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Outline
• Fundamental Equations
• Non-Local Boundary Conditions
• Improving Accuracy in Fast Reflection 

Calculations
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Part I - Fundamental Equations
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Scalar Wave Equation
• Scalar, Monochromatic Electric Field
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Forward Solution
• Define                                    .  For forward-

travelling waves (           time-dependence )

• We then have with 
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Modal Analysis
• Modal Decomposition

• Approximate Forward Solution
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Fresnel Approximation
• Fresnel Approximation

• Slowly-Varying Envelope  
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Wide-Angle Approximations
• Taylor Series Expansion

• Padé [2,0] approximant:

• Padé [1,1] approximant
82
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Square-Root Operator Recursion
• Recursion Relation

• Thus if                                      we have 
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Continued Fraction Expansion
• Iterating the recursion relation yields

• Note that we have employed 
to terminate the fraction, yielding a real 
expression.
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Padé Representations
• The Padé approximant can be factored as

• In a partial fraction representation
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Finite Difference Method
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• Applying a [1,1] Padé approximant yields the 
Crank-Nicholson procedure
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• On a one-dimensional transverse grid

Discrete Representation
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Part II - Nonlocal Boundary 
Conditions
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Objective
• To simulate on a finite, discrete 

computational grid the field radiated from 
a local source into a homogeneous semi-
infinite medium.
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Electrorefraction Modulator
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Standard Boundary Conditions
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Improved Boundary Conditions



Faculty of  Science - Department of  
Physics 5/3/2009

D. Yevick - Evolution Operators and 
Boundary Conditions

20

Boundary Layers
– The approximate propagation operators 

introduced above are unitary.   To remove the 
outward propagating electric field at the 
boundary we can introduce absorbing or 
impedance-matched boundary layers.
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Transparent Boundaries
• Set             and                to be consistent with 

purely outgoing waves at the boundary. 
– Local Boundary Conditions:                               are

computed from       at the last propagation step.
– Nonlocal Boundary Conditions:       are 

obtained from previous values of          .
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Impedance-Matched Layer
• For a non-equidistant grid,

the governing equation in a homogeneous 
refractive index layer near the boundary is

• For continuous               , no spurious effects. 
• Thus, if                       ,  we have 
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Approximate and Exact Results
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Continuous Nonlocal Boundary
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Continuous Nonlocal Boundary
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Gaussian Beam - Continuous N.L.
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Remaining Power - Continuous
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Exact Nonlocal Boundary
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Remaining Power - Discrete
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Padé [1,1] Boundary Conditions
• [1,1] Padé Approximation

• Claerbout’s Equation

• Boundary Condition Equation (                )
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Padé [2,0] Boundary Conditions
• [2,2] Padé Equation

• Laplace transform this equation with 
respect to in the exterior region.

• Requiring that no poles are present in the  
right-hand plane of the transform yields the 
desired boundary condition.
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[2,2] Boundary Condition Results
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Padé [N,N] Boundary Conditions
• For the [N,N] case,                                      , where   
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General Boundary Conditions (2)
• Introducing a vector               with

yields

with boundary conditions 
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General Boundary Conditions (3)
• After Laplace transforming, this yields

or, defining                              ,

• Problem: Construct          such that all poles 
of                      have 
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[N,N] Boundary Condition Results
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Part III - Improving Accuracy in 
Fast Reflection Calculations
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Reflection Coefficients
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Standard Operator Results



Faculty of  Science - Department of  
Physics 5/3/2009

D. Yevick - Evolution Operators and 
Boundary Conditions

42

Calculated Reflection Error
• Since the Padé approximation for

has poles in the evanescent spectral 
region, uncontrollable errors can develop.

• One method to resolve this - Generate an 
approximant with complex coefficients by 
selecting an imaginary termination 
condition for the continued fraction 
representation of               .  

L

H+1
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Complex Padé Reflection
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Rotated Padé Approximants
• A second method: Write

and perform a Padé expansion in the 
variable 
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Rotated Padé Reflection
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Refractive Index Discretization

+Ψin
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Transition, Propagation Operator
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Distributed Feedback 
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Conclusions
• Procedures now exist for constructing 

exact, nonlocal boundary conditions for 
wide-classes of two-dimensional  
parabolic partial differential equations.

• Modified Padé operators can be employed 
to increase the accuracy of reflection 
calculations at abrupt interfaces.
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