

Evolution Operators and Boundary Conditions for Propagation and Reflection Methods

David Yevick Department of Physics University of Waterloo

Faculty of Science - Department of Physics 5/3/2009 D. Yevick - Evolution Operators and Boundary Conditions 1

Collaborators

- Frank Schmidt (ZIB)
- Tilmann Friese (ZIB, University of Waterloo]
- Hatem El-Refaei, Nortel Networks
- Ian Betty, Nortel Networks
- Chunlin Yu, Queen's University

Faculty of Science - Department of Physics 5/3/2009

Outline

University of WATERIOO

- Fundamental Equations
- Non-Local Boundary Conditions
- Improving Accuracy in Fast Reflection
 Calculations

Faculty of Science - Department of Physics 5/3/2009

Part I - Fundamental Equations

Faculty of Science - Department of Physics 5/3/2009

Scalar Wave Equation

Scalar, Monochromatic Electric Field

$$\left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k_0^2 n^2(\vec{r})\right) \mathbf{E}(x, y, z) = 0$$

Defining $n_0 = n_{reference}$, $X_0 = \frac{1}{k_0^2 n_0^2} \frac{\partial^2}{\partial x^2}$,

 $Y_{0} = \frac{1}{k_{0}^{2} n_{0}^{2}} \frac{\partial^{2}}{\partial y^{2}} \text{ and } N = \frac{n^{2}(\vec{r})}{n_{0}^{2}} - 1, \text{ we have}$ $\left(\frac{\partial^{2}}{\partial z^{2}} + k_{0}^{2} n_{0}^{2} (X_{0} + Y_{0} + N)\right) E(x, y, z) = 0$

Faculty of Science - Department of Physics 5/3/2009

Forward Solution

• Define $H = X_0 + Y_0 + N$. For forwardtravelling waves ($e^{i\omega t}$ time-dependence)

$$\left(\frac{\partial}{\partial z} + ik_0 n_0 \sqrt{1+H}\right) \mathbf{E}(x, y, z) = 0$$

• We then have with $\delta = -ik_0 n_0$ $E(x, y, z + \Delta z) = e^{\delta \Delta z \sqrt{1+H}} E(x, y, z)$

Faculty of Science - Department of Physics 5/3/2009

University of WATERIOO

Modal Analysis

Modal Decomposition

$$E(x, y, \overline{z}) = \sum_{m} a_{m} E_{m}(x, y, \overline{z}) \text{ with}$$
$$\left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + k_{0}^{2}n^{2}(x, y, \overline{z})\right] E_{m}(x, y, \overline{z}) = \beta_{m}^{2}(x, y, \overline{z}) E_{m}(x, y, \overline{z})$$

Approximate Forward Solution

$$\mathbf{E}(x, y, z + \Delta z) = \sum_{m} e^{-i\beta_{m}(x, y, \overline{z})\Delta z} \mathbf{E}_{m}(x, y, z)$$

Faculty of Science - Department of Physics 5/3/2009

Fresnel Approximation

Fresnel Approximation

$$\sqrt{1+H} \approx 1 + \frac{H}{2}$$

• Slowly-Varying Envelope $E(x, y, z) = E(x, y, z)e^{-\delta z}$

$$\left(\frac{\partial}{\partial z} + \frac{\delta}{2}(X_0 + Y_0 + N)\right)E(x, y, z) = 0$$

Faculty of Science - Department of Physics 5/3/2009

Wide-Angle Approximations

- **Taylor Series Expansion** $\sqrt{1+H} \approx 1 + \frac{1}{2}H - \frac{1}{8}H^2 + \frac{1}{16}H^3 - \frac{5}{128}H^4 + O(H^5)$
- Padé [2,0] approximant: $\sqrt{1+H} \approx 1 + \frac{H}{2} - \frac{H^2}{8}$
- Padé [1,1] approximant

$$\sqrt{1+H} \approx \frac{1+3H/4}{1+H/4}$$
$$= 1 + \frac{1}{2}H - \frac{1}{8}H^2 + \frac{1}{32}H^3 - \frac{1}{128}H^4 + O(H^5)$$

Faculty of Science - Department of Physics 5/3/2009

Square-Root Operator Recursion

Recursion Relation

$$\sqrt{1+H} - 1 = \left(\sqrt{1+H} - 1\right)\left(\frac{\sqrt{1+H} + 1}{\sqrt{1+H} + 1}\right)$$

$$= \frac{H}{\sqrt{1+H}+1}$$
$$= \frac{H}{2+(\sqrt{1+H}-1)}$$

• Thus if $f(x) = \sqrt{J + H} - J$ we have f(x) = x/(2 + f(x))

Faculty of Science - Department of Physics 5/3/2009

Continued Fraction Expansion

Iterating the recursion relation yields

$$\sqrt{1+H} - 1 = \frac{H}{2 + \frac{H}{2 + \dots \frac{H}{2 + \frac{H}{2}}}}$$

• Note that we have employed f(x) = 0to terminate the fraction, yielding a real expression.

Faculty of Science - Department of Physics 5/3/2009

Padé Representations

The Padé approximant can be factored as

$$\sqrt{1+H} \approx \prod_{r=1}^{s} \left[\frac{1+\sin^2\left(\frac{r\pi}{2s+1}\right)H}{1+\cos^2\left(\frac{r\pi}{2s+1}\right)H} \right]$$

In a partial fraction representation

$$\sqrt{1+H} = 1 + \sum_{r=1}^{s} \left[\frac{\frac{2}{2s+1} \sin^2\left(\frac{r\pi}{2s+1}\right)H}{1 + \cos^2\left(\frac{r\pi}{2s+1}\right)H} \right]$$

Faculty of Science - Department of Physics 5/3/2009

Finite Difference Method

• Applying a [1,1] Padé approximant yields the Crank-Nicholson procedure

$$E(z + \Delta z) = e^{\delta \frac{H}{2}} E(z)$$

= $e^{\frac{\delta}{2}(X_0 + Y_0 + N)} E(z)$
 $\approx \left(\frac{1 + \delta H / 4}{1 - \delta H / 4}\right) E(z) + O(\delta^3)$

Faculty of Science - Department of Physics 5/3/2009

Discrete Representation

• On a one-dimensional transverse grid $\{x_i\}$

$$E(x_i, z + \Delta z) = \frac{1 - \frac{i\Delta z}{4k_0 n_0} (k_0^2 (n^2 (x_i) - n_0^2) + D_x^2)}{1 + \frac{i\Delta z}{4k_0 n_0} (k_0^2 (n^2 (x_i) - n_0^2) + D_x^2)} E(x_i, z)$$

where

$$D_x^2 E_i = \frac{E_{i+1} - 2E_i + E_{i-1}}{\Delta z^2}$$

and for any operator *O*, $\frac{1}{O}$ represents O^{-1}

Faculty of Science - Department of Physics 5/3/2009

Part II - Nonlocal Boundary Conditions

Faculty of Science - Department of Physics 5/3/2009

Objective

 To simulate on a finite, discrete computational grid the field radiated from a local source into a homogeneous semiinfinite medium.

Faculty of Science - Department of Physics 5/3/2009

Electrorefraction Modulator

Schematic diagram of modulator

Faculty of Science - Department of Physics 5/3/2009 D. Yevick - Evolution Operators and Boundary Conditions

n+ - InP substrate

NiGeAu n-contact

Standard Boundary Conditions NORTEL

Evolution of Unguided Asymmetric Field -Standard Local Transparent Boundary

Faculty of Science - Department of Physics 5/3/2009

Improved Boundary Conditions NORTEL

Evolution of Unguided Asymmetric Field -Hybrid Boundary

Faculty of Science - Department of Physics 5/3/2009

Boundary Layers

 The approximate propagation operators introduced above are unitary. To remove the outward propagating electric field at the boundary we can introduce absorbing or impedance-matched boundary layers.

Ζ

Faculty of Science - Department of Physics 5/3/2009

- Set E_0 and E_{N+1} to be consistent with purely outgoing waves at the boundary.
 - Local Boundary Conditions: E_0 , E_{N+1} are computed from Eat the last propagation step.
 - Nonlocal Boundary Conditions: E_0, E_{N+1} are obtained from previous values of \exists .

Faculty of Science - Department of Physics 5/3/2009

University of WATERIOO

Impedance-Matched Layer

- For a non-equidistant grid, $\Delta X_i = (1 b_i)\Delta X$ the governing equation in a homogeneous refractive index layer near the boundary is $\left(-2ik_0n_0\frac{\partial}{\partial z} + \frac{d^2}{dx^2} + k_0^2(n_b^2 - n_0^2)\right)E(x, y, z) = 0$
- For continuous X, Z, no spurious effects.
- Thus, if $b_i \rightarrow ia_i$, we have

$$E_{k_x,k_z}(x,z) \propto e^{ik_x(1+ia_i)x+ik_zz}$$

Faculty of Science - Department of Physics 5/3/2009

Faculty of Science - Department of Physics 5/3/2009

Approximate and Exact Results NORTEL

Exact and Approximate Reflection Coefficients - Angle Dependence

Faculty of Science - Department of Physics 5/3/2009

Continuous Nonlocal Boundary

• Assume that $n^2(x_{N-1}) = n^2(x_N) = n_0^2$. At the boundary

$$\frac{\partial^2 E}{\partial x^2} = 2ik_0n_0\frac{\partial E}{\partial z}$$

• Crank-Nicholson method - $E_j \equiv E(x, z_j)$

$$\frac{\partial^2}{\partial x^2} \left(\frac{E_{j+1} + E_j}{2} \right) = 2ik_0 n_0 \frac{E_{j+1} - E_j}{\Delta z}$$

• Setting $s \equiv T_{\{-\Delta z\}} = e^{-\Delta z} \frac{\partial}{\partial z}$, we have with $\nu = \sqrt{4ik_0n_0/\Delta z}$,

$$\frac{\partial^2 E_{j+1}}{\partial x^2} = \nu^2 \frac{1-s}{1+s} E_{j+1}$$

Faculty of Science - Department of Physics 5/3/2009

University of WATERLOO

Continuous Nonlocal Boundary

• Outgoing condition (right boundary)

$$\frac{\partial E_{j+1}}{\partial x} = -\nu \sqrt{\frac{1-s}{1+s}} E_{j+1}$$

With $s^{l}E(x,z) = E(x,z-l\Delta z)$, we have

$$\frac{\partial E(x, z_{j+1})}{\partial x} + \nu E(x, z_{j+1}) = \\\nu \left[E(x, z_j) - \frac{1}{2} E(x, z_{j-1}) + \frac{1}{2} E(x, z_{j-2}) - \frac{3}{8} E(x, z_{j-3}) + \dots \right]$$

• The electric field is optimally evaluated at $(x_{N_w} + x_{N_w+1})/2$.

Faculty of Science - Department of Physics 5/3/2009

University of WATERLOO

Gaussian Beam - Continuous N.L.

NORTEL

Continuous Nonlocal Boundary Condition Gaussian Beam, 1024 Points

Faculty of Science - Department of Physics 5/3/2009

Remaining Power - Continuous

NORTEL

Continuous Nonlocal Boundary Condition L₂ Norm, 1 and 2 Gaussian Beams

Faculty of Science - Department of Physics 5/3/2009

Exact Nonlocal Boundary

• With $E_m \equiv E(x_m, z_j + \Delta z)$ the Crank-Nicholson method yields on a discrete grid

$$(1+s)(E_{m+1}-(2-k_0^2\Delta n^2)E_m+E_{m-1})=\nu^2(1-s)E_m$$

• Applying the x-translation operator $r \equiv T_{\{-\Delta x\}} = e^{-\Delta x} \frac{\partial}{\partial x}$ $r^2 - (2 - k_0^2 \Delta n^2)r + 1 = \nu^2 \frac{1-s}{1+s}r$

• If the root with |r| < 1 is denoted by r_- , the discrete transparent boundary condition is

$$E_{N+1} = r_{-} \cdot E_N$$

Faculty of Science - Department of Physics 5/3/2009

University of WATERLOO

Remaining Power - Discrete NORTEL

Discrete Nonlocal Boundary Condition L₂ Norm, 1 and 2 Gaussian Beams

Faculty of Science - Department of Physics 5/3/2009

Padé [1,1] Boundary Conditions

• [1,1] Padé Approximation

$$-1 + \sqrt{1+H} \approx \frac{H/2}{1+H/4}$$

- **Claerbout's Equation** $\left[\left(1 + \frac{H}{4} \right) \frac{\partial}{\partial z} + \delta \frac{H}{2} \right] E(x, y, z) = 0$
- Boundary Condition Equation $(n_b = n_0)$ $\left(1 + \frac{X_0}{4}\right) \left[\frac{1-s}{\Delta z}\right] E(z + \Delta z) = -\delta \frac{X_0}{4}(1+s)E(z + \Delta z)$

Faculty of Science - Department of Physics 5/3/2009

Padé [2,0] Boundary Conditions

• [2,2] Padé Equation

$$\left(\frac{1-s}{\Delta z}\right)E_{j+1}(x) = -\delta\left(1 + \frac{X_0}{2} - \frac{X_0^2}{8}\right)\left(\frac{1+s}{2}\right)E_{j+1}(x)$$

- Laplace transform this equation with respect to X in the exterior region.
- Requiring that no poles are present in the right-hand plane of the transform yields the desired boundary condition.

Faculty of Science - Department of Physics 5/3/2009

[2,2] Boundary Condition Results

Faculty of Science - Department of Physics 5/3/2009

Padé [N,N] Boundary Conditions

• For the [N,N] case, $sE_i(x) = E_{i-1}(x)$, where

 $g_{i}^{(1)}(x) = \left(\frac{1 - a_{1}'\partial_{x}^{2}}{1 - a_{1}\partial_{x}^{2}}\right) E_{i-1}(x)$ $g_{i}^{(2)}(x) = \left(\frac{1 - a_{2}'\partial_{x}^{2}}{1 - a_{2}'\partial_{x}^{2}}\right) g_{i}^{(1)}(x)$

$$g_i^{(2)}(x) = \left(\frac{1 - a_2 \, \mathcal{O}_x}{1 - a_2 \, \mathcal{O}_x^2}\right) g_i^{(1)}(x)$$

$$g_{i}^{(k-1)}(x) = \left(\frac{1 - a_{k-1}'\partial_{x}^{2}}{1 - a_{k-1}\partial_{x}^{2}}\right)g_{i}^{(k-2)}(x)$$
$$E_{i}(x) = \left(\frac{1 - a_{k}'\partial_{x}^{2}}{1 - a_{k}\partial_{x}^{2}}\right)g_{i}^{(k-1)}(x)$$

Faculty of Science - Department of Physics 5/3/2009

General Boundary Conditions (2)

- Introducing a vector $\mathbf{g}_i(x)$ with
 - $\mathbf{g}_{i,j}(x) = g_i^{(j)}(x), \ j = 1...k-1, \ \mathbf{g}_{i,k}(x) = E_i(x)$ yields

$(\mathbf{E} + \mathbf{A}\partial_x^2)\mathbf{g}_i(x) = 0$ with boundary conditions

$$\dot{\mathbf{g}}_{i,+} = \mathbf{B}_{+}\mathbf{g}_{i,+}, \ \dot{\mathbf{g}}_{i,-} = \mathbf{B}_{+}\mathbf{g}_{i,-}$$

Faculty of Science - Department of Physics 5/3/2009

General Boundary Conditions (3)

- After Laplace transforming, this yields
 - $(\mathbf{E} + p^2 \mathbf{A}) \hat{\mathbf{g}}_i(p) = \mathbf{A}(p\mathbf{g}_{i,0} + \dot{\mathbf{g}}_{i,0})$
 - or, defining $\mathbf{C}^2 = -\mathbf{A}^{-1}\mathbf{E}$,

$$(p^2 \mathbf{I} - \mathbf{C}^2) \hat{\mathbf{g}}_i(p) = p \mathbf{g}_{i,0} + \dot{\mathbf{g}}_{i,0}$$

• Problem: Construct C such that all poles of $(p\mathbf{I} + \mathbf{C})^{-1}$ have $\Re p_i > 0$

Faculty of Science - Department of Physics 5/3/2009

Faculty of Science - Department of Physics 5/3/2009

Part III - Improving Accuracy in Fast Reflection Calculations

Faculty of Science - Department of Physics 5/3/2009

Facet Reflection Coefficient

• Matching E_y and $\frac{\partial E_y}{\partial z}$ at the boundary gives $\begin{array}{c|c}
\Psi_y = \Psi_o^+ e^{-ik_o n_{ol} L_l z} + \Psi_o^- e^{ik_o n_{ol} L_l z} \\
\Psi_y = \Psi_o^+ e^{-ik_o n_{ol} L_l z} + \Psi_o^- e^{ik_o n_{ol} L_l z} \\
E_{yr}^{(k+1)} = \frac{1}{2} (1 - L_B L_A) (E_{yr}^{(k)} - E_{yi}), \text{ or } \\
\left[R\right]_{TE} = \frac{E_{yr}}{E_{yi}} = \frac{n_{oA} L_A - n_{oB} L_B}{n_{oA} L_A + n_{oB} L_B}
\end{array}$

Faculty of Science - Department of Physics 5/3/2009

Reflection Coefficients

Faculty of Science - Department of Physics 5/3/2009

Faculty of Science - Department of Physics 5/3/2009

Calculated Reflection Error

- Since the Padé approximation for *L* has poles in the evanescent spectral region, uncontrollable errors can develop.
- One method to resolve this Generate an approximant with complex coefficients by selecting an imaginary termination condition for the continued fraction representation of $\sqrt{1+H}$.

Faculty of Science - Department of Physics 5/3/2009

University of WATERIOO

Complex Padé Reflection

Faculty of Science - Department of Physics 5/3/2009

Rotated Padé Approximants

A second method: Write

$$\sqrt{1+H} = e^{i\alpha/2}\sqrt{1+[(1+x)e^{-i\alpha}-1]}$$

and perform a Padé expansion in the variable

$$y = (1+x)e^{-i\alpha} - 1$$

Faculty of Science - Department of Physics 5/3/2009

Rotated Padé Reflection

Faculty of Science - Department of Physics 5/3/2009 D. Yevick - Evolution Operators and Boundary Conditions 45

Refractive Index Discretization

$$\begin{pmatrix} \Psi_{out}^{+} \\ \Psi_{out}^{-} \\ \Psi_{out}^{-} \end{pmatrix} = G \begin{pmatrix} \Psi_{in}^{+} \\ \Psi_{in}^{-} \\ \Psi_{int}^{-} \end{pmatrix} \qquad G = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = T_n P_n T_{n-1} P_{n-1} \dots T_2 P_2 T_1 P_1$$

$$\textbf{Reflected field} \qquad \textbf{Transmitted field}$$

$$\Psi_{in}^{-} = -g_{22}^{-1} g_{21} \Psi_{in}^{+} \qquad \Psi_{out}^{+} = (g_{11} - g_{12} g_{22}^{-1} g_{21}) \Psi_{in}^{+}$$

Faculty of Science - Department of Physics 5/3/2009

Transition, Propagation Operator

$$T_{j} = \frac{1}{2} \begin{pmatrix} 1 + \frac{n_{o_{j}}}{n_{o_{j+1}}} L_{j+1}^{-1} L_{j} & 1 - \frac{n_{o_{j}}}{n_{o_{j+1}}} L_{j+1}^{-1} L_{j} \\ 1 - \frac{n_{o_{j}}}{n_{o_{j+1}}} L_{j+1}^{-1} L_{j} & 1 + \frac{n_{o_{j}}}{n_{o_{j+1}}} L_{j+1}^{-1} L_{j} \end{pmatrix}$$

Faculty of Science - Department of Physics 5/3/2009

Distributed Feedback

Faculty of Science - Department of Physics 5/3/2009

Conclusions

- Procedures now exist for constructing exact, nonlocal boundary conditions for wide-classes of two-dimensional parabolic partial differential equations.
- Modified Padé operators can be employed to increase the accuracy of reflection calculations at abrupt interfaces.

Faculty of Science - Department of Physics 5/3/2009

University of WATERIOO