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Approaches & Goals

@ Providing a risk management problem

Modeling implied volatility with a machine learning approach to help
improve the precision of contract pricing

@ Removing the drawbacks of static arbitrage

Taking care of the trade off between high bias and high variance
during the fitting procedure
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The importance of the subject

@ We face with a pricing formula for an European call option in our
risk management problem

@ To price call options the volatilty should be correctly specified

o Especially after the crash of 1987, the volatilty has been no longer
fixed and it varies directly by time to maturity and strike price.

@ So, having an adequate model to describe the behavior of implied
volatility is an area of concern for the recent decades
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Previous studies

e M. Malliaris, L. Salchenberger (1996), Using neural networks to
forecast the SP 100 implied volatility.

o Cont, Rama, and Jos Da Fonseca (2002), Dynamics of implied
volatility surfaces.

@ A. Alentorn (2004), Modelling the implied volatility surface.

@ J. Gatheral and A. Jacquier (2014), Arbitrage-free SVI volatility
surfaces.
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Risk management problem

® (St)gc¢et :The value of a risky asset over the time interval [0, T]

@ r: The rate of risk-free asset

o T: Expiration time

L=(So—e"5r)"

Agent’s global position

o X: Contract
@ 7 (X) :The price of contract

P=L-X+mn(X) , 0<X<L
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Comonotonicity

An R2-valued randome vector X = (Xi, Xz) is called comonotonic if

P(Xi<xi, Xo <x)= n{11mz} P(X;<x) , (x1, x)€ R?
e 9

In other words, X and Y are almost surly increasing function of X+Y

To avoid moral hazard

X and L-X are assumed to be comonotonic

@ X an L-X are increasing functions of L
@ The more loss we face, the more gain we have from the contract

@ The more loss we face, the more distance there is between loss and
gain

6
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Valuation of the contract

Fundamnetal theorem of asset pricing

o No-arnitrage condition guarantees the existence of at least one
equivalent martingale measures

Price of the contract

7 (X) = sup EQ(X)
QeA

@ Q : An equivalent martingale measure

@ A : A subset of all equivalent martingale measures




Measure of risk

Value at Rist (VaR)

A measure of risk of an investment

VaR, (Y)=inf{y € R|Fy (y) > a}

@ Y : The risk of loss
e Fy (y) : Cumulative distribution function of the risk

@ « : Risk aversion of the agent

min  VaR, (L — X) + sup E€(X)
0<X<L Qen
X, L—X are
comonotone
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An optimal solution X to the risk management problem is given by

X = min {(50 = e_rTST)+ T (50 —e T VaR(l,a) (ST))+}

The form of the solution is given as X = f (S7), where

f(x)= (50 —e TVaR,_, (ST))Jr + e_’T(X _ Soe_rT)+

—e M(x—VaR_, (S7))"

4

The following terms play the role of stike price in option pricing
o K1 = Soe_’T
o Ky = VaRy_, (S7)
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Strategy

Main issues

@ The call options are correctly priced

@ Volatility should be carefully specified

@ we consider a Black-Scholes strategy

@ A polynomial learning algorithm is used to parametrize implied
volatilty




Static arbitrage

A volatility surface is free from static arbitrage if and only if the following
conditions are satisfied:

© The surface is free from calendar spread arbitrage;

@ For a fixed time to matiurity, the volatility slice is free from butterfly
arbitrage.

4
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Parameterization of implied volatility

Stochastic Volatility Inspired
SVI () 2
Winp (x) = a+ b(p(x —m) +/(x = m)” + 0?)

aeR , b>0, |pj<1, meR , 06>0

K
WV = 142 x = log = log ——
m, m, )
P P [t, t4+7] 6”—50

Svi . R :
o W; ., :Total implied variance

@ x : Moneyness
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Model selection
Polynomial approach

WGQZ(X) = Op + O1x + Ox>

Wng(x) = 0 + O1x + O2x% + 05x3
WGQ4(X) = Oy + O1x + Oox® + O3x° + O4x*

@ Linear model results in under-fitting

Add some polynomial features

@ Quadratic model is adequate mathematically

o Implied volatility do not always resemble a quadratic form
°

In case of low VIX (volatility index), we need higher degree
polynomial

High degree polynomial may cause the problem of over-fitting

A
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Cost function

m

2 n
/6\ = arg mein % Z (WOQ"(X(")) - w(i)) + )\Zlﬁf
=

i=1

m: Number of training example

w():The vector of observed total implied variance in market

A: Regularization parameter

The penalty term keeps the parameters small to avoid over-fitting

The regularization parameter control the trade-off between bias and
variance

It is more probable to face butterfly arbitrage in absence of the
penalty term
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Devision of training set

To improve fitting robustness, the training set data is randomly divided
into three portions

@ The training set (60%)
@ The cross validation set (20%)

© The test set (20%)
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Algorithm

A simple pseudo code

@ Start with the Total implied variance and its corresponding
moneyness for the OTM data

For a fixed value of \ estimate parameters using training set data
Compute training error and cross-validation error

Plot learning curve

© 6 0 ©

If there is no effect of over-fitting and under-fitting, compute test
error for each model

Otherwise, plot validation curve and choose the optimum value of A,
then move back to step 2

@ Choose the model with the lowest test error
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Table: Machine learning approach for S&P 500, traded on DEC 15, 2014.

Time to maturity  Expiry date n A The best pair
2 0.001 o,
0.0136 12/20/2014 3 0.003 N 0.001
4 0.005 :
2 03 s
0.0438 12/31/2014 3 0.001 N 0.001
4 0.003 :
2 3 n=2
0.0684 01/09/2015 3 9.95 N3
4 10
2 0.01 _,
0.0904 01/17/2015 3 0.05 n=
N 01 A =0.01
2 0.05 .,
0.126 01/30/2015 3 3 n=
. 3 A =0.05
2 3
0.178 02/20/2015 3 3 n=3
N A=3
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Durrleman 's function

@ there is no butterfly arbitrage for ML Approach
@ there is no butterfly arbitrage for SVI Model J

Durrleman for time to maturity 0.0136

SVI Durrleman for time to maturity 0.0136

Durrleman 's condition
Durrleman ’s Condition

0 05
Moneyness Moneyness

Figure: Durrleman function of ML and SVI, implemented for 7 = 0.0136



Durrleman 's function

@ there is no butterfly arbitrage for ML Approach
@ there is butterfly arbitrage for SVI Model J

Durrleman for time to maturity 0.0465 SVI Durrleman for time to maturity 0.0438

091
8 g
2 -
5 5
5 5
to £
3 3
051
04r
03
o . . , . . o4
25 ] 05 0 05 T s s 0 05 T is
Moneyness Moneyness

Figure: Durrleman funct4on of ML and SVI, implemented for 7 = 0.0438
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Durrleman 's function

@ there is no butterfly arbitrage for ML Approach
@ there is butterfly arbitrage for SVI Model J

Durrleman for time to maturity 0.0876 SVI Durrleman for time to maturity 0.0684

Durrleman ’s condition
Durrleman ’s condition
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Moneyness Moneyness

Figure: Durrleman function of ML and SVI, implemented for 7 = 0.0684



Durrleman 's function

@ there is no butterfly arbitrage for ML Approach
@ there is butterfly arbitrage for SVI Model J

Durrleman for time to maturity 0.1041 SVI Durrleman for time to maturity 0.0904

Durrleman 's condiion
Durrleman ’s condition
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Figure: Durrleman function of ML and SVI, implemented for 7 = 0.0904



Durrleman 's function

@ there is no butterfly arbitrage for ML Approach
@ there is no butterfly arbitrage for SVI Model J

Durrleman for time to maturity 0.178 SVI Durrleman for time to maturity 0.126

Durrleman ’s condition

Durrleman s condition

0 05
Moneyness Moneyness

Figure: Durrleman function of ML and SVI, implemented for 7 = 0.126
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Durrleman 's function

@ there is no butterfly arbitrage for ML Approach
@ there is butterfly arbitrage for SVI Model J

Durrleman for time to maturity 0.232 SVI Durrleman for time to maturity 0.178

Durrleman ’s condition
Durrleman ’s condition
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Figure: Durrleman function of ML and SVI, implemented for 7 = 0.178



Calendar spread plot

@ there is no callendar spread arbitrage arbitrage for ML Approach J

©10° Calendar spread plot

Total implied variance
o

Moneyness

Figure: Total implied variance



The quadratic model

We,Qz (x) = b + O1x + 62x°

Butterfly arbitrage

The quadratic model for less than one year time to maturity ( 7 < 1) is
free from butterfly arbitrage if

Qo 9%—49092+92<0
Q@ ;<f<l

Calendar spread arbitrage

| A

The folowing calibration strategy for each fixed time to maturity makes
the volatilty surface free from calendar spread arbitrage

Q 0Oy(n) > Oo(n-1)
Q 02(n)fo(n—1) + O2(n—1)00(n) < M

0i(j) is the i-th estimated parameter in the optimization for the j-th slice.

v
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Durrleman 's function

Durrleman for time to maturity 0.0136 Durrleman for time to maturity 0.0465
1 T T T T T 1 T T T T

Durrleman 's condition
Durrleman 's condition
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0 0
Moneyness Moneyness
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Durrleman ’s condition

Durrleman for time to maturity 0.0876

Durrleman for time to maturity 0.1041

Durrleman s condirion

0
Moneyness
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Durrleman 's function

Durrleman for time to maturity 0.178 Durrleman for time to maturity 0.232
1 T T T T T 1 T T T T T

Durrleman ’s condition
Durrleman 's condition
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Calendar spread plot

Total implied variance
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Figure: Plots of total implied variance



