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Approaches & Goals

Providing a risk management problem

Modeling implied volatility with a machine learning approach to help
improve the precision of contract pricing

Removing the drawbacks of static arbitrage

Taking care of the trade off between high bias and high variance
during the fitting procedure
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The importance of the subject

We face with a pricing formula for an European call option in our
risk management problem

To price call options the volatilty should be correctly specified

Especially after the crash of 1987, the volatilty has been no longer
fixed and it varies directly by time to maturity and strike price.

So, having an adequate model to describe the behavior of implied
volatility is an area of concern for the recent decades
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Previous studies

M. Malliaris, L. Salchenberger (1996), Using neural networks to
forecast the SP 100 implied volatility.

Cont, Rama, and Jos Da Fonseca (2002), Dynamics of implied
volatility surfaces.

A. Alentorn (2004), Modelling the implied volatility surface.

J. Gatheral and A. Jacquier (2014), Arbitrage-free SVI volatility
surfaces.
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Risk management problem

Risk of loss

(St)0<t<T :The value of a risky asset over the time interval [0, T ]

r: The rate of risk-free asset

T: Expiration time

L =
(
S0 − e−rTST

)+

Agent’s global position

X: Contract

π (X ) :The price of contract

P = L− X + π (X ) , 0 ≤ X ≤ L
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Comonotonicity

An R2-valued randome vector X = (X1, X2) is called comonotonic if

P (X1 ≤ x1, X2 ≤ x2) = min
i∈{1,2}

P (Xi ≤ xi ) , (x1, x2) ∈ R2

In other words, X and Y are almost surly increasing function of X+Y

To avoid moral hazard

X and L-X are assumed to be comonotonic

X an L-X are increasing functions of L

The more loss we face, the more gain we have from the contract

The more loss we face, the more distance there is between loss and
gain
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Valuation of the contract

Fundamnetal theorem of asset pricing

No-arnitrage condition guarantees the existence of at least one
equivalent martingale measures

Price of the contract

π (X ) = sup
Q∈∆

EQ (X )

Q : An equivalent martingale measure

∆ : A subset of all equivalent martingale measures
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Measure of risk

Value at Rist (VaR)

A measure of risk of an investment

VaRα (Y ) = inf {y ∈ R |FY (y) ≥ α}

Y : The risk of loss

FY (y) : Cumulative distribution function of the risk

α : Risk aversion of the agent

Global risk

min
0≤X≤L
X , L−X are
comonotone

VaRα (L− X ) + sup
Q∈∆

EQ (X )
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Solution

Theorem

An optimal solution X to the risk management problem is given by

X = min
{(

S0 − e−rTST
)+

+
(
S0 − e−rTVaR(1−α) (ST )

)+
}

The form of the solution is given as X = f (ST ), where

f (x) =
(
S0 − e−rTVaR1−α (ST )

)+
+ e−rT

(
x − S0e

−rT )+

− e−rT (x − VaR1−α (ST ))+

Strike prices

The following terms play the role of stike price in option pricing

K1 = S0e
−rT

K2 = VaR1−α (ST )
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Strategy

Main issues

1 The call options are correctly priced

2 Volatility should be carefully specified

we consider a Black-Scholes strategy

A polynomial learning algorithm is used to parametrize implied
volatilty
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Static arbitrage

Definition

A volatility surface is free from static arbitrage if and only if the following
conditions are satisfied:

1 The surface is free from calendar spread arbitrage;

2 For a fixed time to matiurity, the volatility slice is free from butterfly
arbitrage.
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Parameterization of implied volatility

Stochastic Volatility Inspired

W SVI
imp (x) = a + b(ρ (x −m) +

√
(x −m)2 + σ2)

a ∈ R , b ≥ 0 , |ρ| < 1 , m ∈ R , σ > 0

W SVI
imp = τσ2

imp , x = log
K

F[t, t+τ ]
= log

K

erτS0

WSVI
imp :Total implied variance

x : Moneyness
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Model selection

Polynomial approach

wQ2

θ (x) = θ0 + θ1x + θ2x
2

wQ3

θ (x) = θ0 + θ1x + θ2x
2 + θ3x

3

wQ4

θ (x) = θ0 + θ1x + θ2x
2 + θ3x

3 + θ4x
4

Intuition

Linear model results in under-fitting

Add some polynomial features

Quadratic model is adequate mathematically

Implied volatility do not always resemble a quadratic form

In case of low VIX (volatility index), we need higher degree
polynomial

High degree polynomial may cause the problem of over-fitting
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Cost function

∧
θ = arg min

θ

1

m

 m∑
i=1

(
wQn

θ (x (i))− w (i)
)2

+ λ

n∑
j=1

θ2
j


m: Number of training example

w (i):The vector of observed total implied variance in market

λ: Regularization parameter

Intuition

The penalty term keeps the parameters small to avoid over-fitting

The regularization parameter control the trade-off between bias and
variance

It is more probable to face butterfly arbitrage in absence of the
penalty term
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Devision of training set

To improve fitting robustness, the training set data is randomly divided
into three portions

1 The training set (60%)

2 The cross validation set (20%)

3 The test set (20%)
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Algorithm

A simple pseudo code

1 Start with the Total implied variance and its corresponding
moneyness for the OTM data

2 For a fixed value of λ estimate parameters using training set data

3 Compute training error and cross-validation error

4 Plot learning curve

5 If there is no effect of over-fitting and under-fitting, compute test
error for each model

Otherwise, plot validation curve and choose the optimum value of λ,
then move back to step 2

6 Choose the model with the lowest test error
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Table: Machine learning approach for S&P 500, traded on DEC 15, 2014.

Time to maturity Expiry date n λ The best pair

0.0136 12/20/2014
2
3
4

0.001
0.003
0.005

n = 2
λ = 0.001

0.0438 12/31/2014
2
3
4

0.3
0.001
0.003

n = 3
λ = 0.001

0.0684 01/09/2015
2
3
4

3
9.95
10

n = 2
λ = 3

0.0904 01/17/2015
2
3
4

0.01
0.05
0.1

n = 2
λ = 0.01

0.126 01/30/2015
2
3
4

0.05
3
3

n = 2
λ = 0.05

0.178 02/20/2015
2
3
4

3
3
10

n = 3
λ = 3
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Durrleman ’s function

there is no butterfly arbitrage for ML Approach

there is no butterfly arbitrage for SVI Model
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Figure: Durrleman function of ML and SVI, implemented for τ = 0.0136
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Durrleman ’s function

there is no butterfly arbitrage for ML Approach

there is butterfly arbitrage for SVI Model
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Figure: Durrleman funct4on of ML and SVI, implemented for τ = 0.0438
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Durrleman ’s function

there is no butterfly arbitrage for ML Approach

there is butterfly arbitrage for SVI Model
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Figure: Durrleman function of ML and SVI, implemented for τ = 0.0684
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Durrleman ’s function

there is no butterfly arbitrage for ML Approach

there is butterfly arbitrage for SVI Model
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Figure: Durrleman function of ML and SVI, implemented for τ = 0.0904
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Durrleman ’s function

there is no butterfly arbitrage for ML Approach

there is no butterfly arbitrage for SVI Model
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Figure: Durrleman function of ML and SVI, implemented for τ = 0.126
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Durrleman ’s function

there is no butterfly arbitrage for ML Approach

there is butterfly arbitrage for SVI Model
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Figure: Durrleman function of ML and SVI, implemented for τ = 0.178
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Calendar spread plot

there is no callendar spread arbitrage arbitrage for ML Approach
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Figure: Total implied variance
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The quadratic model

wQ2

θ (x) = θ0 + θ1x + θ2x
2

Butterfly arbitrage

The quadratic model for less than one year time to maturity ( τ < 1) is
free from butterfly arbitrage if

1 θ2
1 − 4θ0θ2 + θ2 < 0

2 1
4 < θ0 < 1

Calendar spread arbitrage

The folowing calibration strategy for each fixed time to maturity makes
the volatilty surface free from calendar spread arbitrage

1 θ2(n) > θ2(n−1)

2 θ2(n)θ0(n−1) + θ2(n−1)θ0(n) <
θ1(n)θ1(n−1)

2

θi(j) is the i-th estimated parameter in the optimization for the j-th slice.
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Durrleman ’s function
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Durrleman ’s function
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Calendar spread plot
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Figure: Plots of total implied variance
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