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Polarized Waveguide Modes

e For single mode waveguides with
sufficient symmetry, light propagates in a
superposition of two degenerate modes.

e |In general the modal group velocities
differ, yielding signal distortion in optical
fibers (polarization mode dispersion).
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PMD Emulators

e \We describe a general communication
system by a set of system parameters o .

 For PMD emulators, these are e.g. the
polarization rotation angles associated
with polarization scramblers separated by
concatenated birefringent sections or the

optical path lengths of successive mutually
rotated birefringent segments.
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System Simulation

 \We generate random values of the local
system parameters (rotation angles).

0_2:(‘91’¢1’92’¢2""’9N’¢N)

e For each realization, we calculate one or
more global system variables O

(observables). In our case these are the
PMD vectors 7, 7, ...
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Control Variables

 Random control variables
a=(a,a,...,ay)
» Objective: Determine the probability distribution
function (pdf) P(O)of a set of observables

0 =0(&)
» Generate N sets of control variables «
according to the physical distribution p(«)

« Compute or measureO for each set &
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Monte Carlo Sampling

» If the function 1(0,,a@")is one inside the k:th
histogram bin, then after N realizations,

D .
p(ok)zﬁzl(okva())
i=1

* Clearly few events arise in regions of small
probability. Therefore, many samples are
required to generate “worst case” events
with small PMD statistics.
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Markov Chains

e To Insure that lower probability states are
sampled more often, Markov chains are
employed.

e Additing a small perturbation to the
current srate yields a proposed transition

e A rule governs the acceptance of this
transition.
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Multicanonical Algorithm

* The transition rule should ensure:
e Equal sampling of equal O regions
* Rapid escape from local minima
e (Detalled balance)

 These require that the acceptance is a
particular function of the ratio of the pdf of
the initial and final states.

 However, the pdf is unknown and must be
determined iteratively.
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Multicanonical Procedure

* A Markov chain leading to equal sampling of
the system variable space, O .

— Starting from p, = 1, accept all transitions
that decrease p, and those that increase p,
with a probability P,(0™)/ p,(0™*)This
gives the acceptance probability

min{l, po (6(curr))/ pO (6(new))}
— This yields a (Monte-Carlo) distribution H;.
— Iterate with P, = pn—lHn—l/ Ca
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Result of Iterations

 In the tail regions regions, p is initially 1,
yielding Monte-Carlo statistics and the
number of events falls off as the PDF.

* As the iterations proceed, the states
Increasingly sample these low-probability
regions.

_ Waterioo
May 3, 2009 Department of Physics



MC Enhancements

e Raise the intermediate result p,(E) to a
power In the transition rule.

 Introduce a bias function p,(E)—c,p,(E)H (E)
INnto the transition rule and combine the
results in overlapping regions.

 Interpolate the histogram in the transition
rule.

 Employ different probabillity distributions
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15 section PMD emulator

Section DGD (|7, [=1ps )

-fl rotates randomly on Poincare sphere
*500,000 samples/iteration

8 iterations
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Joint PMD Calculation

« We employ a 15 section PMD emulator.
e 200,000 samples/iteration
 Number of histogram bins: 100x100

e \WWe normalize the first order PMD to
<PMD> and the second order PMD to
<PMD>2.
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honte-Carlo iteration
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Experimental Results

e Determined the DGD distribution of a
microheater-based PMD emulator.

e * Measured the joint pdf of the first and
second order PMD of a 8 section PMD
emulator with General Photonics
polarization controllers.

e Recorded the distribution of bit error rates
INn a recirculating fiber loop.
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Fig. 1. Experimental setup
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Fig. 2.  The pdf of the DGD obtained with a 20, 000 sample experimen-
tal Monte Carlo measurement (+), a multicanonical measurement with ten
iterations of 2,000 samples (o) and a numerical multicanonical simulation
employing twenty 50,000 sample iterations (solid line)
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Fig. 4. The R4 = 24 < v < 32ps subregion bias function
Fig. 5. The histograms obtained after each biased multicanonical iteration
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SOPMD [ps?]
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Fig. 6. The pdf obtained from the biased multicanonical method generated
by combining results for all subregions Ry ... Ks.
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Transition Matrix Method

e For every accepted or rejected transition
from the m:th to the m:th histogram bin In
a biased calculation:

» Increment the corresponding element, M, ,

of an unbiased but unnormalized transition
matrix, M, by unity.

» At the end normalize the rows of 7, to unity,
yielding the transition matrix 7.
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Rapid pdf updating

* By detailed balance, the pdf can be
obtained from the recursion relation
E Ti+1,i E
p( i+1)_-|- p( i)

I,1+1

* This enables updates after every few
steps.

o Alternatively transition only to final states
visited less than the initial state.
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Detalled Balance Violation

 The preceding method violates detailed
balance

 More system realizations enter a
histogram bin from the high probability
side than the low probability side.

o If transitions out of the bin are discarded
until the physical pdf is established this
problem can be resolved.
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Fig. 2. Total number of times each histogram bin 1z visited for
the standard multicanonical procedure (A), method 1 (0), and
method 2 (dashed—dotted curve).
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Fig. 1. Ratio between the numerical and analytic pdfs for the
standard multicanonical procedure (A), our modified transition
matrix procedure with a multicanonical acceptance rule (method
1, ), an acceptance rule that rejects transitions to more visited
histogram bins (method 2, dashed—dotted curve), and a proce-
dure that restricts transitions out of a recently wvisited bin
{method 3, crosses) as functions of the normalized DGD for a
N, =10 segment fiber emulator.
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Fig. 3. Variation of the error, Eq. (2), weighted by the histogram
hin probability as a function of the average DGD change over ane
Markov step for the standard multicanonical method (A),
method 1 (2), method 2 (dashed—dotted curve), and method 3

(crosses).
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Outage Time Formulation

e |nitial state: S,=P(E,) for n in the non-
outage region, zero elsewhere

* Repeatedly multiply by the transition
matrix.

o At each step, sum and then set to zero the
histogram values of non-outage states.

o Alternatively, employ the outage region
submatrix eigenfunctions and eigenvalues.
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Outage Time Calculation

e Outage conditions: (1) DGD > 2<DGD>
and (2) DGD > 3<DGD>.

e Circles - 10° step unbiased Markov chain.

e Solid line - Biased TM calculation with
three 5,000K sample MC iterations

e Dashed line - Multiplication with the
unbiased TM from twenty 200K MC
iterations or submatrix eigenvalue method.
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Fading Channels

e Gain of Rayleigh fading channel
g =4 (t)+ 15 (t)

N, .
o ()= Zcos(% f__ sin (ﬂ(j; 1)]t + emn)
n=1

m

e The phases ¢_ are the control variables.

 The durations of two successive fading
events are employed as the observables.

e This yields relevant 1-dimensional pdf:s
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Fig. 1. The base 10 loganithm of the pdf of the number of fading events
for frax = 10 Hz within T, = 1 sec for outage threshold levels of H = 5
dB idashed-dotted line), 10 dB (dashed line) and 15 dB (solid line) below
the mean channel gain as evalvated with two IUE-EHII]P].EitEIHﬁDﬂSDfﬂE
multicanonical method as well as for our modified transition matrix procedure
(+) with a 2 x 10° samples and a direct evalvation of Eq. (2) ().
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Fig. 2. The fade duration distribution for three 2 x 10°-sample iterations
of the multicanonical method (solid lines) with N = 100 bins for outage
levels of H = 5 dB and 15 dB below the mean channel gain, respectively,
and for 6 % 105 samples of the the modified transition matrix procedure (+)
and Eq. (2) (o). The dashed line indicates the sampling bias introduced by
the one-dimensional multicanonical calculation for H = 5 dB.
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Conclusions

e Transition matrix methods enable rapid
prediction of the dynamic behavior of
general communication systems.

 However, standard procedures are more
accurate since all correlations between
states are present.

* The technigue must be carefully applied
when long-time correlations exist.

Wwaterloo

May 3, 2009 Department of Physics



