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• Loss reserving
– A problem in forecasting
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Earliest “models”

• Observations organized by row and 
column

• An accident period (row) “develops” 
from one column to the next

• Forecast is 𝑌",$%&= 𝑓($𝑌"$
• These “models” include (Taylor, 

1986, 2000; Wüthrich & Merz, 
2008):
– Chain ladder 
– Separation method
– and all their derivatives:

• Bornhuetter-Ferguson
• Cape Cod;
• etc.
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Properties of earliest “models”

• No model formulated
• No stochastics introduced
• Actually a “procedure” or 

“algorithm” rather than model
• Assumption of same age-to-age 

factors for each row 
• Parameter estimation carried out by 

row, column or diagonal averaging
• In statistical parlance, include “row, 

column and/or diagonal effects”
• Over-parameterized

• For an 𝑛×𝑛 triangle, chain ladder 
involves 2𝑛 − 1 parameters

• This increases prediction error
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Unfitness of Jurassic denizens
• Most early models include row and 

column effects
• What if there is a need to include 

diagonal effects also?
– e.g. variable inflation

• What if rate of claim settlement 
changes from one row to another 
(Fisher & Lange, 1973)?
– Age-to-age factors vary from row 

to row
• Such features:

– Increase parameterization
– Are difficult to parameterize by 

row/column/ diagonal 
manipulation (Taylor, 2000)
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The appearance of stochastic models

• The Jurassic models were unformulated, but essentially 
took the form:

𝑌"$ = 𝑓 𝑌, 𝛼
• This is not stochastic, but can easily be made so:

𝑌"$ = 𝑓 𝑌, 𝛼 + 𝜀"$, 𝐸 𝜀"$ = 0
• With some restriction on 𝑓 and 𝜀"$, one arrives at a GLM

𝑌"$~𝐹 𝜇"$, 𝜑 𝑤"$⁄ , 𝜇"$ = 𝐸 𝑌"$ , ℎ 𝜇"$ = 𝑥"$B𝛽,
𝐹 ∈ 𝐸𝐷𝐹

• Chain ladder example (𝑌",$%&= 𝑓($𝑌"$)
𝐹 = 𝑂𝐷𝑃, ℎ = 𝑙𝑛,				𝑥",$%&= 0,…0, 𝑌"$, 0…0 , 𝛽 = 𝑓&,𝑓K, …
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Brief history of stochastic models
• Notably advanced creatures of the Jurassic were:

– Stochastic claims analysis (Reid, 1978)
– A stochastic chain ladder model (Hachemeister & Stanard, 1975)
– An individual claim development model (Hachemeister, 1978, 

1980)
• History of actuarial GLMs longer than often realized:

– 1972: concept introduced (Nelder & Wedderburn)
– 1977: GLIM software introduced
– 1984: Tweedie family introduced (Tweedie, 1984)
– 1990+: seminal actuarial papers (Wright, 1990; Brockman & 

Wright, 1992)
– Note, however:

• Early application of GLMs to pricing (Baxter, Coutts & Ross, 1979)
• Use within my own consulting practices through the 1980’s
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More recent loss reserving GLMs
• Used to model claim data sets with many complex and overlapping 

features, e.g.
– Taylor & McGuire (2004)

• Auto liability
• Rates of claim settlement vary over time
• Superimposed inflation varies with payment quarter and operational time
• Legislative change (accident quarter)

– Taylor & Mulquiney (2007)
• Mortgage insurance
• Cascaded model with sub-models for healthy policies, in arrears, properties 

in possession, and claims
– Taylor, McGuire & Sullivan (2008)

• Medical malpractice
• Individual claim development model with covariates such as specialty, 

geographic area of practice, etc.
– Taylor & McGuire (2016) – a monograph on GLM reserving

• This type of analysis is now called Predictive Analytics
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Adaptation of species

• GLM model was
𝑌"$~𝐹 𝜇"$, 𝜑 𝑤"$⁄ , 	 𝜇"$ = 𝐸 𝑌"$ , ℎ 𝜇"$ = 𝑥"$B𝛽
• Here parameter set 𝛽 is constant over time

– What if it is expected to change?
• One can introduce an evolutionary model in which 

parameters vary over time, e.g. (with time 𝑡 = 𝑖 + 𝑗)
𝑌"$~𝐹 𝜇"$

(P), 𝜑 𝑤"$⁄ , 𝜇"$
(P) = 𝐸 𝑌"$ , ℎ 𝜇"$

(P) = 𝑥"$B𝛽(P)

𝛽(P)~𝑃 . ; 𝛽(PT&), 𝜓
• See

– Taylor (2008)
– Taylor & McGuire (2009)

Conjugate 
prior

Prior 
dispersion 
structure
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Adaptive reserving (1)
• Adaptive model
𝑌"$~𝐹 𝜇"$

(P), 𝜑 𝑤"$⁄ , 𝜇"$
(P) = 𝐸 𝑌"$ , ℎ 𝜇"$

(P) = 𝑥"$B𝛽(P)

𝛽(P)~𝑃 . ; 𝛽(PT&), 𝜓
• Reminiscent of Kalman filter (see Harvey, 1989), BUT

– KF applies to linear models, whereas this one is non-
linear in general

– KF assumes normal error for observations, whereas 
this model assumes non-normal

– The posterior likelihood at each 𝑡 does not lie within 
the set of EDF conjugate priors

• Must be approximated by a member of the set with same first 
and second order moments

• Some stability problems
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Adaptive reserving (2)

• Schematic of process from time 𝑡 − 1 to 𝑡

Time𝒕 − 𝟏

Prior with 
mean 𝜷(𝒕T𝟏)

𝒕

Data 𝒀(𝒕)

Posterior with 
mean 𝜷(𝒕)

Convert to prior 
with mean 𝜷(𝒕) and 
same dispersion
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Miniaturization: dimensionality reduction

• The Jurassic models were lumbering, with overblown 
parameter sets

• GLMs were more efficient but without much systematic 
attention to the issue

• A more recent approach that brings the issue into focus 
is regularized regression, and specifically the least 
absolute shrinkage and selection operator (LASSO) 
model (Tibshirani, 1996)
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Regularized regression

• Consider first linear regression, as opposed to GLM, and 
consider the loss function (in an obvious notation)

𝐿 𝑦; 𝛽 = 𝑦 − 𝑋𝛽 K
K + 𝜆 𝛽 \

where . \ denotes the 𝐿\ norm and 𝜆 > 0 is a constant
This is regularized (linear) regression

• Note that
– 𝜆 = 0 yields OLS regression
– 𝜆 ≠ 0, 𝑝 = 2 yields Ridge regression
– 𝜆 ≠ 0, 𝑝 = 1 yields the lasso

• A property of the lasso is that it can force many components of 𝛽 to 
zero
– Thus an effective tool for elimination of covariates from a large set

𝝀	 → 𝟎: no elimination of 
covariates

𝝀	 → ∞:	maximum elimination of 
covariates

Replace squared error by GLM 
loss function (log-likelihood) to 
obtain regularized GLM
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Calibration
• Consider a large set of basis functions 

from which all functions in the loss 
reserving model may be expressed as 
linear combinations

• Lasso used to reduce large covariate set 
to just the “essential” members
– Sequence of models examined with 

increasing 𝜆
– Number of covariates decreasing
– Model chosen to minimize cross-

validation error
– Examples

• Venter & Şahîn (2017) – mortality
• Gao & Meng(2017) – loss reserving
• Taylor, McGuire & Miller (2016) – loss 

reserving

Cross-validation
• Randomly delete one 𝑛-th

of the data set, as a test 
sample

• Fit the model to the 
remainder of the data set 
(training set)

• Generate fitted values for 
the test sample

• Compute error between 
test sample and fitted 
values (e.g. sum of 
squares)
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Example of lasso calibration
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Forecast error (1)

• Let 
– 𝑅 denote the amount of unpaid losses (a random variable)
– 𝑅. denote an estimate of 𝑅 (assumed unbiased)

• One wishes to know something of the distribution of 𝑅., 
e.g.
– The full distribution
– Certain quantiles (risk margins, capital margins)

– Just the mean square error of prediction (MSEP): 𝐸 𝑅 − 𝑅. K

• If one is not concerned with the tails of the distribution (e.g. 75-
percentile risk margin), then MSEP will often provide a measure of 
the forecast quality
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Forecast error (2)

• There are two main approaches to the estimation of 
forecast error
– Bootstrap
– Markov Chain Monte Carlo (MCMC) (Meyers, 2015)

• Relevant to Bayesian models

• Both estimate full distribution, and therefore any property 
of the distribution
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Parameterization and forecast error

• Beyond a certain threshold, the inclusion of additional 
parameters in a model will result in over-fitting and 
increase MSEP

• Similar considerations apply to cascaded models (i.e. 
those involving multiple sub-models)

• Taylor & Xu (2016) investigated, for certain data sets,
– Chain ladder (a single model involving only paid amounts); and
– An alternative model, incorporating reported and finalized claim 

count information, and comprising 3 sub-models
– The results indicated that the alternative produced lower MSEP 

when the data set failed to conform with the chain ladder 
parametric structure by a sufficient margin
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The fine detail: granular (micro-) reserving
• Models the detail of individual claims, e.g.

– Reporting date
– Individual payment dates
– Amounts of individual payments

• Generally regarded as commencing with Norberg (1993, 1999), 
Hesselager (1994), with implementation by Pigeon, Antonio & 
Denuit (2013, 2014) and Antonio & Plat (2014)
– Note, however, the earlier implementations (Hachemeister

(1978,1980), Taylor & Campbell (2002))
• Distinction between aggregate and granular models is largely false

– Any model that includes claim counts can be regarded as 
granular

• It produces forecasts at an individual claim level
• Only a question of the volume of conditioning data

– So one should think in terms of a aggregate-granular 
spectrum 
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Applications of granular reserving
• Loss reserving at the individual claim level has an application when loss 

reserves are required in respect of small groups of claims and physical 
estimates do not exist
– e.g. in relation to small cost centres of an organization

• Otherwise, required only if they produce a loss reserve superior to that 
produced by aggregate methods
– Recall that (aggregate) chain ladder is minimum variance for ODP 

observations (Taylor, 2011) 
– And remember that granular models will usually be cascaded

• With their property of inflating prediction error
• Huang, Wu & Zhou (2016) claim that micro-models outperform aggregate

– But their calibration and forecast are essentially the same as the 
Payment per Claim Finalized aggregate model found in the literature 
(Taylor, 1986, 2000)

– Just conditioned by more data than their aggregate models
• So jury still out on the value of micro-models!
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The rise of roboticus sapiens (1)
• First steps in machine learning

– Artificial neural nets (ANNs)
• Mulquiney (2006)

– Modelled a set of claim finalizations tabulated by:
» Accident quarter
» Development quarter
» Payment quarter
» Operational time at finalization
» Season of finalization (calendar quarter)

– ANN goodness-of-fit superior to GLM
– ANN detected superimposed inflation that varied over both 

finalization quarter and operational time
– ANN detected effects of a legislative change (accident quarter 

effect) that occurred in the midst of the claim experience
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The rise of roboticus sapiens (2)
• Harej, Gächter & Jamal (2017)

– IAA Working Group on “Individual Claim Development with Machine 
Learning”

– This was an “under-powered” ANN which assumed chain ladder models 
for paid and incurred costs respectively for individual claims, and simply 
estimated the age-to-age factors

– However, since it included both paid and incurred amounts, it managed 
to differentiate age-to-age factors for different claims

» e.g. claims with small amount paid but large amounts incurred 
showed high development of payments

• Wüthrich & Buser (2017) have produced a set of lecture 
notes on machine learning:

– Regression trees
– Random forests
– Support vector machines
– Clustering for telematics data
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The watchmaker and the oracle (1)
• The tendency of micro-modelling (watchmaking) is to 

increase the number of cascaded sub-models
– à individual claims
– à individual payments, etc.

• Many parameters, with implications for prediction error
• Increases the fragility of the model

– Increased complexity due to dependencies, e.g.
• In Liability business, occurrence of a large payment would reduce 

the likelihood of another large payment
• In Workers Compensation, a return to work from incapacity would 

usually lower the likelihood of immediate incapacity onset
• Dependencies between sub-models render validation difficult

– One may validate all sub-models internally, but then discover that the 
total model does not validate

• On the other hand, all aspects of the model are understood  
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The watchmaker and the oracle (2)
• ANN (oracle) is a model that observes all the complexity of 

the training data, and should accommodate it
– By-passes all the difficulties of micro-modelling

• However, it is an extremely opaque model
– At its core (the neurons), it consists of just a set of weighted 

averages
– Individual data features (e.g. superimposed inflation) are hidden 

within the model
– They may also be poorly measured

• e.g. diagonal effects may be inaccurately measured , but compensated 
by measured, but actually non-existent, row effects

– Can be difficult to validate
• What is one’s recourse in the event of validation failure?
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The future?

• Aggregate models?
• Micro-modelling?
• Machine learning?
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