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Introduction

• Plankton is at the bottom of many oceanic food webs, so it is important

to understand its structure and dynamics.

• We look at a simple Nutrient-Phytoplankton-Zooplankton (NPZ)

model that describes the first two trophic levels of an oceanic ecosys-

tem.

• The model conserves biomass in time.

• We assume there is a delay in nutrient recycling.

• The effect that the total nutrient in the system and the delay dis-

tribution together have on the stability and properties of equilibrium

solutions is studied.

Model Equations

• The ecosystem is governed by the delay differential equations:

dN(t)

dt
= λ

∫ ∞

0
P (t− u)η(u) du+ δ

∫ ∞

0
Z(t− u)η(u) du

+ (1− γ)g

∫ ∞

0
Z(t− u)h(P (t− u))η(u) du− µP (t)f(N(t)),

dP (t)

dt
= µP (t)f(N(t))− gZ(t)h(P (t))− λP (t),

dZ(t)

dt
= γgZ(t)h(P (t))− δZ(t).

• When plankton dies, it is not immediately in a form that is ready to

be uptaken by phytoplankton.

• Generally, it will take some time τ to be recycled according to a distri-

bution of possible delays: η(τ).

• The functional form of the phytoplankton nutrient uptake is assumed

to have the following properties:

f(0) = 0, f ′(N) ≥ 0, f ′′(N) ≤ 0, lim
N→∞

f(N) = 1.

• The Michaelis-Menten formulation satisfies these properties:

f(N) =
N

N + k
.

• The functional form of the zooplankton grazing on phytoplankton is

often characterized by type.

• We assume it is Type II or Type III and assume the following properties.

h(0) = 0, h′(P ) ≥ 0, lim
P→∞

h(P ) = 1.
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Figure 1: Graphs of Type II (left) and Type III (right) functional forms for

zooplankton grazing on phytoplankton.

Conservation Law

• The following quantity is conserved in time:

NT = N(t) + P (t) + Z(t)

+

∫ ∞

0

∫ t

t−u
[λP (v) + δZ(v) + (1− γ)gZ(v)h(P (v))]η(u) dv du.

• The constant NT is the total biomass in the system and is important

to the behaviour of the system.

Relation to an NPZD Model

• An NPZD model contains a detritus compartment, which represents

dead biomass and zooplankton faecal pellets.

• By taking η(u) = αe−αu, the system can be shown to be equivalent to

the following system of ODE’s.

dN

dt
= αD − µPf(N),

dP

dt
= µPf(N)− gZh(P )− λP,

dZ

dt
= γgZh(P )− δZ,

dD

dt
= λP + δZ + (1− γ)gZh(P )− αD.

• Hence, we are studying systems analogous to an NPZD model, but in

a more general setting by considering other delay distributions.

Equilibrium Solutions

• Taking the total biomass, NT , to be a fixed parameter, equilibrium solu-

tions satisfy,

µP ∗f(N∗)− gZ∗h(P ∗)− λP ∗ = 0,

γgZ∗h(P ∗)− δZ∗ = 0,

N∗ + P ∗ + Z∗ + [λP ∗ + δZ∗ + (1− γ)gZ∗h(P ∗)]τ = NT ,

where τ is the mean delay.

• There are three types of equilibria:

E0 = (NT , 0, 0), E1 = (N̂ , P̂ , 0), E2 = (N∗, P ∗, Z∗).

• There are two critical values of total biomass:

NT1 = f−1

(
λ

µ

)
, NT2 = f−1

(
λ

µ

)
+ (1 + λτ)h−1

(
δ

γg

)
.

• E1 does not exist for NT < NT1 and E2 does not exist for NT < NT2.

Stability of Solutions without Delay

NT < NT1 NT1 < NT < NT2 NT > NT2

E0 Globally Stable Unstable Unstable

E1 Does Not Exist Globally Stable Unstable

E2 Does Not Exist Does Not Exist Stability depends on h and NT .

• For a Type II response, there is a NT3 > NT2 where a Hopf bifurcation

occurs and the E2 solution becomes unstable.

• For a Type III response, E2 can be stable for any value of total biomass.
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Figure 2: Equilibrium values of phytoplankton and zooplankton as a function

of total nutrient. The solid lines represent stable points, while the dotted lines

show unstable points.
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Figure 3: Stable equilibrium values against total biomass (solid lines) and

minimum and maximum values of limit cycles after the Hopf bifurcation. This

is for a Type II functional response.

Stability of Solutions with Delay

• We linearize the equations and compute curves in the τ −NT plane where

there is an eigenvalue with zero real part.
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Figure 4: Regions in the τ −NT plane that exhibit different properties for the

E1 equilibrium. Region 1a is stable regardless of delay distribution. Region

1b can be stable for some delay distributions. Region 2 is where instability

occurs for a discrete delay. Region 3 is always unstable and is where E2 exists.

Region 4 is where E1 does not exist and E0 is stable.
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Figure 5: Regions in the τ −NT plane that exhibit different properties for

the E2 equilibrium for a discrete delay with Type II functional response

(left) and Type III response (right). Region 1 is where E2 does not exist.

Region 3 is where it exists and is stable. Region 5 is where the assurance

of stability is lost.
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Figure 6: Stability regions for E2 with a Type II response for different types

of distributions with fixed variances. The top has variance fixed at 1 day2,

the bottom left has it fixed at 5 day2, and the bottom right has it fixed at

8 day2.
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Figure 7: Simulations for the gamma distribution with shape parameter

p = 20. The top left is for total nutrient NT = 0.5 and mean delay τ = 5.

The top right is for NT = 0.5 and τ = 8. The bottom left is for NT = 0.5

and τ = 12. The bottom right is for NT = 0.35 and τ = 8.

Discussion

• There is always a zero eigenvalue in the linearized equations, corre-

sponding to the line of equilibrium solutions.

• If all the other eigenvalues have negative real part, solutions locally

approach the line of equilibrium solutions, hence stability.

• A Type III response tends to result in more stable behaviour for E2

than a Type II response.

• A small variance leads to similar results for different distributions, while

the results depend on the shape of the distribution when the variance

is large.

• Simulations agree with results predicted from linear theory.

• Total biomass, NT , plays an important part in existence of equilibrium

solutions and their stability.

• Future work assumes state-dependent delay in gestation time.
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