Introduction	

Compatibility of matrices for correlation-based measures of concordance

Takaaki Koike

<tkoike@uwaterloo.ca> <https://uwaterloo.ca/scholar/tkoike/home>

Department of Statistics and Actuarial Science University of Waterloo

Joint work with Marius Hofert Based on the paper Hofert and Koike (2019), ASTIN Bulletin.

September 9th, 2019

Compatibility of MOCs

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
●○○○		000	00
An example			

A motivating example

• Given a 3×3 matrix

$$P = \begin{pmatrix} 1 & -0.95 & 0.5 \\ -0.95 & 1 & -0.4 \\ 0.5 & -0.4 & 1 \end{pmatrix},$$

how to check whether P is a correlation matrix?

- For a correlation matrix P, one can always find a r.v. X (for e.g., N(0, P)) s.t. $\rho(X) = P$.
- What about matrices of pairwise Spearman's rho, Kendall's tau... or other pairwise measures of concordance (MOC)?

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
0000			
Definition of compatibility			

Definitions

Definition 1.1 (κ -compatibility)

For a given $d \times d$ matrix R and a bivariate MOC

 $\kappa:(X,Y)\mapsto [-1,1],$

R is called κ -compatible if there exists a continuous d-random vector $\mathbf{X} = (X_1, \dots, X_d)$ such that

$$\kappa_d(\boldsymbol{X}) := (\kappa(X_i, X_j))_{i,j=1,\dots,d} = R.$$

Definition 1.2 (κ -compatible set)

A set of all κ -compatible matrices is called a κ -compatible set.

Takaaki Koike

Introduction	Correlation-based Measures of Concordance	Compatibility 000	Future Work 00
Motivations			

Why do we study compatibility?

- Matrices of pairwise MOCs are often provided as estimates from real data.
- In practice of risk management...
 - the amount of data available is sometimes limited, and
 - risk managers may opt to incorporate important scenarios into the dependence parameters of the models.
- For such cases, some entries of the estimated matrix of pairwise MOC can be determined exogenously by expert opinions.

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
0000			
Main questions			

Main questions

- Does there exist a class of MOCs whose compatibility is easy to study?
 - ⇒ We introduce a correlation-based transformed rank measures of concordance.
- Can we characterize κ-compatible sets for some paticular κ, such as Spearman's rho and Kendall's tau?
 - ⇒ Positive answers for Spearman's rho, Blomqvist's beta and van der Waerden's coefficient.
 - ⇒ For Kendall's tau and Gini's gamma, their characterizations are left open problems.

Introduction 0000 Correlation-based Measures of Concordance

Compatibility Future Work

Scarsini's seven axioms for measures of concordance

For ρ : Pearson's linear correlation and two functions g_1, g_2 , consider the bivariate measure

$$\kappa_{g_1,g_2}(X_1,X_2) = \rho(g_1(X_1),g_2(X_2)).$$

Definition 2.1 (Seven axioms for MOC; Scarsini, 1984)

- **Domain**: $\kappa(X, Y)$ is defined for any continuous random variables X, Y.
- **2** Symmetry: $\kappa(X, Y) = \kappa(Y, X)$.
- **3** Coherence: if $C_{X,Y} \preceq C_{X',Y'}$, then $\kappa(X,Y) \leq \kappa(X',Y')$.
- **Independence**: if X and Y are independent, then $\kappa(X, Y) = 0$.
- Change of sign: $\kappa(-X,Y) = -\kappa(X,Y)$.
- **Continuity**: $\lim_{n\to\infty} \kappa(X_n, Y_n) = \kappa(X, Y)$ if $\lim_{n\to\infty} H_n = H$ pointwise for $(X_n, Y_n) \sim H_n$ and $(X, Y) \sim H$.

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
	0000000		
Admissibility of the g-funct	ions		

What are admissible g_1, g_2 ?

• The seven axioms imply that (c.f. Scarsini, 1984)

$$\kappa(X_1, X_2) = \kappa(f_1(X_1), f_2(X_2))$$

for any f_1, f_2 : strictly increasing (or decreasing) functions.

 $\Rightarrow \kappa(X_1, X_2) \text{ is forced to be independent of the marginal} \\ \text{distributions of } X_1, X_2 \text{ but be dependent only on the} \\ \text{copula of } (X_1, X_2), \text{ which is the joint distribution of} \end{cases}$

$$(U_1, U_2) := (F_1(X_1), F_2(X_2)) \sim C_{X_1, X_2}.$$

• Therefore, we consider the following form of κ_{g_1,g_2} ;

$$\kappa_{g_1,g_2}(X_1, X_2) = \rho(g_1(F_1(X_1)), g_2(F_2(X_2)))$$

= $\rho(g_1(U_1), g_2(U_2)) =: \kappa_{g_1,g_2}(C_{X_1,X_2}).$

7 / 19

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
	0000000		
Admissibility of the g-funct	tions		

• For κ_{g_1,g_2} to satisfy the coherence axiom, we want

$$C_{X,Y} \preceq C_{X',Y'} \Rightarrow C_{g_1(X),g_2(Y)} \preceq C_{g_1(X'),g_2(Y')}$$

since its (RHS) implies $\kappa_{g_1,g_2}(X,Y) \leq \kappa_{g_1,g_2}(X',Y')$ by coherence of ρ .

Theorem 2.1 (Monotonicity of g_1 and g_2)

Let g_1,g_2 be two continuous functions. If κ_{g_1,g_2} satisfies the seven axioms, then

$$(g_1(x) - g_1(y))(g_2(x) - g_2(y)) \ge 0$$
 for any $x > y \in [0, 1]$.

• Without the loss of generality, we can assume g_1, g_2 are both increasing functions by invariance of ρ under linear transform.

Takaaki Koike

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
	00000000		
Admissibility of the g-funct	ions		

• Under the assumption of left-continuity of g_1, g_2 , they are quantiles of some distribution functions. Consequently, we consider the following class:

Definition 2.2 $((G_1, G_2)$ -transformed rank correlations)

For two distribution functions G_1 and G_2 , (G_1, G_2) -transformed rank correlation coefficient is defined by

$$\kappa_{G_1,G_2}(X_1,X_2) = \rho(G_1^{-1}(F_1(X_1)),G_2^{-1}(F_2(X_2))),$$

where G_j^{-1} is a generalized inverses of G_j for j = 1, 2. We call the pair (G_1, G_2) concordance inducing if κ_{G_1,G_2} is a measure of concordance (i.e., κ_{G_1,G_2} satisfies the seven Scarsini's axioms).

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
	00000000		
Examples of the correla	tion-based MOCs		

Examples of κ_{G_1,G_2}

Spearman's rho: Let $G_1 = G_2 = G$ for G being the cdf of the uniform distribution on [0, 1]. Then κ_{G_1, G_2} is called the Spearman's rho ρ_S :

$$\rho_S(C) \propto \iint_{[0,1]^2} (C(u,v) - \Pi(u,v)) \mathrm{d}u \mathrm{d}v.$$

Blomqvist's beta: Let G₁ = G₂ = G for G being the cdf of Bern(1/2). Then κ_{G1,G2} yields the Blomqvist's beta β:

$$\beta(C) = 4C(1/2, 1/2) - 1.$$

Van der Waerden's coefficient: Let G₁ = G₂ = G for G being the cdf of N(0,1). Then κ_{G1,G2} is called the van der Waerden's ζ.

Introduction 0000 Correlation-based Measures of Concordance

Compatibility 000 Future Work 00

Examples of the correlation-based MOCs

Example of Lognormal G-functions

Figure: Minimal (left) and maximal (right) correlations attained by the (G_1, G_2) -transformed rank correlation coefficient κ_{G_1,G_2} where G_j is the distribution function of $LN(0, \sigma_j)$, j = 1, 2.

Introduction 0000 Correlation-based Measures of Concordance ○○○○○○ Compatibility Future Work

Examples of the correlation-based MOCs

Example of Bernoulli G-functions

Figure: Minimal (left) and maximal (right) correlations attained by the (G_1, G_2) -transformed rank correlation coefficient κ_{G_1,G_2} where G_j is the distribution function of $B(1, p_j)$, j = 1, 2.

Compatibility 000

Characterization of concordance-inducing functions

Theorem 2.2 (Characterization of concordance-inducing G)

Let G_1 and G_2 be distribution functions. The (G_1, G_2) -transformed rank correlation coefficient κ_{G_1,G_2} is a measure of concordance if and only if

- G_1 and G_2 are of the same type with G, where
- G is a distribution function of a (i) non-degenerated (ii) radially symmetric distribution with (iii) finite second moment.

<u>Remark</u>: If G_1, G_2, G are all of the same type, then

$$\kappa_{G_1,G_2}(X_1,X_2) = \kappa_{G,G}(X_1,X_2) =: \kappa_G(X_1,X_2),$$

by invariance of ρ under location-scale transform. Therefore, w.l.o.g., we can assume $G_1=G_2=G.$

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
0000	○○○○○○○●	000	00
Characterization of concord	lance-inducing functions		

Properties of κ_G

Proposition 2.1 (Properties of κ_G)

- Uniqueness: Let G and G' be two continuous concordance-inducing functions. If κ_G(C) = κ_{G'}(C) for all 2-copulas, then G and G' are of the same type.
- 2 **Linearity**: For $n \in \mathbb{N}$, let C_1, \ldots, C_n be 2-copulas and $\alpha_1, \ldots, \alpha_n$ be non-negative numbers such that $\alpha_1 + \cdots + \alpha_n = 1$. Then

$$\kappa_G\bigg(\sum_{i=1}^n \alpha_i C_i\bigg) = \sum_{i=1}^n \alpha_i \kappa_G(C_i).$$

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
		000	
Properties of use			

Properties of the compatible set \mathcal{K}_G

• Recall the notation of the κ_G -compatible set:

 $\mathcal{K}_G = \{ R \in \mathcal{M}^{d \times d} : \exists \mathbf{X}: \text{ a continuous } d\text{-r.v. s.t. } \kappa_G(\mathbf{X}) = R \}.$

Proposition 3.1 (Properties of \mathcal{K}_G)

- **O Convexity**: \mathcal{K}_G is convex,
- **Bounds**: For any concordance inducing G, we have

 $\mathcal{P}_d^{\mathsf{B}}(1/2) \subseteq \mathcal{K}_G \subseteq \mathcal{P}_d,$

where \mathcal{P}_d is the set of all $d \times d$ correlation matrices, and $\mathcal{P}_d^{\mathsf{B}}(1/2)$ is the symmetric Bernoulli compatible set:

 $\mathcal{P}_d^{\mathsf{B}}(1/2) = \{ \rho(\mathbf{B}) : B_j \sim \text{Bern}(1/2), \ j = 1, \dots, d \}.$

15 / 19

Introduction 0000	Correlation-based Measures of Concorda	nce Compatibility ○●○	Future Work 00
Properties of κ_G			

Figure: The set $\mathcal{P}_d^{\mathsf{B}}(1/2)$ (left, cut polytope) and \mathcal{P}_d (right, elliptope) when d = 3. d(d-1)/2 = 3 off-diagonal entries are projected onto the Euclidean space (The figure is retrieved from Tropp, 2018).

Introduction 0000 Correlation-based Measures of Concordance

Compatibility

Future Work

Examples of the characterizations of compatible sets

Proposition 3.2 (Characterizations of some compatible sets)

• Normal variance mixture: If $\sqrt{WZ} \sim G$ with $W \geq 0$, $\mathbb{E}W = 1$ and $Z \sim N(0, 1)$, then

$$\mathcal{K}_G = \mathcal{P}_d.$$

2 Spearman's rho: For the ρ_{s} -compatible set S_{d} ,

$$S_d \begin{cases} = \mathcal{P}_d & d \le 9, \\ \subset \mathcal{P}_d & d \ge 12. \end{cases}$$

③ Blomqvist's beta: For the β -compatible set \mathcal{B}_d , we have

$$\mathcal{B}_d = \mathcal{P}_d^{\mathsf{B}}(1/2) = \operatorname{conv}\{\boldsymbol{c}\boldsymbol{c}^{\top} : \boldsymbol{c} \in \{\pm 1\}^d\}.$$

<u>Remark</u>: (2) is shown in Devroye & Letac (2015) and Wang et al. (2018), and (3) is in Devroye & Letac (2015).

Takaaki Koike

Compatibility of MOCs

Introduction 0000	Correlation-based Measures of Concordance	Compatibility 000	Future Work ●○	
Our other achievements				

Our other achievements

We studied more in the paper Hofert and Koike (2019):

- we investigate the attainability problem, that concerns whether, for a given $d \times d$ matrix R, we can construct a random vector X s.t. $\kappa_G(X) = R$.
- compatibility and attainability for block matrices are also studied to solve the problem that checking compatibility and attainability is challenging for high-dimensional matrices.

Introduction 0000	Correlation-based Measures of Concordance	Compatibility 000	Future Work ⊙●
Future work			

Future work

- Compatibility and attainability for Kendall's tau and other MOCs.
- Comparison among MOCs... which is the best?
- MOC for non-continuous margins... copulas are not unique but we could define a range MOC via generalized distributional transform.
- Study compatibility of measures of association, such as pairwise maximum mean discrepancy (MMD)... potentialy applications for generative moment matching neural network.

Introduction	Correlation-based Measures of Concordance	Compatibility	Future Work
0000		000	00

Thank you for your listening!

Email: tkoike@uwaterloo.ca

Website: https://uwaterloo.ca/scholar/tkoike/home

(the presentation slide is also available here.)

Introduction 0000	Correlation-based Measures of Concordance	Compatibility 000	Future Work

References I

- 1. Devroye, L. and Letac, G. (2015), Copulas with prescribed correlation matrix, *In Memoriam Marc Yor-Seminaire de Probabilites XLVII, Springer*, 585-601.
- 2. Edwards, H., Mikusinski, P. and Taylor, M. (2005). Measures of concordance determined by D_4 -invariant measures on $(0,1)^2$, *Proceedings of the American Mathematical Society*, **133**(5), 1505-1513.
- 3. Huang, Jinggang and Yang, Liming (2010), Correlation matrix with block structure and efficient sampling methods, *Journal of Computational Finance*, **14**(1), 81.

Introduction 0000	Correlation-based Measures of Concordance	Compatibility 000	Future Work

References II

- 4. Hofert, M. and Koike, T. (2019). Compatibility and attainability of matrices of correlation-based measures of concordance. *arXiv preprint arXiv:1810.07126*.
- 5. Huber, M. and Maric, N. (2017), Bernoulli Correlations and Cut Polytopes, *arXiv preprint arXiv:1706.06182*.
- 6. Joe, Harry (1996), Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters, *Lecture Notes-Monograph Series*, 120141.

Introduction 0000	Correlation-based Measures of Concordance	Compatibility 000	Future Work 00

- 7. Roustant, O and Deville, Y (2017), On the validity of parametric block correlation matrices with constant within and between group correlations, *arXiv preprint arXiv:1705.09793*.
 - Scarsini, M. (1984), On measures of concordance, Stochastica, 8(3), 201218.
 - Tropp, J. A. (2018). Simplicial faces of the set of correlation matrices. *Discrete & Computational Geometry*, **60**(2), 512-529.
 - Wang, B., Wang, R. and Wang, Y. (2018), Compatible Matrices of Spearmans Rank Correlation, http://arxiv.org/abs/1810.03477 (10/15/2018).

Keterences III