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o Part | - Fundamental Equations
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Scalar Wave Equation

e Scalar, Monochromatic Electric Field

_|_
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Forward Solution

e Define H=X,+Y,+N | For forward-
travelling waves ( €'“time-dependence )

(i+ iIk,n,v1+H jE(x, y,2)=0

OZ

e Wethenhavewith & =—Ik,n,
E(X, Y,z +Az) = e E(x,y, 2)
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Modal Analysis

* Modal Decomposition
E(x,y,7)=) a,E, (x,y,Z) with

0 & ) ] ) ]
L}Xz + " +kon’(x,y,2) |E. (X, Y,2) = B2 (XY, 2)E, (X,Y,2)

* Approximate Forward Solution

E(x,y,2+A7) =) e "YIRE (x,y,7)
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Fresnel Approximation

e Fresnel Approximation

J1+H z1+%

o Slowly-Varying Envelope E(x,y,z) = E(x,y,z)e™

o O
(82 + > (X, +Y, + N)jE(x, y,2) =0
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Wide-Angle Approximations

 Taylor Series Expansion

1. 1., 1.5 5 .,
v1+H = 1+2H—§H EH _EH O(H)
o Padé |2, O] apprommant
Vi+H =~ 1+7—T
e Padé[l1,1]approximant
T+ H ~ 1+3H /4
1+ H /4
:1+1H—EH2+iH3—iH4+O(H5)
2 8 32 128
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Square-Root Operator Recursion

e Recursion Relation
ITH —1-(VizH - {mﬂj

V1+H +1

H
C J1+H +1

H

" 2+(VirH -1)

e Thusif ‘)=AT+H-T we have
f(X) = x/(2+ f(x))
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Continued Fraction Expansion

o lterating the recursion relationyields

Vi+H —1= H

» Note that we have employed f (X) =0
to terminate the fraction, yielding a real
expression.
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Padé Representations

» The Pade approximant can be factored as

. 1+sin2[2rﬂle
Vi+H ~]] >+
r=1

1+ COSZ[ rz jH
2s +1

 Inapartial fraction representation

- 2 r
> 25+1sm [25+1)H
Vi+H =1+>"
r=1

1+cos?l " |H
2s+1
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@y Finite Difference Method

"« Applying a[1,1] Pade approximant yields the
~ Crank-Nicholson procedure

H

E(z+Az) =e’ 2 E(z)

o
—(Xg+Yy+N)
—e2 ~ ° 'E(2)

1+o0H /4 :
= (1_5|—| /4)E(Z) +O(5 )
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Discrete Representation

e Onaone-dimensional transverse grid {x; }

1- 2 (ki (M2 (x) ~n§) + DY)
E(X.,z+Az) = iAOZO E(x,z)
1+ 12 (k2 (n* (x,) —nZ) + D?)
0"'0
where
D2E. = Ei+1 _2Ei + Ei—l
o Az*

and for any operator O, é represents O .
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123 Part 11 - Nonlocal Boundary
g | Conditions
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Objective

 Tosimulate on afinite, discrete

computational grid the field radiated from

a local source into a homogeneous semi-
Infinite medium.
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Electrorefraction Modulator

Schematic diagram of modulator

. Ti/ Pt/ Au p-contact
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Standard Boundary Conditions

Evolution of Unguided Asymmetric Field -
Standard Local Transparent Boundary
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Boundary Layers

— The approximate propagation operators
Introduced above are unitary. Toremove the
outward propagating electric field at the
boundary we can introduce absorbing or
Impedance-matched boundary layers.

A

X 1 XN
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Transparent Boundaries

« Set E, and E,,, tobe consistentwith
purely outgoing waves at the boundary.

— Local Boundary Conditions: E,, E\.,, are
computed from Eat the last propagation step.

— Nonlocal Boundary Conditions: E,, E,,, are
obtained from previous values of 3

$ & & & & $ & & & & & —— -0

- L
Eo E; E; En Ens
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Impedance-Matched Layer

e For anon-equidistant grid, AX; = (1-b;)AX
the governing equation in a homogeneous
refractive index layer near the boundary is

2

_2ikn, 2+ 9 4k “(n, —=n,?) |[E(x,y,2) =0
0"'0 0 b 0

oz dx?
e For continuous X, Z  nospurious effects.

e Thus,if b. —Ia; , we have

ik, (1+ia; ) x+ik,z

E, . (X,2)ce
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iz Impedance-Matched Layer

—2k,AX > a —2Kyn,AXSIng » a
Attenuation = € 248 =e 248

Ny

0
Z=L,/tand
n(r) X
>Z
nb
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Approximate and Exact Results

Exact and Approximate Reflection NEORTEL
Coefficients - Angle Dependence NORTHERN TELECOM
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Continuous Nonlocal Boundary

o Assume that »?(zy_1) = n?(zy) = n3. At the boundary

82 E Dir SE
S 2 a0 iz

» Crank-Nicholson method - E; = E(z, z;)

52 (Ej1+ Ej
Sx2 2

41— By

AN

) — 2ikorn

3
e S5etling s =77 _ppy = D25z, we have with v = Jdékgngﬁ&z,

2
an"‘l:yEl_SE_
SxZ 1+ = Jtl
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Continuous Nonlocal Boundary

¢ Outgoing condition (right boundary)
S 1 —
it bt S 5 Eiyy
S 1+ s
With s'E(z,2) = E(z, z — IAZ), we have
SE(:E, zj._|_1)
Jx
1
v E(ﬂ:1 z._']') T EE(Iv zj—l)_l_

1 3
EE(Ivzj—E) —gE(Iﬁ, 3j—3)‘|—- N

+vE(z, zj41) =

e The electric field is optimally evaluated at (zp, + xp,41)/2.
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Gaussian Beam - Continuous N.L.

Continuous Nonlocal Boundary Condition =~ NE&RTEL
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Continuous Nonlocal Boundary Condition
L, Norm, 1 and 2 Gaussian Beams

Remaining Power - Continuous
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Exact Nonlocal Boundary

e« With Em = E(om, z; + Az) the Crank-Nicholson method yields
on a discrete grid

(14 5)(Emt1— (2= kg AR B + Epp_1) = v°(1 = 8)Em

a3
+ Applving the z-translation operator r = T{_ Azl = e D3

21—5

2 2 2 —
rs — (2 — kiAancmr+1 = v .
( ] ) 1|5

e If the root with |r| < 1 is denoted by r_, the discrete transparent
boundary condition is

Ey41=r—- By
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Remaining Power - Discrete

Discrete Nonlocal Boundary Condition NORTEL
L, Norm, 1 and 2 Gaussian Beams NORTHERN TELECOM
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-1++v1+H ~ /2

1+H/4

e Claerbout's Equation
{(1+%8+5H}E(x,y,z)—0
4 )oz 2

» Boundary Condition Equation (M =" )

(1+ Xoj{l_s}E(z £ A7) = —5%(“ S)E(z + A7)
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1-s o Xo X [1+s
(EjEjﬂ(X)_ 5(1"_ 2 g j( 2 jEjﬂ(X)

"« Laplace transform this equation with
respect to X in the exterior region.

e Requiring that no poles are present in the
right-nand plane of the transform yields the
desired boundary condition.
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g i(l) (X) =

92 (x) =

02 () =

E (X) =
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Padé [N,N] Boundary Conditions

e Forthe [N\N] case, SE; (X) = E,_ (X), where

1-a,02

X

=t aiJg.‘l’ ()

1-a 'ai

1-a,o’

1-a _'Gi .
1—ak 182 ]gu(k 2 (x)
k—-1% x
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@3 General Boundary Conditions (2)

© « Introducing avector g;(X) with
g,;0=9"(x), j=1.k-1 g, (x)=E(x) yields

(E+Ad2)g;(x) =0
with boundary conditions

9;,=B.0;,,9,_=B.g,_
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>

@3 General Boundary Conditions (3)

"+ After Laplace transforming, this yields
(E+ pZA)@i (P) =A(PY;o +9io)

or,defining C* =-A"'E,

(p2| _Czbi(p) = PYio +gi,0

e Problem:Construct C suchthatall poles
of (p1 +C) " have Rp; >0
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L2380 Part 111 - Improving Accuracy in
aad | Fast Reflection Calculations
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Facet Reflection Coefficient

« Matching E and atthe boundary gives

\{’y — \y(;l-e—ikonm L|Z +\{’0—eikono| L|Z

(k+1) 1
— | E, = (Ll JEV-E) o
E Noala —Ns L
A B [R]TE e L noA LA n noB LB
yi 0A —A oB —B
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Standard Operator Results

I I 1
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Calculated Reflection Error

 Since the Padé approximation for L
has poles in the evanescent spectral

 One method to resolve this - Generate an
approximant with complex coefficients by
selecting an imaginary termination
condition for the continued fraction
representation of v1+H .
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Complex Padé Reflection
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Rotated Padé Approximants

| &« Asecond method: Write

1+ H =e'“/2 1+ [1+x)e ™ —1]

and perform a Pade expansion in the
variable

y=(1+x)e" -1
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Transition, Propagation Operator
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J Distributed Feedback
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Conclusions

* Procedures now exist for constructing
exact, nonlocal boundary conditions for
wide-classes of two-dimensional
parabolic partial differential equations.

* Modified Pade operators can be employed
to increase the accuracy of reflection
calculations at abrupt interfaces.
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