A Closed NPZ Model with Delayed Nutrient Recycling

Matt Kloosterman, Sue Ann Campbell, Francis Poulin Department of Applied Mathematics, University of Waterloo AMMCS 2013

#### Introduction

### Equilibrium Solutions

- Plankton is at the bottom of many oceanic food webs, so it is important to understand its structure and dynamics.
- We look at a simple Nutrient-Phytoplankton-Zooplankton (NPZ) model that describes the first two trophic levels of an oceanic ecosystem.
- The model conserves biomass in time.
- We assume there is a delay in nutrient recycling.
- The effect that the total nutrient in the system and the delay distribution together have on the stability and properties of equilibrium solutions is studied.
- Taking the total biomass,  $N_T$ , to be a fixed parameter, equilibrium solutions satisfy,

$$\mu P^* f(N^*) - gZ^* h(P^*) - \lambda P^* = 0,$$
  

$$\gamma gZ^* h(P^*) - \delta Z^* = 0,$$
  

$$+ P^* + Z^* + [\lambda P^* + \delta Z^* + (1 - \gamma)gZ^* h(P^*)]\tau = N_T,$$

where  $\tau$  is the mean delay.

 $N^*$ 

D

• There are three types of equilibria:

$$E_0 = (N_T, 0, 0),$$
  $E_1 = (\hat{N}, \hat{P}, 0),$   $E_2 = (N^*, P^*, Z^*)$ 



Figure 5: Regions in the  $\tau - N_T$  plane that exhibit different properties for the  $E_2$  equilibrium for a discrete delay with Type II functional response (left) and Type III response (right). Region 1 is where  $E_2$  does not exist. Region 3 is where it exists and is stable. Region 5 is where the assurance

#### • There are two critical values of total biomass:

### Model Equations

• The ecosystem is governed by the delay differential equations:

$$\begin{aligned} \frac{dN(t)}{dt} &= \lambda \int_0^\infty P(t-u)\eta(u) \, du + \delta \int_0^\infty Z(t-u)\eta(u) \, du \\ &+ (1-\gamma)g \int_0^\infty Z(t-u)h(P(t-u))\eta(u) \, du - \mu P(t)f(N(t)), \\ \frac{dP(t)}{dt} &= \mu P(t)f(N(t)) - gZ(t)h(P(t)) - \lambda P(t), \\ \frac{dZ(t)}{dt} &= \gamma gZ(t)h(P(t)) - \delta Z(t). \end{aligned}$$

- When plankton dies, it is not immediately in a form that is ready to be uptaken by phytoplankton.
- Generally, it will take some time  $\tau$  to be recycled according to a distribution of possible delays:  $\eta(\tau)$ .
- The functional form of the phytoplankton nutrient uptake is assumed to have the following properties:

 $f(0) = 0, \qquad f'(N) \ge 0, \qquad f''(N) \le 0, \qquad \lim_{N \to \infty} f(N) = 1.$ 

• The Michaelis-Menten formulation satisfies these properties:

$$f(N) = \frac{N}{N+k}.$$

$$N_{T1} = f^{-1}\left(\frac{\lambda}{\mu}\right), \qquad N_{T2} = f^{-1}\left(\frac{\lambda}{\mu}\right) + (1+\lambda\tau)h^{-1}\left(\frac{\delta}{\gamma g}\right).$$

•  $E_1$  does not exist for  $N_T < N_{T1}$  and  $E_2$  does not exist for  $N_T < N_{T2}$ .

Stability of Solutions without Delay

|       | $N_T < N_{T1}$  | $N_{T1} < N_T < N_{T2}$ | $N_T > N_{T2}$                       |
|-------|-----------------|-------------------------|--------------------------------------|
| $E_0$ | Globally Stable | Unstable                | Unstable                             |
| $E_1$ | Does Not Exist  | Globally Stable         | Unstable                             |
| $E_2$ | Does Not Exist  | Does Not Exist          | Stability depends on $h$ and $N_T$ . |

• For a Type II response, there is a  $N_{T3} > N_{T2}$  where a Hopf bifurcation occurs and the  $E_2$  solution becomes unstable.

• For a Type III response,  $E_2$  can be stable for any value of total biomass.









Figure 6: Stability regions for  $E_2$  with a Type II response for different types of distributions with fixed variances. The top has variance fixed at  $1 \text{ day}^2$ , the bottom left has it fixed at 5 day<sup>2</sup>, and the bottom right has it fixed at  $8 \text{ day}^2$ .



- The functional form of the zooplankton grazing on phytoplankton is often characterized by type.
- We assume it is Type II or Type III and assume the following properties.

 $h'(P) \ge 0, \qquad \lim_{P \to \infty} h(P) = 1.$ h(0) = 0,



Figure 1: Graphs of Type II (left) and Type III (right) functional forms for zooplankton grazing on phytoplankton.



- The following quantity is conserved in time:
  - $N_T = N(t) + P(t) + Z(t)$ +  $\int_0^\infty \int_{t-u}^t [\lambda P(v) + \delta Z(v) + (1-\gamma)gZ(v)h(P(v))]\eta(u) \, dv \, du.$
- The constant  $N_T$  is the total biomass in the system and is important

Figure 2: Equilibrium values of phytoplankton and zooplankton as a function of total nutrient. The solid lines represent stable points, while the dotted lines show unstable points.



Figure 3: Stable equilibrium values against total biomass (solid lines) and minimum and maximum values of limit cycles after the Hopf bifurcation. This is for a Type II functional response.

Stability of Solutions with Delay

• We linearize the equations and compute curves in the  $\tau - N_T$  plane where there is an eigenvalue with zero real part.



Figure 7: Simulations for the gamma distribution with shape parameter p = 20. The top left is for total nutrient  $N_T = 0.5$  and mean delay  $\tau = 5$ . The top right is for  $N_T = 0.5$  and  $\tau = 8$ . The bottom left is for  $N_T = 0.5$ and  $\tau = 12$ . The bottom right is for  $N_T = 0.35$  and  $\tau = 8$ .

# Discussion

• There is always a zero eigenvalue in the linearized equations, corresponding to the line of equilibrium solutions.

#### to the behaviour of the system.

## Relation to an NPZD Model

- An NPZD model contains a detritus compartment, which represents dead biomass and zooplankton faecal pellets.
- By taking  $\eta(u) = \alpha e^{-\alpha u}$ , the system can be shown to be equivalent to the following system of ODE's.

 $\frac{dN}{dt} = \alpha D - \mu P f(N),$  $\frac{dP}{dt} = \mu P f(N) - gZh(P) - \lambda P,$  $\frac{dZ}{dt} = \gamma g Z h(P) - \delta Z,$  $\frac{dD}{dt} = \lambda P + \delta Z + (1 - \gamma) g Z h(P) - \alpha D.$ 

• Hence, we are studying systems analogous to an NPZD model, but in a more general setting by considering other delay distributions.



Figure 4: Regions in the  $\tau - N_T$  plane that exhibit different properties for the  $E_1$  equilibrium. Region 1a is stable regardless of delay distribution. Region 1b can be stable for some delay distributions. Region 2 is where instability occurs for a discrete delay. Region 3 is always unstable and is where  $E_2$  exists. Region 4 is where  $E_1$  does not exist and  $E_0$  is stable.

- If all the other eigenvalues have negative real part, solutions locally approach the line of equilibrium solutions, hence stability.
- A Type III response tends to result in more stable behaviour for  $E_2$ than a Type II response.
- A small variance leads to similar results for different distributions, while the results depend on the shape of the distribution when the variance is large.
- Simulations agree with results predicted from linear theory.
- Total biomass,  $N_T$ , plays an important part in existence of equilibrium solutions and their stability.
- Future work assumes state-dependent delay in gestation time.

## Acknowledgements

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. M.K. also gratefully acknowledges financial support from the Ontario Graduate Scholarship Program.