Czang-Ho Lee

Researcher

czang-ho lee profile picture
Czang-Ho Lee received the PhD in electrical and computer engineering from the University of Waterloo, Canada, in 2006. His doctorate research was about plasma-enhanced chemical vapor deposition (PECVD) nanocrystalline silicon and its thin-film transistors (TFTs). After his PhD, he joined Samsung Electronics, South Korea, as a senior research staff working on advanced TFTs technology for large-area display applications and high-efficiency photovoltaics technology for renewable energy applications. Since 2012, he has been with electrical and computer engineering, University of Waterloo, Canada. His present research is primarily related to 2D material, nanowire, and thin-film devices for display, imaging, and solar cell applications including mechanically flexible electronic devices and laser transfer technique.

Dr. Lee was the recipient of the Graduate Student Award at the Material Research Society (MRS) spring meeting in 2006 and is also author/co-author of about 90 articles including technical papers and U.S. patents (11 issued patents).

Patents

Inventor and/or co-inventor of 42 US patents filed (11 US patent issued) relate to method of manufacturing such as thin film transistors, solar cell modules, and nano-structure material based devices.

Publications

Book chapters

  • S. Tao, K. S. Karim, P. Servati, C.-H. Lee, and A. Nathan,“Large Area Digital X-ray Imaging,” in Sensors Update, vol. 12, issue 1, p.3-49, H. Baltes, G. K. Fedder, and G. Korvink, Eds., Wiley-VCH Verlag GmbH, 2003.

Journals

  • Nikolas P. Papadopoulos, Czang-Ho Lee, and William S. Wong, “Hybrid sensor and display pixel circuits for mobile near-to-eye applications,” J. Display Technol., vol. 10, 574-581, 2014.
  • Czang-Ho Lee, Byoung-June Kim, and Myunghun Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells,” Progress in Photovoltaics: Research and Applications, vol. 22, issue 3, 362-370, 2014.
  • Czang-Ho Lee, Myunghun Shin, Mi-Hwa Lim, Jun-Yong Seo, Jung-Eun Lee, Hee-Yong Lee, Byoung-June Kim, and Donguk Choi, “Material properties of microcrystalline silicon for solar cell applications,” Sol. Energy Mater. Sol. Cells., vol. 95, 207-210, 2011 (also featured online on Renewable Energy Global Innovations as key scientific article).
  • Czang-Ho Lee, Denis Striakhilev and Arokia Nathan, “Stability of nc-Si:H TFTs With Silicon Nitride Gate Dielectric,” IEEE Trans. Electron Devices, vol.54, 45, 2007.
  • Czang-Ho Lee, Andrei Sazonov, Arokia Nathan, and John Robertson, “Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities,” Appl. Phys. Lett., vol. 89, 252101, 2006.
  • Denis Striakhilev, Arokia Nathan, Yuri Vygranenko, Peyman Servati, Czang-Ho Lee, and Andrei Sazonov, “Amorphous silicon display backplanes on plastic substrate,” J. Display Technol., vol. 2, 364, 2006.
  • Czang-Ho Lee, Andrei Sazonov, and Arokia Nathan, “High-performance 13.56 MHz plasma-enhanced chemical vapor deposition nanocrystalline silicon thin film transistors,”J. Vac. Sci. Technol. A24, 618, 2006 (also appeared in Virtual J. Nanoscale Science & Technology vol. 11, Issue 22, 2006).
  • Mahdi Farrokh-Baroughi, Czang-Ho Lee, and Siva Sivoththaman, “Near-unity ideality factor diodes using nanocrystalline Si/multicrystalline Si heterojunctions for photovoltaic application.”J. Vac. Sci. Technol. A24, 821, 2006.
  • Czang-Ho Lee, Andrei Sazonov, and Arokia Nathan, “High hole and electron mobilities in nanocrystalline silicon thin-film transistors,” J. Non-Crys. Solids, vol. 352, 1732, 2006.
  • Czang-Ho Lee, Denis Stryahilev, and Arokia Nathan, “Top-gate thin film transistor using 13.56 MHz PECVD microcrystalline silicon,” IEEE Electron Device Lett., vol. 26, 637, 2005.
  • Czang-Ho Lee, David J. Grant, Andrei Sazonov, and Arokia Nathan, “Post-deposition thermal annealing and material stability of 75 oC hydrogenated nanocrystalline silicon PECVD films,” J. Appl. Phys., vol.98, 034305, 2005.
  • Andrei Sazonov, Denis Stryahilev, Czang-Ho Lee, and Arokia Nathan, “Low-temperature materials and thin film transistors for flexible electronics,” Proc. IEEE, vol.93,1420, 2005.
  • Czang-Ho Lee, Andrei Sazonov, and Arokia Nathan, “High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition,”Appl. Phys. Lett., vol.86, 222106, 2005 (also appeared in Virtual J. Nanoscale Science & Technology vol. 11, Issue 22, 2005).
  • Czang-Ho Lee, Y. Vygranenko, and Arokia Nathan, “Process issues with Mo/a-Si:H Schottky diode and TFT integration for direct X-ray detection,” J. Vac. Sci. Technol., A22, 2091, 2004.
  • Czang-Ho Lee, Denis Stryahilev, and Arokia Nathan, “Highly conductive n+ hydrogenated microcrystalline silicon and its application in thin film transistors,” J. Vac. Sci. Technol., A22, 991, 2004.
  • Czang-Ho Lee and J. H. Yoon, “Light-induced effects in sulfur-doped n-type hydrogenated amorphous silicon,”New Phys., vol.39, 48, 1999 (written in Korean).
  • J. H. Yoon, P. C. Taylor, and Czang-Ho Lee, “Light-induced recombination centers in hydrogenated amorphous silicon-sulfur alloys,” J. Non-Crys. Solids., vol.227-230, 324, 1998.
  • J. H. Yoon and Czang-Ho Lee, “Saturation of the metastable defect density in amorphous silicon semiconductor,” J. Non-Crys. Solids., vol.209, 193, 1997.
  • J. H. Yoon and Czang-Ho Lee, “Stability of undoped hydrogenated amorphous silicon multilayer film grown with alternating substrate temperature,” Appl. Phys. Lett., vol.69, 1250, 1996.

Conference papers

  • R, Picos, N. P. Papadopoulos, C.-H. Lee, A. Lopez-Grifols, M. Roca, E. Isern, W. S. Wong, and E. Garcia-Moreno, “Low dose radiation on a-Si:H TFTs,” 2015 10th Spanish Conference on Electron Devices (CDE),1-4, 2015.
  • W. S. Wong, M. J. Chow, M. Pathirane, B. Iheanacho, and C.-H. Lee, “Heterogeneously Integrated Nanowires and Thin Films for Flexible Electronics,” 2014 21st AM-FPD, S1-1, 37-40, 2014 (Invited paper).
  • N. P. Papadopoulos, C.-H. Lee, and W. S. Wong,“Master‐Slave Pixel Concept Used for Improved Sensor‐Display Array Circuits on Flexible Substrates,” SID Symposium Digest of Technical Papers (SDI 2014, Paper No. 44) 45(1), 1138 (2014).
  • M. Yang, N. P. Papadopoulos, C.-H. Lee, W. S. Wong, and M. Sachdev, “A novel voltage-programmed pixel circuit with V T-shift compensation for AMOLED displays,” IEEE Custom Integrated Circuits Conference (CICC), 1-4, 2013.
  • N. P. Papadopoulos, C.-H. Lee, and W. S. Wong, “Modeling and characterization of a-Si:H-based hybrid sensor and display pixel circuits,” SID Symposium Digest of Technical Papers (Euro display 2013, Paper No. 14.4) 44(S1), 240, 2013.
  • M. R. Rad, G. R. Chaji, C.-H. Lee, D. Striakhilev, A. Sazonov, and A. Nathan, “Nanocrystalline Silicon Thin Film Transistors,” ECS Trans. 33 (5), 205, 2010 (Invited paper).
  • B. Park, C.-H. Lee, H. Lee, M.-H. Lim, H.-Y. Lee, S.-J. Seo, D.-J. Kim, B. Seo, M. Shin, and B.-J Kim, “Fabrication of a-Si:H/a-Si(1-x)Gex:H/uc-Si:H triple junction solar cells using large scale 13.56 MHz PECVD,” 17th Korean Conference on Semiconductor, TD3-3, 119-120, 2010 (written in Korean).
  • C.-H. Lee, A. Sazonov, J. Robertson, A. Nathan, M. R. Esmaeili-Rad, P. Servati, and W. I. Mile, “How to achieve high mobility thin film transistors by direct deposition of silicon using 13.56 MHz RF PECVD?” IEDM Tech. Dig., 346766, 2006.
  • C.-H. Lee, A. Sazonov, M. R. Esmaeili Rad, G. Reza Chaji, and A. Nathan, “Ambipolar thin-film transistors fabricated by PECVD nanocrystalline silicon,”Mat. Res. Soc. Symp.,vol.910, 0910-A22-05, 2006 (Graduate Student Award).
  • A. Nathan, D. Striakhilev, R. Chaji, S. Ashtiani, C.-H. Lee, A. Sazonov, J. Robertson, and W. Bill Milne,“Backplane requirements for active matrix organic light emitting diode displays,” Mat. Res. Soc. Symp.,vol.910, 0910-A16-L09, 2006 (Invited paper).
  • M. R. Esmaeili Rad, C.-H. Lee, A. Sazonov, and A. Nathan,“Nanocrystalline silicon films deposited by RF PECVD for bottom-gate thin-film transistors,”Mat. Res. Soc. Symp., vol.910, 0910-A22-13, 2006.
  • C.-H. Lee, A. Sazonov, and A. Nathan, “High mobility n-channel and p-channel nanocrystalline silicon thin film transistors,” IEDM Tech. Dig., 937, 2005.
  • C.-H. Lee, A. Sazonov, and A. Nathan, “High electron mobility (~150 cm2/Vs) PECVD nanocrystalline silicon top-gate TFTs at 260 oC,” Mat. Res. Soc. Proc., vol.862,A17.5, 2005.
  • C.-H. Lee, A. Sazonov, and A. Nathan, “Effects of post annealing and material stability of undoped and n+ nc-Si:H film deposited at 75 oC using 13.56 MHz PECVD,” Mat. Res. Soc. Proc., vol.862,A.5.4, 2005.
  • C.-H. Lee, D. Stryahilev, and A. Nathan, “Intrinsic and doped c-Si:H TFT layers using 13.56 MHz PECVDE at 250 oC,”Mat. Res. Soc. Proc., vol.808, A4.14, 2004.
  • C.-H. Lee, A. Sazonov, and A. Nathan, “Low temperature (75 oC) hydrogenated nanocrystalline silicon films grown by conventional plasma enhanced chemical vapor deposition for thin film transistors,” Mat. Res. Soc. Proc., vol. 808, A4.17, 2004.
  • D. J. Grant, C.-H. Lee, A. Nathan, U. K. Das, and A. Madan, “Bottom-gate TFTs with channel layer grown by pulsed PECVD technique,” Mat. Res. Soc. Proc., vol.808, A4.8, 2004.
  • A. Nathan, D. Stryahilev, P. Servati, K. Sakariya, A. Sazonov, S. Alexander, S. Tao, C.-H. Lee, A. Kumar, S. Sambandan, S. Jafarabadiashtiani, Y. Vygranenko, and I. W. Chan,“A-Si AMOLED display backplanes on flexible substrates,” Mat. Res. Soc. Proc., vol.814, I3.1, 2004 (Invited paper).
  • C.-H. Lee, I. Chan, and A. Nathan, “Mechanical stress and process integration for direct X-ray detector and TFT in a-Si:H technology,”Mat. Res. Soc. Proc., vol.762, A18.12, 2003.
  • C.-H. Lee, S. Tao, I. Chan, and A. Nathan, “Process integration of direct detection imaging arrays using a-Si:H technology”, SPIE Opto-Canada, vol.TD01, 402, 2002.
  • J. H. Yoon, P. C. Taylor, B. Yan, and C.-H. Lee, “Light-induced effects in a-Si:H films alloyed with sulfur,” Mat. Res. Soc. Proc., vol.467, 97, 1997.
  • J. H. Yoon and C.-H. Lee, “Light-induced stability of layered amorphous hydrogenated silicon grown with alternating substrate temperature,” Mat. Res. Soc. Proc., vol.420, 387, 1996.