 seconds). The simulation
results validate that the training latency reduction benefit is
achieved by two-part joint design. It is interesting to note
that, the performance of the CPSL scheme with random device
clustering is close to that of the vanilla SL. The reason is that
the poor device clustering decision renders significant straggler
effect, which undermines the performance gain by exploiting
parallelism.

IX. CONCLUSION

In this paper, we have investigated a training latency reduc-
tion problem in SL over wireless networks. We have proposed
the CPSL scheme which introduces parallelism to reduce train-
ing latency. Furthermore, we have proposed a two-timescale
resource management algorithm for the CPSL to minimize
the training latency in wireless networks by taking network
dynamics and device heterogeneity into account. Extensive
simulation results validate the effectiveness of the proposed
solutions in reducing training latency as compared with the
existing SL and FL schemes. Due to low communication
overhead, device computation workload, and training latency,
the CPSL scheme can be applied to facilitate AI model training
in spectrum-limited wireless networks with a large number of
resource-constrained IoT devices. For future work, we will
investigate the impact of device mobility on SL performance.
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