
AGENDA

QCRM to Certify VaR model

ODP Bootstrap Chain-Ladder Risk Model

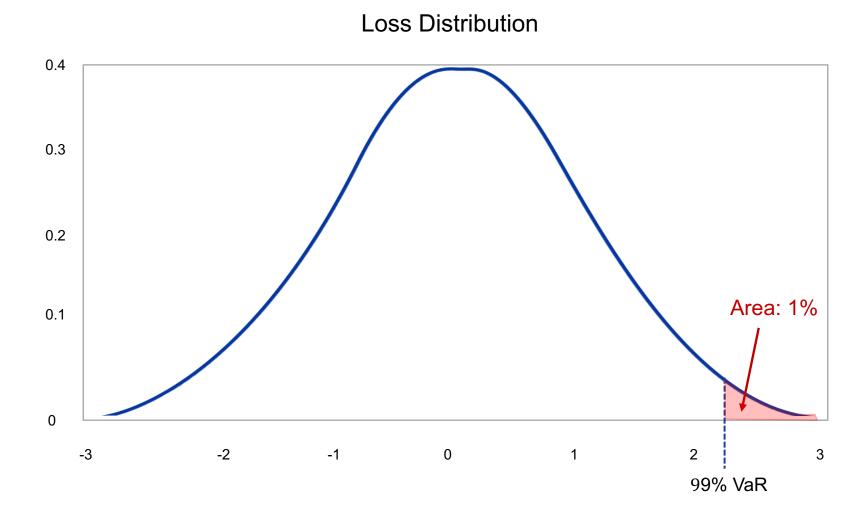
Approach to Validating Risk Model

THE PROBLEM

Regulators and Risk managers have to decide a course of action: accept or reject a bank's risk model:

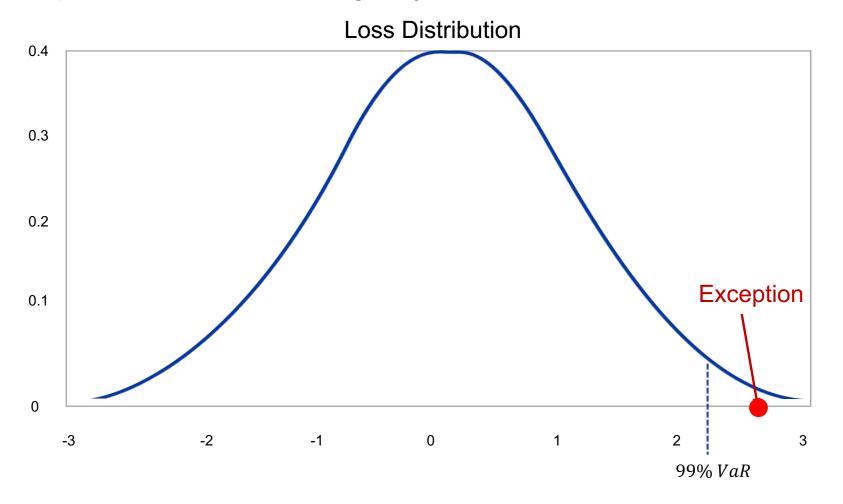
Model correct vs. Model incorrect

VaR Backtesting: Compare loss with VaR modelbased risk measures

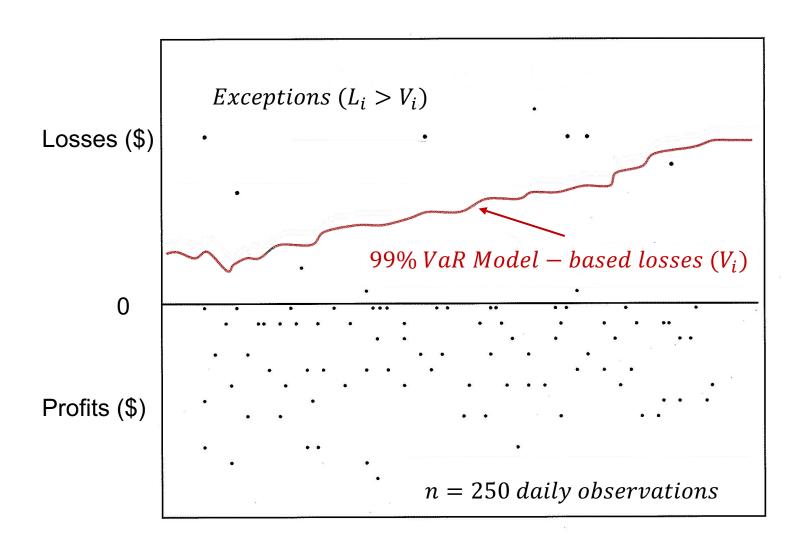


VALUE AT RISK: refreshment

The $(1 - \alpha) * 100\%$ VaR is the percentile $(1 - \alpha)$ of the


distribution of the Portfolio losses

Exception (model failure)



The event that the portfolio loss exceeds the corresponding VaR predicted for a trading day

Basel VaR backtest

BASEL VAR MODEL

acceptance and rejection regions

Zone # of exception

Green 0-4 Model is deeded accurate

Yellow 5-9 Additional Info before taking action

Red ≥10 Model is deeded inaccurate

type I error = Pr(# of exceptions \geq 10 | p₀ =0.01) = α =0.025%. The probability of rejecting the correct VaR model is 0.025%.

LIMITATION OF BASEL VAR MODEL

"The Committee of course recognizes that tests of this type are limited in their power to distinguish an accurate model from an inaccurate model" 1

Alternative Coverage Level:

Coverage	98%	97%	96%
5	43.9%	12.8%	2.7%
6	61.6%	23.7%	6.3%

¹Basel Committee on Banking Supervision (Basel), page 5 of "Supervisory Framework for the use of "Back Testing" in conjunction with the internal models approach to Market Risk Capital requirements", January 1996

REMARK

Note on Statistical Hypothesis

- a) Not rejecting a statistical hypothesis is not (in general) equivalent to accepting it
- b) It is valid to reject a statistical hypothesis when there is overwhelming probability against it

REMARK

As a consequence

- a) Not rejecting that p=0.01 (p \leq 0.01) is not equivalent to accepting that p=0.01 (p \leq 0.01)
- b) It is valid to reject the hypothesis p > 0.01 against p ≤ 0.01 when there is overwhelming probability against it

Change of hypotheses

QCRM hypothesis:

H₀: VaR Model incorrect vs. H_A: VaR Model correct

Accepting H₀ implies rejecting the VaR Model Rejecting H₀ implies accepting the VaR Model

Type I error (of QCRM)=Pr(Accept VaR Model | VaR incorrect)
= Type II Error (of Basel)

New hypothesis test

Assume p is the true probability of having one exception (unknown), QCRM tests:

$$H_0: p > p_1 (\ge 0.01) \text{ vs. } H_A: p \le p_0 (= 0.01)$$

This is the quality control problem: control the probability p_1 (and setting α to a small level) of accepting an wrong model.

New acceptance and rejection regions

Zone # of exception p_0 one-side confident interval

Green 0-5 $p \in (p_L(X,0.05),1]$

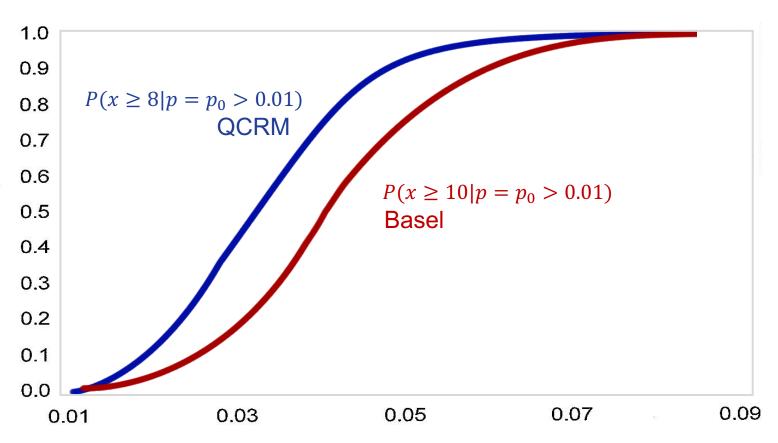
Yellow 6-7 $p \in (p_L(X,0.01),1]$ $p \notin (p_L(X,0.05),1]$

Red ≥ 8 $p \notin (p_L(X,0.05),1]$ $p \notin (p_L(X,0.01),1]$

Powers of QCRM and Basil tests

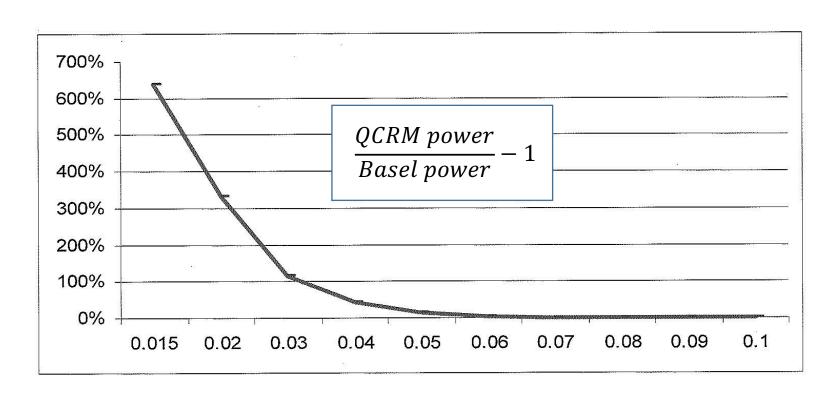
Probability of rejecting the model v	vhen	it is
--------------------------------------	------	-------

Correct	incorrect
Correct	Incorr


Basil <0.025% $P(X \ge 10|p > 0.01)$

QCRM <0.4% $P(X \ge 8|p > 0.01)$

Probability of rejecting a wrong model



X-axis: different values of alternative hypotheses p

Power rate curve

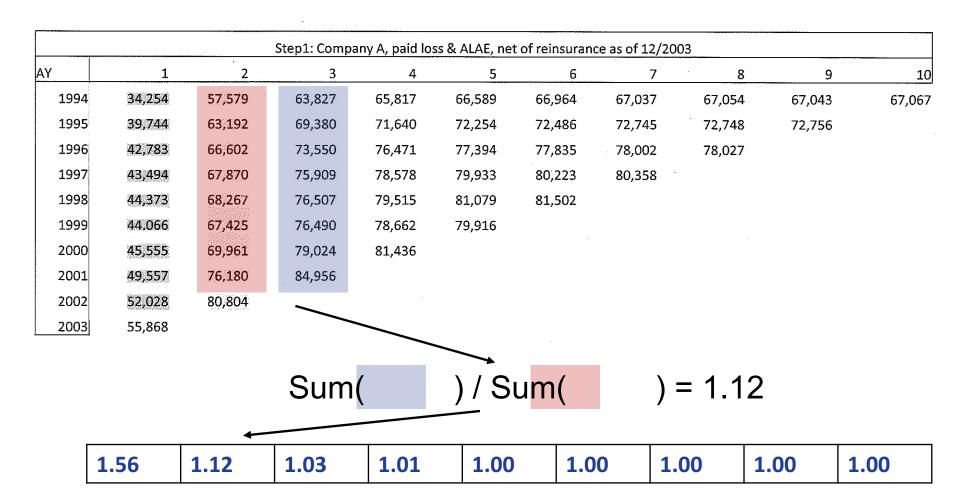
Percentage gains of QCRM over Basel in the probability of rejecting the wrong model

ODP CHAIN-LADDER MODEL

Steps in ODP Chain-Ladder Model:

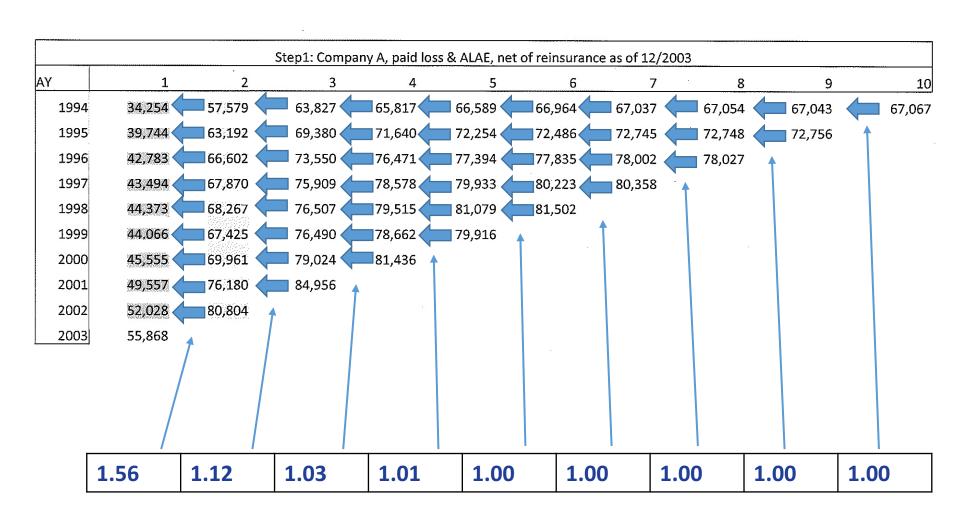
- 1. Cumulative loss data by AY and DY Upper Triangle
- 2. Estimate Development factors by DY
- 3. Estimate a fitted cumulated loss (upper triangle)
- Calculate ODP scale parameter φ and Adjusted Pearson Residuals

ODP Chain-Ladder Model


Data - Cumulative loss d_{ij} upper triangle

Cumulative loss di upper triangle										
AY	1	2	3	4	5	6	7	8	9	10
1994	34,254	57,579	63,827	65,817	66,589	66,964	67,037	67,054	67,043	67,067
1995	39,744	63,192	69,380	71,640	72,254	72,486	72,745	72,748	72,756	
1996	42,783	66,602	73,550	76,471	77,394	77,835	78,002	78,027		
1997	43,494	67,870	75,909	78,578	79,933	80,223	80,358			
1998	44,373	68,267	76,507	79,515	81,079	81,502				
1999	44,066	67,425	76,490	78,662	79,916					
2000	45,555	69,961	79,024	81,436						
2001	49,557	76,180	84,956							
2002	52,028	80,804								
2003	55,868									

ODP Chain-Ladder Model


Estimate Development Factors

ODP Chain-Ladder Model

Re-estimate past Cumulative triangle, use the LDFs to fit the original data

ODP CHAIN-LADDER MODEL

Unscaled Residuals										
AY	1	2	3	4	5	6	7	8	9	10
1994	-11.39	20.24	-4.62	-3.45	-5.60	3.64	-5.82	0.85	0.00	
1995	1.07	8.57	-11.80	-1.52	-12.82	-5.73	8.39	-3.10	0.00	
1996	1.88	0.26	-8.67	8.37	-5.30	4.17	0.09	2.21		
1997	-0.84	-0.75	1.10	1.80	6.64	-4.28	-2.74			
1998	-0.06	-6.35	1.88	7.58	12.20	2.28			_	
1999	1.63	-7.45	12.49	-8.05	3.59			(c-c	
2000	1.68	-5.93	9.31	-4.95		C io All		V = -		
2001	3.66	-4.35	-0.94			C is AIL			\sqrt{C}	
2002	1.14	-1.52				Ĉ is EIL				
2003										
		$\sum r$	2							
	ϕ	$=\frac{2}{D}$	7							
			Ad	djusted F	Pearson F	Residuals				
AY	1	2	3	4	5	6	7	8	9	10
1994	-14.08	25.02	-5.71	-4.27	-6.92	4.50	-7.20	1.05	0.00	
1995	1.32	10.59	-14.58	-1.88	-15.85	-7.08	10.37	-3.84	0.00	
1996	2.33	0.33	-10.71	10.34	-6.55	5.15	0.11	2.73		
1997	-1.04	-0.93	1.36	2.22	8.21	-5.29	-3.39			
1998	-0.08	-7.85	2.32	9.37	15.08	2.81				
1999	2.01	-9.20	15.44	-9.95	4.44					-
2000	2.07	-7.34	11.51	-6.12					n	•
2001	4.52	-5.38	-1.16					$r_p = r$.	$\sqrt{D_0 E}$	CID
2002	1.41	-1.88								SPS
2003										0.0

ODP CHAIN-LADDER MODEL

Steps in ODP Chain-Ladder Model:

- 1. Cumulative loss data by AY and DY Upper Triangle
- Estimate Development factors by DY
- Estimate a fitted cumulated loss (upper triangle)

Calculate ODP scale parameter φ and Adjusted Pearson Residuals.

- 4. Calculated the unscaled Pearson Residual r
- 5. Calculated the (ODP) Scale Parameter
- 6. Calculate Adjust unscaled Pearson Residuals r_{ρ} .

BOOTSTRAP ODP CHAIN-LADDER MODEL

Steps in Bootstrap ODP Chain-Ladder Model:

- 1. Sample the Adjusted Pearson Residual r_p (Upper Triangle) with replacement
- 2. Calculate the (upper) triangle of sampled incremental loss (*EIL*): $C = \hat{c} + r_p \cdot \sqrt{\hat{c}}$
- 3. Project the future IL (or cumulative loss) (lower Triangle)
- 4. Include process variance by simulating each *future IL* from a Gamma distribution (approximate ODP distribution)

mean = future IL

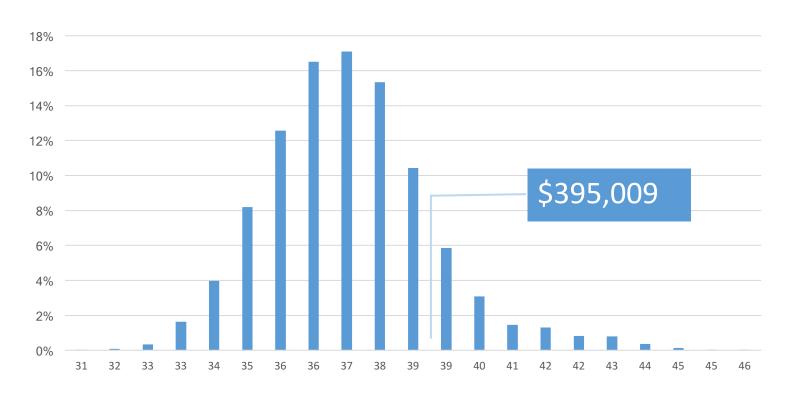
Variance = mean \times scale parameter ϕ

- 5. Calculate Ultimate Loss (*UL*)
- 6. Obtain UL Distribution by repeat 1-5 (for example, 10,000)

BOOTSTRAP ODP CHAIN-LADDER MODEL-STEPS

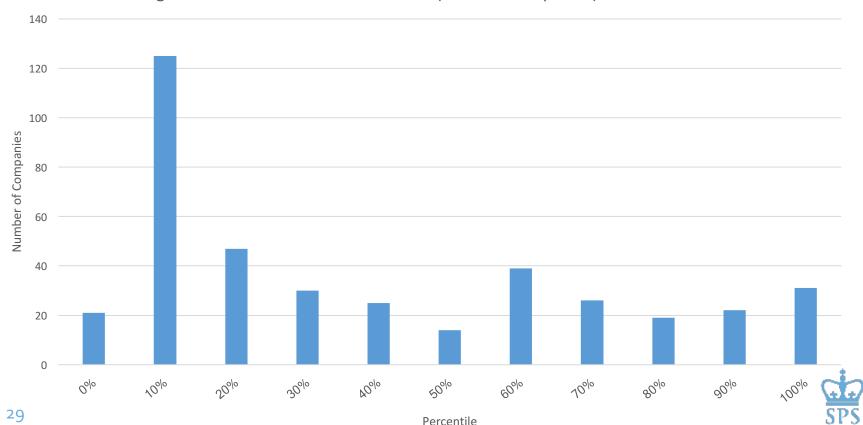
(Data - Cumulative or Incremental Loss by AY and DY):

- Estimate Development factors by DY
- Estimate a fitted cumulated loss (upper triangle)
- 3. Calculate ODP scale parameter ϕ and Adjusted Pearson Residuals r_p (Upper Triangle)
- 4. Sample the Adjusted Pearson Residual r_p with replacement
- 5. Calculate the (upper) triangle of sampled incremental loss (EIL): $C = \hat{c} + r_p \cdot \sqrt{\hat{c}}$
- 6. Project the future IL (lower Triangle)
- 7. Simulating each future IL \approx Gamma (EIL, EIL \times ϕ)
- 8. Calculate Ultimate Loss (UL)
- 9. Obtain UL distribution by repeat 4-8 (for example, 10,000).


The percentile of the actual Loss should be uniform distributed.

Backtesting an Accident Year (AI) as of mmyyyy (ex, AI 2003 as of December 2012):

- Create a distribution of the UL by Bootstrap ODP Chain-Ladder Method
- 2. Percentile of the actual unpaid for each company
- 3. Test the uniformness of the percentiles


Company A Unpaid Loss (per 1,000) Simulation Distribution for Accident year 2003 as of 12/2003

2This is 88.63% percentile in the simulated Chain Ladder model.

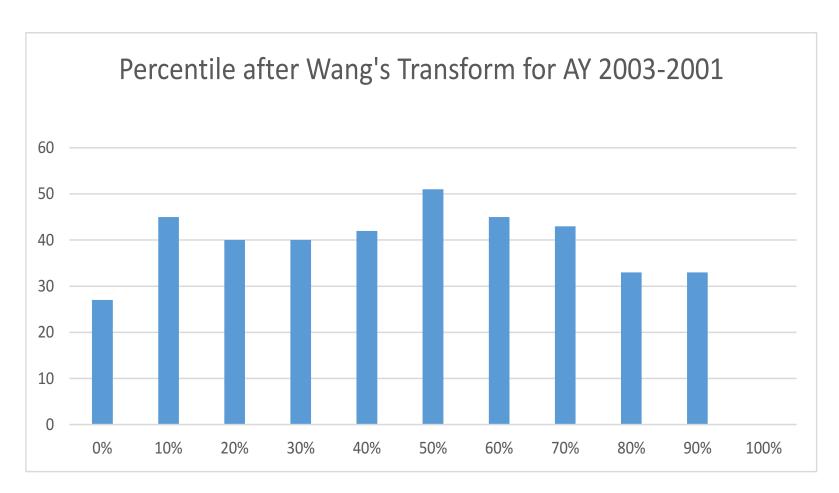
Percentile Distribution of Bootstrap Model for 133 companies from AY2003 to AY2001

PPA Histogram of Percentiles for AY2003-2001 (with 133Companies)

WANG TRANSFORM ADJUSTMENT

Wang et al showed that the chain-ladder reserving method has systemic error and moreover the systemic error are highly correlated with the reserve cycle.

The contemporary correlation between the estimation error and the reserve development is .64 for the chain-ladder method. More noticeably the one-year lag correlation is 0.91. The estimation error leads to the loss reserve development by one year.

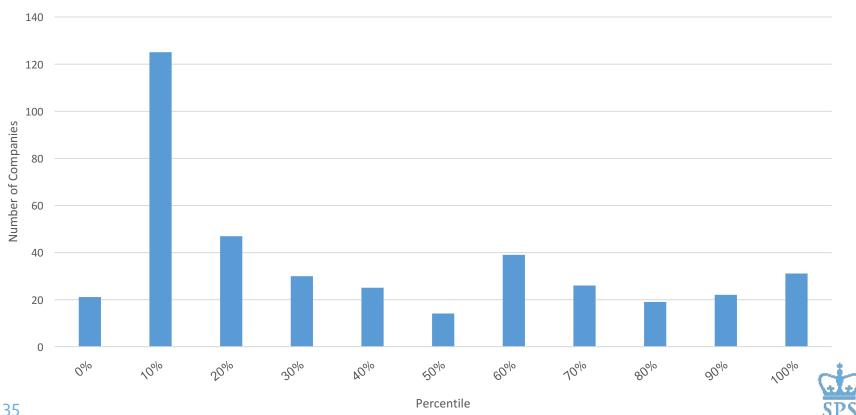

WANG TRANSFORM ADJUSTMENT

Wang transform adjustment method tried to catch the systemic over course of reserve cycle.

Wang Transform method will first adjust the variability of the loss reserve and then give the distribution a shift.

WANG TRANSFORM ADJUSTMENT

(Data - Cumulative or Incremental Loss by AY and DY):


- 1. Estimate the (upper) triangle of sampled incremental loss (EIL): $C = \hat{c} + r_p \cdot \sqrt{\hat{c}}$
- 2. Project the future IL (lower Triangle)
- 3. Simulating each future IL ≈ Gamma (EIL, EIL×φ)
- 4. Calculate Ultimate Loss (UL)
- 5. Obtain UL distribution by repeat 4-8 (for example, 10,000)
- 6. Backtest uniformity of distribution
- 7. Adjust the reserve distribution by Wang Transform

Percentile Distribution of Bootstrap Model for 133 companies from AY2003 to AY2001

PPA Histogram of Percentiles for AY2003-2001 (with 133Companies)

New hypothesis test

Assume p is the true probability of having one exception (unknown), QCRM tests:

$$H_0: p > p_1 (\ge 0.01) \text{ vs. } H_A: p \le p_0 (= 0.01)$$

Intuitively, we are expecting 1% of the time the actual unpaid percentiles will be above the 99th percentile of the bootstrap distribution if the model is correct.

Definition: an exception is when the actual unpaid percentile of the simulated unpaid loss bootstrap model is greater than or equal to 99th VaR.

VALIDATING VAR MODEL USING QCRM

$p_L(X,\alpha)$ for 399 trials (133 companies for three accident years)

		<u>95% </u>	99%
Gree	en		
	k=1	0.00090	0.00038
	k=2	0.0021	0.0011
	k=3	0.0034	0.0021
	k=4	0.0049	0.0032
	k=5	0.0066	0.0045
	k=6	0.0083	0.0058
Yello	W		
	k=7	0.0100	0.0072
	k=8	0.0118	0.0087
Red			
	k=9	0.0136	0.0103
	k=10	0.0155	0.0120

VALIDATING VAR MODEL USING QCRM

The assertion zones for 399 trials:

Zone	#of exception	<u>Decision</u>
Green	≤6	accept the bootstrap model
Yellow	btwn 7 and 8	model is questionable
Red	≥9	reject the bootstrap model

There are 10 exceptions *before* Wang transform Therefore, the bootstrap model is rejected.

There are 4 exceptions *after* Wang transform Therefore, the bootstrap model is accepted.

Q&A

Chain-Ladder Techniques

ODP Chain-Ladder Model

Bootstrap ODP Chain-Ladder Model

Backtest ODP bootstrap Chain-Ladder Model

CHAIN-LADDER TECHNIQUE

Cumulative Triangle

incremental Loss:
$$\{c_{ij}: i = 1, 2, ..., n; j = 1, 2, ..., n - i + 1\}$$
 cumulative loss:
$$d_{ij} = \sum_{k=1}^{j} c_{ik}$$

2. Calculate Development factors $\{\lambda_i : i = 1, 2, ..., n\}$

$$\lambda_{j} = \sum_{i=1}^{n-j+1} d_{ij}$$

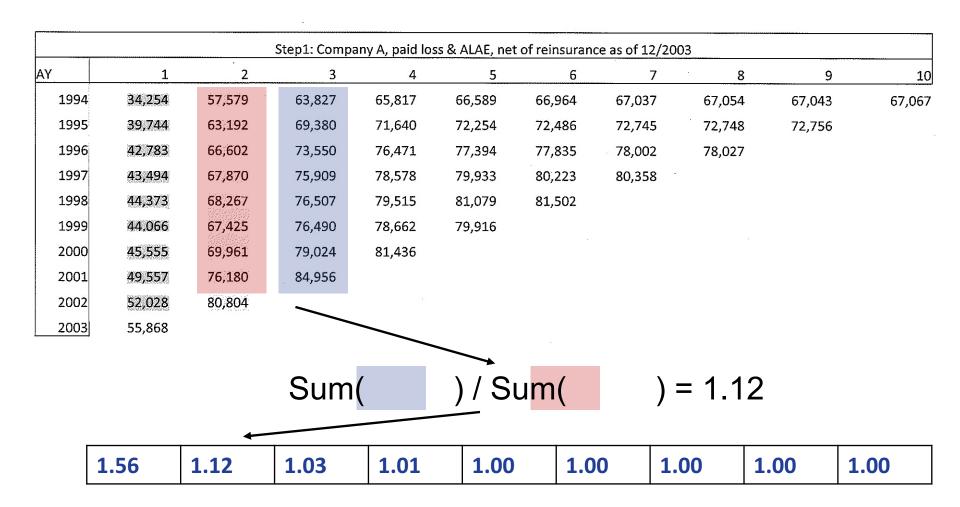
$$\sum_{i=1}^{n-j+1} d_{i,j-1}$$

3. Project future cumulative loss D_{ik}

$$D_{i,n-i+2} = d_{i,n-i+1} \cdot \lambda_{n-i+2}$$

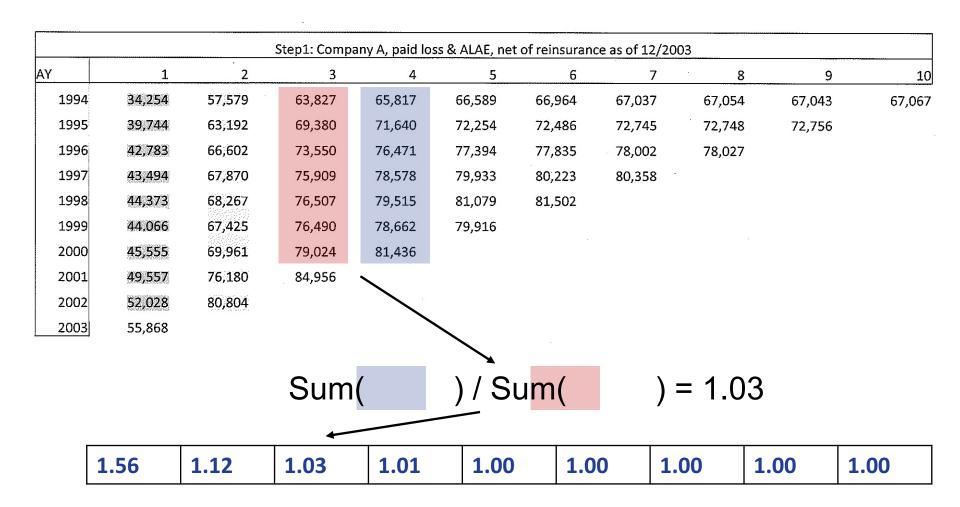
Data - Cumulative loss d_{ij} upper triangle

				Cumulative	oss dii upper	triangle				
AY	1	2	3	4	5	6	7	8	9	10
1994	34,254	57,579	63,827	65,817	66,589	66,964	67,037	67,054	67,043	67,067
1995	39,744	63,192	69,380	71,640	72,254	72,486	72,745	72,748	72,756	
1996	42,783	66,602	73,550	76,471	77,394	77,835	78,002	78,027		
1997	43,494	67,870	75,909	78,578	79,933	80,223	80,358			
1998	44,373	68,267	76,507	79,515	81,079	81,502				
1999	44,066	67,425	76,490	78,662	79,916					
2000	45,555	69,961	79,024	81,436						
2001	49,557	76,180	84,956							
2002	52,028	80,804								
2003	55,868									



Estimate Development Factors based on Cumulative loss d_{ij} upper triangle

			Step1: Compa	ny A, paid los	ss & ALAE, net	t of reinsuran	ce as of 12/20	003		
ΑY	1	. 2	3	4	5	6	7	. 8	9	10
1994	34,254	57,579	63,827	65,817	66,589	66,964	67,037	67,054	67,043	67,06
1995	39,744	63,192	69,380	71,640	72,254	72,486	72,745	72,748	72,756	
1996	42,783	66,602	73,550	76,471	77,394	77,835	78,002	78,027		
1997	43,494	67,870	75,909	78,578	79,933	80,223	80,358	-		
1998	44,373	68,267	76,507	79,515	81,079	81,502				
1999	44,066	67,425	76,490	78,662	79,916					
2000	45,555	69,961	79,024	81,436		•			en.	
2001	49,557	76,180	84,956							
2002	52,028	80,804		1.0						
2003	55,868									
			Sum	()/S	um()	= 1.5	6	
r				_						
	1.56	1.12	1.03	1.01	1.00	1.0	00 1	.00	1.00	1.00



Estimate Development Factors

Estimate Development Factors

Estimate Development Factors

	Step1: Company A, paid loss & ALAE, net of reinsurance as of 12/2003												
AY	1	. 2	3	4	5	6	7	. 8	9	10			
1994	34,254	57,579	63,827	65,817	66,589	66,964	67,037	67,054	67,043	67,067			
1995	39,744	63,192	69,380	71,640	72,254	72,486	72,745	72,748	72,756				
1996	42,783	66,602	73,550	76,471	77,394	77,835	78,002	78,027					
1997	43,494	67,870	75,909	78,578	79,933	80,223	80,358	•					
1998	44,373	68,267	76,507	79,515	81,079	81,502							
1999	44,066	67,425	76,490	78,662	79,916								
2000	45,555	69,961	79,024	81,436		•							
2001	49,557	76,180	84,956										
2002	52,028	80,804		¥.									
2003	55,868												

Same logic to get the rest LDF

1.56	1.12	1.03	1.01	1.00	1.00	1.00	1.00	1.00
								i

ODP CHAIN-LADDER MODEL

Steps in ODP Chain-Ladder Model:

- 1. Cumulative loss data by AY and DY Upper Triangle
- 2. Estimate Development factors by DY
- 3. Estimate a fitted cumulated loss (upper triangle)
- Calculate ODP scale parameter φ and Adjusted Pearson Residuals

ODP CHAIN-LADDER MODEL

Estimate fitted incremental loss C for the upper triangle

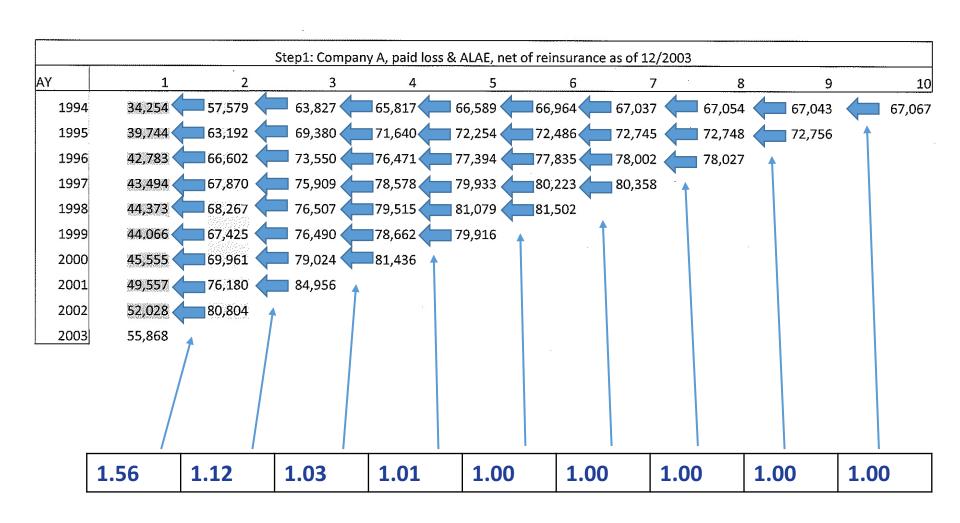
Estimate the cumulative loss \hat{d}_{ik} upper triangle by:

$$\hat{d}_{i,k} = \begin{cases} \lambda_j \cdot d_{i,i} & k = n - i - 1 \\ \lambda_{k+1} \cdot m_{i,k-1} & k = n - i - 2, ..., 1 \end{cases}$$

- Calculate Pearson residual and Scale parameter &
 - a. Calculate unscaled Pearson residual $r = \frac{c \hat{c}}{\sqrt{\hat{c}}}$ b. Calculate degree of freedom (DoF)

 - c. Calculate the adjusted Pearson residual

$$r_p = r \cdot \sqrt{\frac{n}{DoF}}$$
 $\phi = \frac{\sum r^2}{DoF}$ (1)


iii.49 Calculate the fitted incremental loss $C = \hat{c} + r_n \cdot \sqrt{\hat{c}}$ (2)

ODP Chain-Ladder Model

Re-estimate past Cumulative triangle, use the LDFs to fit the original data

ODP CHAIN-LADDER MODEL

				Unsca	led Resid	duals				
AY	1	2	3	4	5	6	7	8	9	10
1994	-11.39	20.24	-4.62	-3.45	-5.60	3.64	-5.82	0.85	0.00	
1995	1.07	8.57	-11.80	-1.52	-12.82	-5.73	8.39	-3.10	0.00	
1996	1.88	0.26	-8.67	8.37	-5.30	4.17	0.09	2.21		
1997	-0.84	-0.75	1.10	1.80	6.64	-4.28	-2.74			
1998	-0.06	-6.35	1.88	7.58	12.20	2.28			_	
1999	1.63	-7.45	12.49	-8.05	3.59			(c-c	
2000	1.68	-5.93	9.31	-4.95		C io All		r = -		
2001	3.66	-4.35	-0.94						\sqrt{C}	
2002	1.14	-1.52				Ĉ is EIL	•			
2003										
		$\sum r^{2}$	2							
	ϕ	$=\frac{2}{D}$								
			Ad	djusted F	Pearson F	Residuals	;			
AY	1	2	3	4	5	6	7	8	9	10
1994	-14.08	25.02	-5.71	-4.27	-6.92	4.50	-7.20	1.05	0.00	
1995	1.32	10.59	-14.58	-1.88	-15.85	-7.08	10.37	-3.84	0.00	
1996	2.33	0.33	-10.71	10.34	-6.55	5.15	0.11	2.73		
1997	-1.04	-0.93	1.36	2.22	8.21	-5.29	-3.39			
1998	-0.08	-7.85	2.32	9.37	15.08	2.81				
1999	2.01	-9.20	15.44	-9.95	4.44					-
2000	2.07	-7.34	11.51	-6.12				74 _ 74	$\mid n \mid$	•
2001	4.52	-5.38	-1.16					$r_p = r$.	$\sqrt{D_0 F}$	CID
2002	1.41	-1.88								SPS
2003										0.0
•										

RECAP ODP CHAIN-LADDER MODEL

Steps in ODP Chain-Ladder Model:

- 1. Cumulative loss data by AY and DY Upper Triangle
- Estimate Development factors by DY
- Estimate a fitted cumulated loss (upper triangle)

Calculate ODP scale parameter φ and Adjusted Pearson Residuals.

- 4. Calculated the unscaled Pearson Residual r
- 5. Calculated the (ODP) Scale Parameter
- 6. Calculate Adjust unscaled Pearson Residuals r_{ρ} .

ODP BOOTSTRAP CHAIN-LADDER MODEL

Beginning with the estimates from ODP Chain-Ladder Model, r_p , C, and φ , the bootstrap is to repeat the iterative N (in our case 10,000) times:

- 1. Sample the adjusted Pearson residuals r_p from formula (1) with replacement;
- 2. Calculate the sampled incremental loss C using formula (2)
- 3. Project the future incremental loss using the sampled triangle in 2. using Chain-Ladder method
- 4. Include process variance by simulating each incremental future loss from a Gamma distribution (approximation to ODP distribution):
- 5. Calculate the ultimate loss

BOOTSTRAP ODP CHAIN-LADDER MODEL

Steps in Bootstrap ODP Chain-Ladder Model:

- 1. Sample the Adjusted Pearson Residual r_{ρ} (Upper Triangle) with replacement
- 2. Calculate the (upper) triangle of sampled incremental loss (EIL): $C = \hat{c} + r_p \cdot \sqrt{\hat{c}}$
- 3. Project the future IL (or cumulative loss) (lower Triangle)
- Include process variance by simulating each future IL from a Gamma distribution (approximate ODP distribution)

mean = future IL

Variance = mean \times scale parameter ϕ

- 5. Calculate Ultimate Loss (UL)
- 6. Obtain UL Distribution by repeat 1-5 (for example, 10,000)

Bootstrap ODP Chain-Ladder Model

Adjusted Pearson Residual

AY	1.	2	3	4	5	6	7	8	9	10
1994	-14.08	25.02	-5.71	-4.27	-6.92	4.50	-7.20	1.05	0.00	
1995	1.32	10.59	-14.58	-1.88	-15.85	-7.08	10.37	-3.84	0.00	
1996	2.33	0.33	-10.71	10.34	-6.55	5.15	0.11	2.73		
1997	-1.04	-0.93	1.36	2.22	8.21	-5.29	-3.39			
1998	-0.08	-7.85	2.32	9.37	15.08	2.81				
1999	2.01	-9.20	15.44	-9.95	4.44				1	
2000	2.07	-7.34	11.51	-6.12						
2001	4.52	-5.38	-1.16							
2002	1.41	-1.88								
2003			24							

Re-calculate the past incremental loss triangle

A 150 E										
AY	1	2	3	4	5	6	7	8	9	10
1994	39306	20764	7851	1786	723	347	159	0	0	25
1995	36733	21323	7359	2288	730	207	284	8	0	
1996	40970	24088	7237	2555	1176	187	223	58		
1997	44616	24330	7970	2721	1224	413	200			
1998	47640	26712	7987	2760	1148	260			*	
1999	43748	24966	8411	1866	1133					
2000	46160	25052	9157	1849					2	es.
2001	51038	27188	10318						100000000000000000000000000000000000000	(+1+)
2002	57461	30633					2 288			SDS
2003	54233									150 A NO

Bootstrap ODP Chain-Ladder Model

Project future cumulative loss

AY	1	2	3	4.	5	6	7	8	9	10
1994	38448	58005	64637	66630	67291	67604	67734	67744	67744	67763
1995	40415	64887	72458	74924	76092	76602	76659	76674	76674	76695
1996	47547	71759	79858	82477	83315	83716	83908	83928	83928	83952
1997	43889	67256	76119	78764	79906	80177	80323	80339	80339	80361
1998	44673	70000	78101	80358	81587	81825	81965	81981	~~~	82004
1999	42221	66077	74431	76722	78698	79049	79183	791	3	79221
2000	45488	70540	78117	80507	81735	82099	82239	82256	02256	82279
2001	49207	75843	83699	86362	87679	88070	88221	88238	88238	88263
2002	51842	81634	91090	93987	95421	95847	96010	96029	96029	96056
2003	56358	87385	97507	100609	102143	102599	102774	102795	102795	102823

Obtain the future incremental loss and therefore UL

AY	1	2	3	4	5	6	7	8	9	10
1994	38448	19557	6633	1993	661	313	130	10	0	19
1995	40415	24472	7572	2465	1169	509	57	15	0	30
1996	47547	24212	8099	2619	839	401	192	20	0	. 4
1997	43889	23367	8863	2645	1143	271	146	1	0	12
1998	44673	25327	8100	2257	1229	239	184	4	0	43
1999	42221	23857	8354	2291	1975	408	141	24		12
2000	45488	25052	7576	2390	1169	339	96	11	5	21
2001	49207	26637	7856	2543	1169	426	103	10		
2002	51842	29792	9946	2855	1459	458	143	69	0	12
33 2003	56358	31917	9836	3100	1481	512	366	6	0	5 26

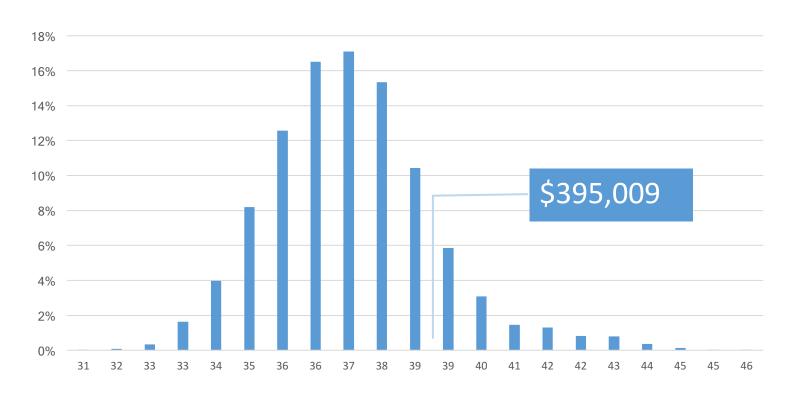
BOOTSTRAP ODP CHAIN-LADDER MODEL-STEPS

(Data - Cumulative or Incremental Loss by AY and DY):

- Estimate Development factors by DY
- Estimate a fitted cumulated loss (upper triangle)
- 3. Calculate ODP scale parameter ϕ and Adjusted Pearson Residuals r_p (Upper Triangle)
- 4. Sample the Adjusted Pearson Residual r_p with replacement
- 5. Calculate the (upper) triangle of sampled incremental loss (EIL): $C = \hat{c} + r_p \cdot \sqrt{\hat{c}}$
- 6. Project the future IL (lower Triangle)
- 7. Simulating each future IL \approx Gamma (EIL, EIL \times φ)
- 8. Calculate Ultimate Loss (UL)
- 9. Obtain UL distribution by repeat 4-8 (for example, 10,000).

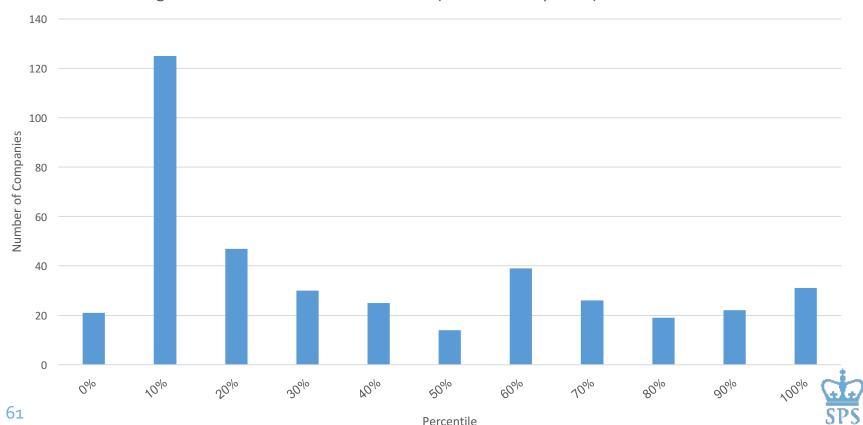
Backtesting an Accident Year (AI) as of mmyyyy (ex, AI 2003 as of December 2012):

- Create a distribution of the UL by Bootstrap ODP Chain-Ladder Method
- 2. Percentile of the actual unpaid for each company
- 3. Test the uniformness of the percentiles



Percentile for a company for AI 2003 as of December 2012:

- i. Create a distribution of Ultimate Loss (UL) by using Bootstrap method as of 12/2003
- ii. Isolate the distribution of UL for the single year 2003
- iii. Percentile of the actual unpaid in the distribution in ii. above.


Company A Unpaid Loss (per 1,000) Simulation Distribution for Accident year 2003 as of 12/2003

This is 88.63% percentile in the simulated Chain Ladder model.

Percentile Distribution of Bootstrap Model for 133 companies from AY2003 to AY2001

PPA Histogram of Percentiles for AY2003-2001 (with 133Companies)

Why the distribution is not uniform?

Wang et al and many papers analyzed the results; concluded that ODP Chain-ladder method didn't catch systematic risk;

Wang transform adjustment can be used for this purpose.

WANG TRANSFORM ADJUSTMENT

Wang et al showed that the chain-ladder reserving method has systemic error and moreover the systemic error are highly correlated with the reserve cycle.

The contemporary correlation between the estimation error and the reserve development is .64 for the chain-ladder method. More noticeably the one-year lag correlation is 0.91. The estimation error leads to the loss reserve development by one year.

WANG TRANSFORM ADJUSTMENT

Wang transform adjustment method tried to catch the systemic over course of reserve cycle.

Wang Transform method will first adjust the variability of the loss reserve and then give the distribution a shift.

WANG TRANSFORM ADJUSTMENT - PROCEDURES

 Widen the reserve distribution. Apply the ratio of double exponential over normal to after bootstrap chain-ladder loss triangle:

$$x^* = (x - \mu) \times \text{Ratio}(q) + \mu$$
 Ratio $(q) = \text{Exponential}^{-1}(q)/\phi^{-1}(q)$

- Calculated β the correlation between each company and industry
- 3. Wang transform is applied to adjust the mean of the reserve distribution:

$$F_2(x) = \phi \left[\phi^{-1} \left(F_1(x) \right) + \beta * \lambda \right]$$

Note: $F_1(x)$ is reported reserve's percentile in the reserve distribution after the above adjustment; and λ is changed so that back-testing results in the most uniformly distributed percentiles as measured by a chi-square test \overline{SPS}

WANG TRANSFORM ADJUSTMENT

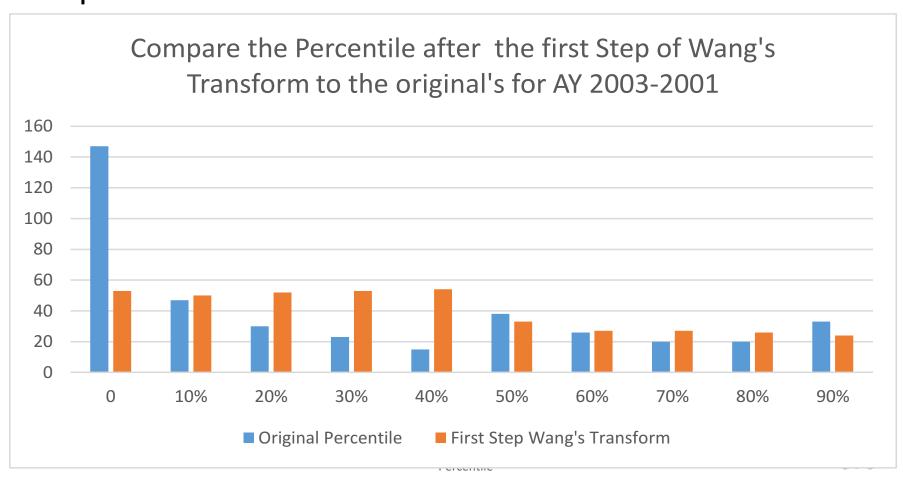
1. Widen the reserve distribution.

$$\Phi \approx N(0,1);$$

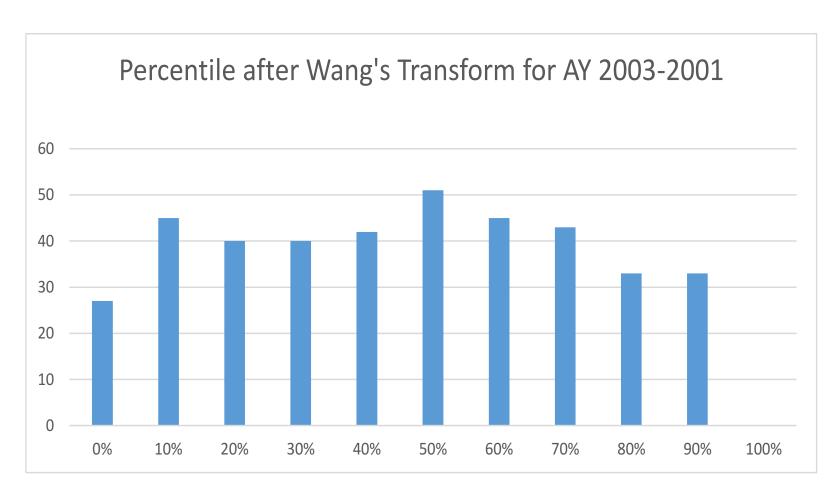
Exponential is a double exponential distribution with pdf

$$f(x) = 0.5\lambda e^{-\lambda|x|}, -\infty < x < \infty$$

q is the quantile of each simulated reserve;


 μ is the median of 10,000 simulated reserves;

x is the simulated reserve;


x* is the reserve after adjustment.

Percentile Distribution of Bootstrap Model for 133 companies from AY2003 to AY2001

WANG TRANSFORM ADJUSTMENT

(Data - Cumulative or Incremental Loss by AY and DY):

- 1. Estimate the (upper) triangle of sampled incremental loss (EIL): $C = \hat{c} + r_p \cdot \sqrt{\hat{c}}$
- 2. Project the future IL (lower Triangle)
- 3. Simulating each future IL \approx Gamma (EIL, EIL \times φ)
- 4. Calculate Ultimate Loss (UL)
- 5. Obtain UL distribution by repeat 4-8 (for example, 10,000)
- 6. Backtest uniformity of distribution
- 7. Adjust the reserve distribution by Wang Transform

End