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Abstract

Optimal control plays a significant role in many disciplines, including robotics, systems
biology, chemical engineering, and other fields. The core question of this topic is how to
produce the optimal controllers and corresponding trajectories for a dynamical system and
some conceivable constraints? And, if there is an existing open-loop reference trajectory,
how to track it?

This research paper can be partitioned into two parts. The first part will introduce
trajectory optimization, especially exact local direct methods, the widely accepted way
to compute an open-loop solution to an optimal control problem. Then, the second part
will introduce two logically completely different feedback control designs, the classic linear-
quadratic regulator control design and the state-of-the-art abstraction-based control design,
respectively, to produce closed-loop reference trajectories depending on the open-loop ref-
erence trajectory through trajectory optimization. Moreover, some comparative examples
will be provided along with each part.
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Chapter 1

Introduction

1.1 Background

Robotics has become a phenomenon in recent years; it is innovating and developing at
a very fast pace. Robots have an absolute advantage in assisting humans in increasing
working efficiency and improving workers’ safety who perform those arduous and dangerous
tasks. Studies [7] have shown that the market for global robotics will increase by more than
$100 billion in the next decade. Therefore, numerous institutes and researchers worldwide
are actively evolving the robotics industry.

The trajectory tracking problem is an indispensable research field in robotic studies.
It can be divided into two different categories [1]. The first category is the path following
problem; the robot only needs to follow the feasible path from the initial to the goal
point without a time limit. For this problem, the reference trajectory can be normally
generated through sampling-based path planning, such as probabilistic roadmap (PRM)
[17], rapidly-exploring random tree (RRT)[23], and modified rapidly-exploring random tree
(RRT∗)[16]; the limitation is that the created path does not consider the system dynamic
(some recent works, such as [24], have figured out this point). The second category is the
reference tracking problem; the robot must track the reference trajectory with the specific
velocity and angular velocity in a pre-defined time horizon. Trajectory optimization is a
common tool for generating a minimum cost open-loop reference trajectory, satisfying all
desired constraints (dynamics, initial values, avoidance, etc.). For both types of problems,
feedback control designs (i.e., position proportional-integral-derivative control (PID)[13],
Linear-quadratic Regulator control(LQR)[14], model-based predictive control (MPC)[33],
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etc.) are available to command the robot track the trajectory. In this research paper, the
reference tracking problem will be mainly focused on.

1.2 Scope of the Research Paper

The remainder of this research paper is organized as follows, trajectory optimization to
generate open-loop reference trajectories with sensitivity analysis will be introduced in
chapter 2, especially the exact local direct methods. In chapter 3, the solution methodology
for tracking the reference trajectory by the feedback finite and infinite horizon LQR design
will be presented. In chapter 4, an innovative solution according to [26] using abstraction-
based control design in a tube shape workspace around the reference trajectory will be
briefly discussed. Lastly, some personal perspectives and potential research angles will be
provided in chapter 5.
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Chapter 2

Trajectory Optimization and
Applications

Trajectory optimization [4] is a field of designing the optimal open-loop trajectory which
satisfies some required constraints or specifications. Figure 2.1 is the architecture diagram
of the trajectory optimization family. There are three branches of exact approach tra-
jectory optimization methods. The first branch is direct methods; they directly transfer
the problem into a nonlinear program. The second branch is indirect methods; they use
Pontryagin’s minimum principle or calculus of variations to solve boundary value problems
using the relationship between primal and dual states. These methods optimize first, then
discretize. Generally, they are more accurate but challenging to solve. The last branch is
based on the Hamilton-Jacobi-Bellman approach; the limitation is that the computational
cost increases very quickly. This chapter will mainly focus on widely used direct methods.

2.1 Problem Definition

Trajectory optimization is used to find the optimal solution for basic problems with the
reach-avoid specification. The reachability specification Σ means for the initial set I ⊆ X
of all initial state x(0) ∈ I, the effective trajectory (x(0), x(t1), x(t2), . . . ) exists a moment
t that x(t) touches the required goal set Z ⊆ X, where 0 < t1 < t2, . . . , < t. It associates
with I, Z ⊆ X and the set of controller U can be expressed in the mathematical form as

Σ := {(x, u) ∈ (X,U)∞|x(0) ∈ I ⇒ ∃t∈[0;∞) : x(t) ∈ Z}. (2.1.1)

3



Figure 2.1: The architecture diagram of the trajectory optimization family.

The reach-avoid specification is based on the reachability specification, the states x(t′)
on the trajectory do not touch any avoidable set A ⊆ X, where t′ ∈ [0, t). It associates
with I, Z,A ⊆ X and the set of controller U can be expressed in the mathematical form
as

Σ := {(x, u) ∈ (X,U)∞|x(0) ∈ I ⇒ ∃t∈[0;∞) : x(t) ∈ Z ∧ ∀t′∈[0;t) : x(t′) /∈ A}. (2.1.2)

Problem (2.1.3) is a generic trajectory optimization model

min
x(t), u(t)

m(x(tf )) +

∫ tf

t0

I(x(t), u(t))dt (2.1.3a)

s.t. ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, tf ], (2.1.3b)

g(x(t), u(t)) = 0, ∀t ∈ [t0, tf ], (2.1.3c)

h(x(t), u(t)) ≥ 0, ∀t ∈ [t0, tf ], (2.1.3d)

where (2.1.3a) is the objective function; m(.) is the Mayer type penalty function to guar-
antee that x(tf ) is sufficiently close to the set goal set, and I(., .) is the Lagrange type
function of the instantaneous cost with respect to the pair x and u at the time t ∈ [t0, tf ].
(2.1.3b) is the system dynamics have to follow. (2.1.3c) is the equality constraint to ensure
some fixed conditions have to comply; for instance, the initial condition and the drone
flocking has to keep a specific formulation. (2.1.3d) is the inequality constraint that can be
used to define some conditions like the robot does not collide with an obstacle (avoiding
the avoidable set), the upper and lower bound of the control input, and so forth.
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2.2 Direct Methods for Trajectory Optimization

Problem (2.1.3) is challenging to solve for two reasons; the first is that it requires producing
the whole optimal x(t) in the appointed time horizon, and the second is that (2.1.3b) is
in the form of a differential equation. The viable solution is to discretize the problem to a
nonlinear optimization problem (NLP). Lagrangian relaxation is the general way to solve
NLPs through decomposing constraints to obtain a new objective function. Then, using
the sub-gradient method updates the Lagrangian multipliers until the upper and lower
bound for the new objective function are approximately equal, and the decision variables
are desired optimal values.

Three direct methods by the discretization of controls will be introduced in the rest of
the section.

2.2.1 Direct Single Shooting Method

For the direct single shooting method ([8], [39]), the time horizon is divided into N pieces
of equal length segments. It only discretizes controllers in the NLP, and

u(t) = uk, ∀t ∈ [tk, tk+1), (2.2.1)

is a piecewise constant function. Based on u(t) to produce the corresponding discrete state
x(t) by using numerical integration (ode solvers). The direct single shooting NLP is as
follows

min
x0, u0, . . . , uN

m̃(xN+1) +
N∑
k=0

Ĩ(xk, uk) (2.2.2a)

s.t. x0 = x(t0), (2.2.2b)

x ≤ xk ≤ x̄, ∀k ∈ {1, . . . , N}, (2.2.2c)

u ≤ uk ≤ ū, ∀k ∈ {0, . . . , N}, (2.2.2d)

xN+1 = x(tf ); (2.2.2e)

where (2.2.2b) and (2.2.2e) are required initial state and goal state for the problem. (2.2.2c)
and (2.2.2d) are the workspace and controller set boundaries, respectively.
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The compact form of the NLP (2.2.2) can be written as

min
x0, U

J̃(x0, U) (2.2.3a)

s.t. g̃(x0, U) = 0, (2.2.3b)

h̃(x0, U) ≥ 0. (2.2.3c)

The following algorithm is steps apply the direct single shooting method to solve the
trajectory optimization problem.

Algorithm 1: Direct Single Shooting Method

1 Given x, x̄, u, and ū are the workspace and controller set boundaries;
2 Guess x0, u0, . . . , uN ;
3 while The accuracy is greater than the threshold, or not exceeding the max

iterations do

4 Initialize J̃ = 0, h̃ = ∅, g̃ = ∅ ;
5 for k = 0 : N do

6 xk+1 := xk +
∫ tk+1

tk
f(x(t), uk)dt;

7 Ĩk :=
∫ tk+1

tk
Ĩ(x(t), uk)dt;

8 J̃ = J̃ + Ĩk;

9 h̃.append([xk − x; x̄− xk]);
10 h̃.append([uk − u; ū− xu]);
11 J̃ = J̃ + m̃(xN+1);
12 g̃ = [x0 − x(t0);xN+1 − x(tf )];

13 Solve the NLP based on the prepared J̃ , g̃, and h̃;
14 Update x0, u0, . . . , uN .

2.2.2 Direct Collocation Method

For the direct collocation method ([18], [27]), the time horizon is divided into N pieces
of equal length segments. In different with the direct single shooting method, it also
discretizes states. States between two discretized time points are further divided into
D equidistant discretized sub-points, and each time point can be written as a piecewise
polynomial function by sub-points to represent every interval as

xDk (t) =
D∑
j=0

pj(τ)xkj, (2.2.4)
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where ∀k ∈ {0, . . . , N}, j ∈ {0, . . . , D}. And, initially guessing all states xkj.

The direct collocation NLP is as follow

min
X0, . . . , XN+1, u0, . . . , uN

m̃(xN(D+1)+N) +
N∑
k=0

Ĩk(Xk, uk) (2.2.5a)

s.t. x0 = x(t0), (2.2.5b)

ck(Xk, uk) = 0, ∀k ∈ {0, . . . , N}, (2.2.5c)

x ≤ xk ≤ x̄, ∀k ∈ {1, . . . , N}, (2.2.5d)

u ≤ uk ≤ ū, ∀k ∈ {0, . . . , N}, (2.2.5e)

xN(D+1)+N = x(tf ), (2.2.5f)

where Xk is the set {xk1, . . . , xkD}, and Ĩk(Xk, uk) is the cost between tk and tk+1. (2.2.5c)
is the constraint of the gap between the actual ẋ and the system dynamic, ẋ can be
estimated by using the secant method, as follows

ck(Xk, uk) ≈ ẋ(t)− f(x(t), u(t))

≈ xk+1 − xk
tk+1 − tk

− f(xk+1, uk).
(2.2.6)

The compact form of the NLP (2.2.5) can be written as

min
X,U

J̃(x0, U) (2.2.7a)

s.t. g̃(x0, U) = 0, (2.2.7b)

h̃(x0, U) ≥ 0. (2.2.7c)

The following algorithm is steps to apply the direct collocation method to solve the
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trajectory optimization problem.

Algorithm 2: Direct Collocation Method

1 Given x, x̄, u, and ū are the workspace and controller set boundaries;
2 Guess x0, . . . , xN(D+1)+N , u0, . . . , uN ;
3 while The accuracy is greater than the threshold, or not exceeding the max

iterations do

4 Initialize J̃ = 0, h̃ = ∅, g̃ = ∅ ;
5 for k = 0 : N do
6 g̃.append(ck(Xk, uk));

7 J̃ = J̃ + Ĩk(Xk, uk);

8 h̃.append([Xk − x; x̄−Xk]);

9 h̃.append([uk − u; ū− xu]);
10 J̃ = J̃ + m̃(xN(D+1)+N);
11 g̃ = [x0 − x(t0);xN(D+1)+N − x(tf )];

12 Solve the NLP based on the prepared J̃ , g̃, and h̃;
13 Update x0, . . . , xN(D+1)+N , u0, . . . , uN .

2.2.3 Direct Multiple Shooting Method

For the multiple shooting method [6], the time horizon is divided into N pieces of equal
length segments. Similar to the direct collocation method, the direct multiple shooting
method discretizes both controllers and states. However, instead of using the piecewise
polynomial and guessing all states xkj to represent every interval; it locally discretizes the
states xk by numerical integration like the direct single shooting method. The multiple
shooting method can be imagine as solving N times of the direct single shooting method,
but the terminal condition for the k shooting point is exact the next shooting method’s
initial condition.
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The direct multiple shooting NLP is as follows:

min
x0, . . . , xN+1,

u0, . . . , uN

m̃(xN+1) +
N∑
k=0

Ĩk(xk, uk) (2.2.8a)

s.t. x0 = x(t0), (2.2.8b)

xk+1 = xk +

∫ tk+1

tk

f(x(t), uk)dt, ∀k ∈ {0, . . . , N}, (2.2.8c)

x ≤ xk ≤ x̄, ∀k ∈ {1, . . . , N}, (2.2.8d)

u ≤ uk ≤ ū, ∀k ∈ {0, . . . , N}, (2.2.8e)

xN+1 = x(tf ), (2.2.8f)

where Ĩ(xk, uk) is the cost between tk and tk+1.

The compact form of the NLP (2.2.8) can be written as

min
X,U

J̃(X,U) (2.2.9a)

s.t. g̃(X,U) = 0, (2.2.9b)

h̃(X,U) ≥ 0. (2.2.9c)

The following algorithm is steps to apply the direct multiple shooting method to solve
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the trajectory optimization problem.

Algorithm 3: Direct Multiple Shooting Method

1 Given x, x̄, u, and ū are the workspace and controller set boundaries;
2 Guess x0, . . . , xN+1, u0, . . . , uN ;
3 while The accuracy is greater than the threshold, or not exceeding the max

iterations do

4 Initialize J̃ = 0, h̃ = ∅, g̃ = ∅ ;
5 for k = 0 : N do

6 rk+1 := xk+1 − xk −
∫ tk+1

tk
f(x(t), uk)dt;

7 g̃.append([rk]);

8 Ĩk :=
∫ tk+1

tk
Ĩ(x(t), uk)dt;

9 J̃ = J̃ + Ĩk(xk, uk);
10 h̃.append([xk − x; x̄− xk]);
11 h̃.append([uk − u; ū− xu]);
12 J̃ = J̃ + m̃(xN+1);
13 g̃ = [x0 − x(t0);xN+1 − x(tf )];

14 Solve the NLP based on the prepared J̃ , g̃, and h̃;
15 Update x0, . . . , xN+1, u0, . . . , uN .

2.3 Computational Experiments

The direct single shooting method is not decoupled, which means it can only simulate the
problem sequentially. It is time consuming; therefore, computational experiments only use
and compare the direct collocation method and the direct multiple shooting method in the
rest of the section. Both methods are helped with an open-source optimization toolbox in
MATLAB call “OptimTraj” ([18], [19]).

All numerical experiments have been run on Intel i7-8565U processor, limited to 16GB
of RAM. OptimTraj has access to 4 physical cores, max turbo frequency of 4.60GHz, and
using up to 8 threads.
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Figure 2.2: The schematic of the simple pendulum system from [40].

2.3.1 Simple Pendulum System

Figure 2.2 is a schematic of a simple pendulum. The system can be expressed as

ẋ1 = x2

ẋ2 = −mgl
I

sinx1 −
b

I
x2 +

1

I
u,

(2.3.1)

where x1 is the angle between the rod and the vertical axis through the pivot point, x2 is
the angular velocity, l is the length of the rod without mass, m is the mass of the ball, g is
the acceleration of gravity, b is the frictional coefficient of the joint, and I = ml2. Control
input u is the force to the pendulum. In the computational experiment, Table 2.1 indicates
parameters for the simple pendulum, and −5 ≤ u ≤ 5 is bounds for control inputs.

Parameter Value (unit)

m 1 (kg)
l 0.5 (m)
b 0.1
g 9.8 (m/s2)

Table 2.1: Parameters for the simple pendulum.

The first simple pendulum experiment begins with the rod from the vertical down
position without the angular velocity (x1(0) = 0 and x2(0) = 0) and ends with the rod
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Figure 2.3: Swing upright the simple pendulum from the vertical down position by the
direct collocation method.

inverted upright position without the angular velocity (x1(tf ) = π and x2(tf ) = 0). Figure
2.3 and 2.4 show the resulting trajectories of swinging upright the pendulum from the
vertical down position by the direct collocation method and the direct multiple shooting
method, respectively. Figure 2.5 and 2.6 are corresponding open-loop control inputs versus
time. Intuitively, the results are almost identical. Table 2.2 makes a comparison between
two methods. As for attaining the same accuracy, the direct collocation method is always
quicker than the direct multiple shooting method; the reason behind this is the direct
multiple shooting method has to call the time consuming ode solver for every interval.

Method N D tf CPU Time (s)

Collocation 20 3 1.9514 2.01
Multiple Shooting 20 - 1.9514 10.13

Table 2.2: The comparison between two methods for the pendulum experiment one.

The second simple pendulum experiment considers the rod in motion, which does not
begin from the vertical down position. Assuming that the beginning state is x1(0) =
−0.5 with the angular velocity x2(0) = 3, and the ending position is inverted upright
without the angular velocity (x1(tf ) = π and x2(tf ) = 0). Figure 2.7 and 2.8 show the
resulting trajectories. Figure 2.9 and 2.10 are corresponding open-loop control inputs
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Figure 2.4: Swing upright the simple pendulum from the vertical down position by the
direct multiple shooting method.

Figure 2.5: Controller versus time for swinging upright the simple pendulum from the
vertical down position by the direct collocation method.
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Figure 2.6: Controller versus time for swinging upright the simple pendulum from the
vertical down position by the direct multiple shooting method.

versus time. Trajectories and control inputs are also almost identical under two different
methods. Table 2.3 compares two methods. In this experiment, the direct collocation
method is much quicker than the direct multiple shooting method. It follows that the
direct collocation method is a more practical method to deal with local exact trajectory
optimization problems.

Method N D tf CPU Time (s)

Collocation 20 3 2.5444 3.62
Multiple Shooting 20 - 2.5444 30.54

Table 2.3: The comparison between two methods for the pendulum experiment two.

2.3.2 Three-dimensional Nonlinear System

Consider the three-dimensional nonlinear system, as follows

ẋ1 = − cos(u) + sin(x3) + 1

ẋ2 = sin(u) + sin(x1)

ẋ3 = exp(x2) + u− 1.

(2.3.2)
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Figure 2.7: Swing upright the simple pendulum from the x1 = −0.5 (radian) position by
the direct collocation method.

Figure 2.8: Swing upright the simple pendulum from the x1 = −0.5 (radian) position by
the direct multiple shooting method.
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Figure 2.9: Controller versus time for swinging upright the simple pendulum from the
x1 = −0.5 (radian) position by the direct collocation method.

Figure 2.10: Controller versus time for swinging upright the simple pendulum from the
x1 = −0.5 (radian) position by the direct multiple shooting method.
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Figure 2.11: Control the three-dimensional nonlinear system from (−π,−π,−π) to (0, 0, 0)
by the direct collocation method.

The goal is to find the optimal controller that the initial state is (−π,−π,−π) and
the terminal state is (0, 0, 0). Figure 2.11 and 2.12 are trajectories simulated by the direct
collocation method and the direct multiple shooting method, respectively. Figure 2.13
and 2.14 are corresponding controllers versus time. Again, both methods produced almost
identical trajectories and control inputs. Table 2.4 shows that the direct collocation method
is approximate three times faster than the direct multiple shooting method for the same
time horizon and accuracy.

Method N D tf CPU Time (s)

Collocation 20 3 11.3 4.71
Multiple Shooting 20 - 11.3 12.60

Table 2.4: The comparison between two methods for the three-dimensional nonlinear sys-
tem.
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Figure 2.12: Control the three-dimensional nonlinear system from (−π,−π,−π) to (0, 0, 0)
by the direct multiple shooting method.

Figure 2.13: Controller versus time for the three-dimensional nonlinear system from
(−π,−π,−π) to (0, 0, 0) by the direct collocation method.
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Figure 2.14: Controller versus time for the three-dimensional nonlinear system from
(−π,−π,−π) to (0, 0, 0) by the direct multiple shooting method.
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Chapter 3

Linear-Quadratic Regulator Control
Design

Linear-quadratic Regulator Controller (LQR) [14] was first presented in the 1960s, which is
a well-known control method that can provide optimally controlled feedback (closed-loop)
gains to actualize the system’s stable and high-performance design. Nowadays, it is widely
used in various fields.

3.1 Stability and Lyapunov Analysis

Stability analysis is a very important factor in studying the closed-loop system; it can
demonstrate that the candidate controller is attainable for specific purposes.

Consider a system
ẋ = f(x, t). (3.1.1)

Let x∗ be the equilibrium point, which means f(x∗, t) = 0. Suppose in the rest of this
section, the origin is one of the equilibrium points. The followings are some important
stability concepts based on the book [34].

Definition 3.1.1 (Stable). The origin is stable if for any δ > 0, there exists ε > 0, such
that if ‖x(0)‖ < ε, then ‖x(t)‖ < δ for all t ≥ 0. Generally speaking, the initial condition
starts close to the origin, then it stays close to the origin for all time.

Definition 3.1.2 (Asymptotically Stable). The origin is stable, and if, in addition, there
exists some ε > 0 such that ‖x(0)‖ < ε implies that x(t) approaches the origin as t going to
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infinity. Generally speaking, the initial condition not only has to stay close to the origin,
but also approaches to the origin as t going to infinity.

The following Theorem 3.1.1 is the most basic theorem to analyze systems’ stability
around equilibrium points.

Theorem 3.1.1 (Lyapunov Theorem). In a region D, let V (x) is a scalar, continuously-
first partial derivative function such that

1.
V (0) = 0; (3.1.2)

2.
V (x) > 0, which is positive definite, ∀x ∈ D\{0}; (3.1.3)

3.
V̇ (x) ≤ 0,which is negative semi-definite, ∀x ∈ D; (3.1.4)

then the origin is stable. Further on, if the others remain the same, and the derivative of
the function

V̇ (x) < 0, which is negative definite, ∀x ∈ D; (3.1.5)

then the origin is asymptotically stable.

Proof. Here is a brief proof. Given ε > 0, and 0 < r ≤ ε such that

Br = {‖x‖ ≤ r} ⊂ D. (3.1.6)

Let α = min‖x‖=r V (x) > 0. Taking the maximum level surface β ∈ (0, α), there is an
interior set of Br

Ωβ = {x ∈ Br | V (x) ≤ β}. (3.1.7)

Suppose that Bδ is the subset in Ωβ, which satisfies

‖x‖ ≤ δ =⇒ V (x) < β. (3.1.8)

As the result of Equation (3.1.4), V̇ (x) ≤ 0 in Ωβ; there are

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br, (3.1.9)
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Figure 3.1: The framework in the proof of Theorem 3.1.1
from [21]

and
‖x(0)‖ < δ ⇒ ‖x(t)‖ < r < ε, ∀t ≥ 0. (3.1.10)

Therefore, the origin is stable by the definition. Moreover, if V̇ (x) < 0, ∀x ∈ D/{0}. Then
V (x(t)) is monotonically decreasing, which has

lim
t→∞

V (x(t)) = c ≥ 0. (3.1.11)

Suppose for the level surface c > 0, there exists Bd ⊂ Ωc. limt→∞ = c > 0 means there is
a T , have x(t) lies outside Bd for all t > T . Let γ = −maxd≤‖x‖≤r V̇ (x), where γ > 0, the
scalar, continuously-first partial derivative function can produce

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ ≤ V (x(0))− γt < 0, (3.1.12)

which is contradiction with the condition 2, V (x) > 0. Therefore, c can only be 0, and the
origin is asymptotically stable by the definition.
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3.2 Hamilton-Jacobi-Bellman Equation with LQR

3.2.1 Hamilton-Jacobi-Bellman Equation

In optimal control, the goal is to search for an optimal control policy u∗ and plug in this
control input into the system ẋ = f(x(t),u(t)) to obtain such trajectory x∗ on a continuous-
time interval t ∈ [0, T ] (assuming that the initial time is 0) that reaches to the minimum
value J∗ of an objective function:

J(t,x) = h(x(T )) +

∫ T

0

l(x(t),u(t))dt. (3.2.1)

In the objective function, h(x(T )) is the terminal cost, and l(x(t),u(t)) is the instan-
taneous cost at the moment t. T can be both finite and infinite. When T is finite, the
problem is called a finite horizon problem, which means to take an integral of the instanta-
neous cost from 0 to a finite value of T . On another hand, the problem is called an infinite
horizon problem when T is infinite; it is not time-dependent, and there is no terminal cost,
h = 0,

J(x) =

∫ ∞
0

l(x(t),u(t))dt. (3.2.2)

The infinite horizon problem is a sub-class of the finite horizon problem; it only needs
some minor changes to transfer between each other. For easy calculation by computer, the
system can be written in the difference equation, and Equation (3.2.1) can be estimated
in a discrete version, as follow:

xk+1 = xk + δf(xk,uk), (3.2.3)

J̃ = h(xN) +
N−1∑
k=0

δl(xk,uk), (3.2.4)

where δ = T
N

is the unit length of a piece of time (there are total N pieces) and k ∈
{0, . . . , N}.

To satisfy the soft constraint in the objective function, algorithms to solve this opti-
mization problem start the time from the terminal T backward. At the any discrete time
point t = kδ, the optimal value of the objective function is

J̃∗(kδ,x) = min
u∈U
{δl(x,u) + J̃∗(δk + δ,x + δf(x,u))}; (3.2.5)
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by using the Taylor series expansion to the second term to get

J̃∗(kδ,x) = min
u∈U
{δl(x,u) + J̃∗(kδ,x) + δ∇tJ̃

∗(kδ,x)

+δ∇xJ̃
∗′(kδ,x)f(x,u) + o(δ)}.

(3.2.6)

After simplifying and ignoring high order terms, becomes

0 = min
u∈U
{l(x,u) +∇tJ̃

∗(kδ,x) +∇xJ̃
∗(kδ,x)f(x,u)}; (3.2.7)

assuming that δ is extremely small, close to 0, and k approaches infinity, the discrete
equation can transfer back to the continuous equation, as follows

0 = min
u∈U
{l(x,u) +∇tJ

∗(t,x) +∇xJ
∗(t,x)f(x,u)}, (3.2.8)

Equation (3.2.8) is the well-known Hamilton-Jacobi-Bellman (HJB) equation, [9] is a
book chapter comprehensively introduce this equation, and

π∗(t,x) = arg min
u∈U
{l(x,u) +∇tJ

∗(t,x) +∇xJ
∗(t,x)f(x,u)} (3.2.9)

is the optimal control policy.

The following Theorem 3.2.1 from the chapter 7 of the book by [3] to shows how the
solution to the HJB equation equals the optimal objective function for all t and x.

Theorem 3.2.1 (Hamilton-Jacobi-Bellman Sufficiency Theorem). Consider the system
ẋ = f(x,u), suppose V (t,x) is continuously differentiable in t and x, and is such that it is
the solution of Equation (3.2.8),

0 = min
u∈U
{l(x,u) +∇tV (t,x) +∇xV (t,x)f(x,u)}, ∀t, x, (3.2.10)

V (T,x) = h(x(T )), ∀x. (3.2.11)

Suppose also that u∗(t,x) is the optimal control input in Equation (3.2.10). Then V (t,x)
is exact the optimal objective function for all initial time t ∈ [0, T ] and any initial state x.

Proof. Let û(t) ∈ U is any available control input for t ∈ [t′, T ], where t′ ∈ [0, T ], and x̂(t)
is the corresponding state. Then,

0 ≤ l(x̂(t), û(t)) +∇tV (t, x̂(t)) +∇xV (t, x̂)f(x̂(t), û(t)) (3.2.12)
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since the instantaneous cost and the objective function are always non-negative.

Given that ˙̂x(t) = f(x̂(t), û(t)), to obtain

0 ≤ l(x̂(t), û(t)) +∇tV (t, x̂(t)) +∇xV (t, x̂(t)) ˙̂x(t)

= l(x̂(t), û(t)) +
d

dt
(V (t, x̂(t))).

(3.2.13)

Integrating the inequality from t′ = 0 to T , to obtain

0 ≤
(∫ T

0

l(x̂(t), û(t))dt

)
+

(∫ T

0

d

dt
(V (t, x̂(t)))dt

)
=

(∫ T

0

l(x̂(t), û(t))dt

)
+ V (T, x̂(T ))− V (0, x̂(0)).

(3.2.14)

The initial state is always provided, hence x̂(0) = x(0). Also, the terminal condition
Equation (3.2.11) should be followed, to yield

V (0,x(0)) = V (0, x̂(0)) ≤ h(x̂(T )) +

(∫ T

0

l(x̂(t), û(t))dt

)
. (3.2.15)

To select x̂(t) and û(t) are optimal control input x∗(t) and its corresponding x∗(t),
respectively. The objective function can approach to the minimum bound J∗(0,x(0))

V (0,x(0)) = h(x∗(T )) +

(∫ T

0

l(x∗(t),u∗(t))dt

)
= J∗(0,x(0)). (3.2.16)

Without loss of generality, t′ can be any value between 0 and T to take an integral from;
thus,

V (t,x) = J∗(t,x), ∀t, x. (3.2.17)

3.2.2 Hamilton-Jacobi-Bellman Equation with LQR

Consider a linear system at the state equation

ẋ(t) = Ax(t) + Bu(t). (3.2.18)
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Let the objective function in the quadratic form, which is widely used in engineering,
as follows

l(x,u) = xTQx + uTRu, (3.2.19)

h(x) = xTQTx, (3.2.20)

where Q = QT is positive semi-definite, R = RT is positive definite, and QT is positive
definite to ensure J∗ > 0. Then, Equation (3.2.8) becomes

0 = min
u
{xTQx + uTRu +∇tJ

∗(t,x) +∇xJ
∗′(t,x)(Ax + Bu)}; (3.2.21)

assuming that the solution of the optimal objective function is also the quadratic form

J∗(t,x) = xTS(t)x, (3.2.22)

where S(t) is positive definite since the objective function is always positive, to yield

0 = min
u
{xTQx + uTRu + xT Ṡ(t)x + 2xTS(t)Ax + 2xTS(t)Bu}. (3.2.23)

The optimal control input u∗ can be achieved by taking a partial derivative of u since
terms inside the minimum is convex, which means any local minimum is also a global
minimum

∂

∂u
{xTQx + uTRu + xT Ṡ(t)x + 2xTS(t)Ax + 2xTS(t)Bu} = 0 (3.2.24)

=⇒ u∗ = −K(t)x = −R−1BS(t)x. (3.2.25)

Substituting the optimal control input u∗ back to Equation (3.2.23) to obtain

0 = xT [Q + S(t)BR−1BTS(t) + Ṡ(t) + S(t)A + ATS(t)− 2S(t)BR−1BTS(t)]x (3.2.26)

=⇒ Ṡ(t) = −S(t)A−ATS(t) + S(t)BR−1BTS(t)−Q, (3.2.27)

which is the famous Riccati equation. The equation is actually an ordinary differential
equation (ODE), and it can be easily solved to get a continuous solution S(t) if given the
eligible terminal condition

S(T ) = QT ; (3.2.28)

for procuring the optimal solution of the linear-quadratic problem, the existence of the
solution to Equation (3.2.27) is always the necessary and sufficient condition [35].
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In addition, if the problem is the infinite time horizon, Equation (3.2.8) does not include
the term with respect to t, as follows

0 = min
u∈U
{l(x,u) +∇xJ

∗′(x)f(x,u)}. (3.2.29)

Assuming that the optimal objective function is the quadratic form only with respect
to x

J∗(x) = xTSx; (3.2.30)

it is easy to obtain the optimal control input and an algebraic Riccati equation by following
similar steps

u∗ = −R−1BSx, (3.2.31)

0 = SA + ATS− SBR−1BTS + Q. (3.2.32)

Corollary 3.2.1.1. If Equation (3.2.32) admits a positive definite solution S, then the
origin for this control system is asymptotically stable.

Proof. Assuming that V (x) = xTSx > 0 is a candidate Lyapunov function, and the optimal
control policy u = −R−1BSx if Equation (3.2.32) has a feasible positive definite solution.
Taking the first derivative of this candidate Lyapunov function

V̇ (x) = xTSẋ + ẋTSx

= xTS(Ax + Bu) + (Ax + Bu)TSx

= xT (SA + ATS− 2SBR−1BTS)x

= xT (−Q− SBR−1BTS)x

< 0;

(3.2.33)

therefore, the system is asymptotically stable at the origin by Theorem 3.1.1.

3.3 Tracking the Reference Trajectory by LQR

When the robot intents to track a reference trajectory, asymptotically stable equilibria
(Definition 3.1.2) is necessary to be considered. The robot should exactly converge to the
goal point, not even somewhere extremely close to that point. Nevertheless, trajectory
optimization can only produce the reference trajectory in the finite time horizon for the
real situation, which means the real trajectory’s terminal state can only be located at
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somewhere merely close to the reference trajectory’s terminal point. [36] came up with the
idea that they could easily figure out this issue using the two-stage LQR design. Locally,
the infinite horizon LQR guarantees the approach to the equilibrium point. Globally, the
finite horizon LQR is used for narrowing the gaps between the potential trajectories and
the reference trajectory.

Here are the detailing steps for this idea. It starts backward in time from local to global
since by Corollary 3.2.1.1 that Equation (3.2.32) has to find a feasible solution. The first
stage is to stabilize the goal state locally.

Consider a smooth nonlinear system

ẋ = f(x,u). (3.3.1)

Let xf with uf is the goal state that the robot has to approach. xf and uf is also an
equilibrium point of the system f(xf ,uf ) = 0; otherwise, the problem will be meaningless
since if the controller is no longer in the system, the state will immediately move away
from the equilibrium point.

Assuming that
x̄ = x− xf ,with ū = u− uf (3.3.2)

is the gap between the state and the goal state.

Taking the linearization of the time-invariance system around (xf ,uf ) to obtain the
linear system

˙̄x = Ax̄(t) + Bū(t). (3.3.3)

Define the objective function Equation (3.2.2) in the quadratic form

J(x̄(0)) =

∫ ∞
0

[x̄T (t)Qx̄(t) + ū(t)Rū(t)]dt, (3.3.4)

where Q = QT ≥ 0 and R = RT > 0.

The optimal objective function

J∗(x̄(t)) = x̄T (t)Sx̄(t), (3.3.5)

where S is the solution of Equation (3.2.32) (MATLAB’s lqr(.) function can easily solve
these equations).
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Then, the optimal time-invariant control strategy for stabilizing System (3.3.1) around
the goal point is

u∗ = uf −R−1BTS(x− xf ). (3.3.6)

The second stage is used for narrowing the gaps between the potential trajectories and
the reference trajectory. Given that xref is the reference trajectory with the corresponding
reference control input uref , which is found by the trajectory optimization method.

Assuming that

x̄(t) = x(t)− xref (t) and ū(t) = u(t)− uref (t) (3.3.7)

are gaps between the potential trajectory and the reference trajectory with corresponding
control inputs at the moment t.

Taking the linearization of the time-varying system around the reference trajectory to
obtain

˙̄x(t) = A(t)x̄(t) + B(t)ū(t). (3.3.8)

Define the objective function Equation (3.2.1) in the quadratic form

J(x̄(0), 0) = x̄T (tf )Qtf x̄(tf ) +

∫ tf

0

[x̄T (t)Qx̄(t) + ūT (t)Rū(t)]dt, (3.3.9)

where parameters Qtf = QT
tf
> 0, Q = QT ≥ 0, and R = RT > 0. Usually, the

presetting parameter Qtf should much more greater than Q and R for ensuring that x̄(tf )
is sufficiently small; in another word, it means the potential trajectory converges to the
reference trajectory as time approaching to the moment tf . Moreover, the time horizon
is not mandatory from 0 to tf ; it can start with t′ ∈ [0, tf ] to have the objective function
J(x̄(t′), t′). This means the potential trajectory’s initial state not only needs be located
at somewhere close to the reference trajectory’s initial state, but also any part around the
reference trajectory.

The optimal objective function

J∗(x̄, t) = x̄T (t)S(t)x̄(t), (3.3.10)

where S(t) is the solution to the ODE (3.2.27) with the terminal condition (MATLAB’s
ode45 function is a high-performance technique to solve these equations)

S(tf ) = Sstage1. (3.3.11)
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The terminal condition (3.3.11) is for linking up two stages of LQR designs to guarantee
that Equation (3.2.32) exists a feasible solution.

Then, the optimal time-varying control strategy for tracking the reference trajectory is

u∗(t) = uref −R−1BT (t)S(t) (x(t)− xref (t)) . (3.3.12)

3.4 Computational Experiments

All computational experiments in this section ran under the same system environment as
chapter 2 by MATLAB.

3.4.1 Simple Pendulum System

The system and parameters showed in System (2.3.1) and Table 2.1, respectively. To utilize
the reference trajectories from chapter 2. The goal is to find feedback control policies that
can track the reference trajectory and converge to the reference trajectory’s terminal state
for all initial states around the initial state of the reference trajectory.

For both simple pendulum computational experiments, the goal state (π, 0) is an equi-
librium point for the system. Define LQR parameters as

Q =

[
10 0
0 1

]
and R = 20. (3.4.1)

Following stage 1’s procedures in Section 3.3. After solving Equation (3.2.32), the
feasible positive definite solution

Sstage1 =

[
230.8806 49.2538
49.2538 230.8806

]
, (3.4.2)

which means the goal state (π, 0) is asymptotically stable by Corollary 3.2.1.1.

Then, with respective time spans are [0, 1.9514] and [0, 2.5444] for experiment 1 and
experiment 2, respectively. Solving the initial value problem (3.2.27) to obtain S(t) (i.e.,
Figure 3.2 is the feedback gain K(t) in Equation (3.2.25) for the experiment 1). Let the
reference trajectory’s initial state as the center of a circle with radius is 0.5 to generate
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Figure 3.2: Time varying feedback gains for the simple pendulum experiment 1.

random initial states by MATLAB’s funtion rand(.). Following stage 2’s procedures in Sec-
tion 3.3, two experiments’ desired optimal control policies u∗(t) and potential trajectories
can be achieved.

Figure 3.3, 3.4 are 5 and 1000 potential trajectories’ simulations for the experiment 1,
and Figure 3.5, 3.6 are 5 and 1000 potential trajectories’ simulations for the experiment
2. Four simulations reflect that the initial state around the reference trajectory (the blue
trajectory) effectively tracks and converges along the reference trajectory well for the simple
pendulum system by the two-stage LQR design with smooth potential trajectories (red
trajectories). Moreover, the time consumption for simulating the problem can be ignored.

As mentioned in the explanation of Equation (3.3.9), the potential trajectory’s initial
can also locate at any part around the reference trajectory and adjust the time horizon
with [t′, tf ], where t′ ∈ [0, tf ]. Figure 3.7 is the example with random initial states (green
dots) around any part of the reference trajectory (radius=0.3) with corresponding t′; the
figure indicate that feedback controllers are resultful as well.
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Figure 3.3: Tracking the simple pendulum experiment one’s reference trajectory from
chapter 2 (5 trajectories).

Figure 3.4: Tracking the simple pendulum experiment one’s reference trajectory from
chapter 2 (1000 trajectories).
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Figure 3.5: Tracking the simple pendulum experiment two’s reference trajectory from
chapter 2 (5 trajectories).

Figure 3.6: Tracking the simple pendulum experiment two’s reference trajectory from
chapter 2 (1000 trajectories).

33



Figure 3.7: Tracking the simple pendulum experiment one’s reference trajectory from
chapter 2 with random initial states around any part of the reference trajectory.

3.4.2 Three-dimensional Nonlinear System

The system showed in Equation (2.3.2). To utilize the reference trajectory from chapter
2. The goal is to find feedback control policy that can track the reference trajectory and
converge to the reference trajectory’s terminal state for all initial state of the reference
trajectory.

The goal state (0, 0, 0) is an equilibrium point for the system. Define LQR parameters
as

Q =

10 0 0
0 1 0
0 0 1

 and R = 20. (3.4.3)

Following stage 1’s procedures in Section 3.3. After solving Equation (3.2.32), the
feasible positive definite solution

Sstage1 =

20.3206 10.1431 14.4684
10.1431 10.4979 9.7904
14.4684 9.7904 14.6787

 . (3.4.4)

which means the goal state (0, 0, 0) is asymptotically stable by Corollary 3.2.1.1.
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Figure 3.8: Time varying feedback gains for three-dimensional nonlinear system.

Then, with the time span is [0, 11.3], solving the initial value problem (3.2.27) to ob-
tain S(t); Figure 3.8 is the feedback gain K(t) in Equation (3.2.25). Let the reference
trajectory’s initial state as the center of sphere with the radius is 0.3 to generate initial
states. Following stage 2’s procedures in Section 3.3, the optimal control policies u∗(t) and
potential trajectories can be achieved.

Figure 3.9 and 3.10 are 5 and 200 potential trajectories’ simulations. Both simulations
reflect that the initial state around the reference trajectory (the blue trajectory) effectively
tracks and converges along the reference trajectory well in the three-dimensional space by
the two-stage LQR design with smooth potential trajectories (red trajectories).

Figure 3.11 is the example with random initial state (green dots) around any part of
the reference trajectory (radius=0.3) with corresponding t′, where t′ ∈ [0, tf ]. It shows
that feedback controllers are resultful for the three-dimensional system as well.

Remark. The code template for implementing the two-stage LQR control design is posted
in Appendix A.
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Figure 3.9: Tracking the three-dimensional system nonlinear from chapter 2 (5 trajectories).

Figure 3.10: Tracking the three-dimensional nonlinear system from chapter 2 (200 trajec-
tories).
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Figure 3.11: Tracking the three-dimensional nonlinear system’s reference trajectory from
chapter 2 with random initial states around any part of the reference trajectory.
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Chapter 4

Abstraction-based Control Design

With the development of science and technology, there are increasing numbers of safety-
critical applications [22] in today’s society. Thereinto, symbolic control is one of the bright
future solutions for building automatically correct-by-construction Safety-Critical Control
Software. Algorithmic guaranteed controllers can be provided if given the cyber-physical
system and some executable and rigorous requirements.

Abstraction-based Control Design (ABCD) or finite abstraction is another representa-
tional term or one of the most cross-sectional method for symbolic control. The deep and
particular benefit is that it is one of the state-of-the-art approaches to producing feedback
controllers that can provide some formal correctness guarantees and efficiently against the
cyber-physical system with boundary uncertainties, i.e.,

Ė(t) ∈ f(E(t), u) +W, (4.0.1)

where W := J−w,wK is a bounded perturbation term, and E(t) is a continuous solution of
the System (4.0.1) under control input u on the time horizon [0, τ ].

4.1 The Framework of Abstraction-based Control De-

sign

4.1.1 Some Preliminaries

In this subsection, some preliminaries about the symbolic approach and what the symbolic
controller acts on the system will be introduced.
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Considering the system in a triplet

S(X,U, F ), (4.1.1)

where X is the state alphabet has state signal x : [0;T ) → X, U is the input alphabet
has input signal u : [0;T )→ U , and F : X × U ⇒ X is the transition function or a strict
set-valued map correlates to the System (4.0.1) is defined as time discrete dynamics

x(t+ 1) ∈ F (x(t), u(t)); (4.1.2)

the transition function (4.1.2) can be satisfied if and only if it holds as

F (x, u) := {x′|E(0) = x ∧ E(τ) = x′ for the valid solution of System (4.0.1)} (4.1.3)

A complete control problem in symbolic control is consisted of the system S and spec-
ification

Σ ⊆ (X × U)∞, (4.1.4)

exempli gratia Expression (2.1.1) and (2.1.2).

Definition 4.1.1 (Behavior). The set B(S) of the system (4.1.1) is called the behavior of
the S

B(S) = {(x, u)|∃ pairs (x, u) are the solution of S on [0;T )

∧ F (x(T − 1), u(T − 1)) = ∅ for T <∞},
(4.1.5)

this means that satisfy both Equation (4.1.2) and exist feasible control input u of the
control system S.

Ultimately, the symbolic control problem can be addressed as solvable if and only if
there exists a desired solution C of the control system S, which is a composable feedback
controller to satisfy that

B(C × S) ⊆ Σ. (4.1.6)

4.1.2 The Framework of Abstraction-based Control Design

Figure 4.1 shows the fundamental framework of ABCD. The specific process is built upon
the classic approach in [30] and [32]; it can be, on the whole, partitioned into three steps.
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Figure 4.1: The framework of Abstraction-based Control Design

1. Abstraction.

Given a simple system in a triplet S1(X1, U1, F1) and a specification Σ1, same as defined
in (4.1.1) and (4.1.4), respectively. The first step in Figure 4.1 is called abstraction, which
means discretizing the continuous simple system and specification to the discrete simple
system and the abstract specification

S2 = (X2, U2, F2) and Σ2, (4.1.7)

respectively.

The detailing is to construct the state alphabet of X2 with small equidistant size grids
to cover the state X1 by non-empty, closed hyper-intervals

Ja, bK = Rn([a1, b1]× · · · × [an, bn]) (4.1.8)

for some a, b ∈ (R ∪ {±∞})n, where a < b.

The sparsity of the grid point set depends on the size of the grid ηi for each dimension,
and the set of grid points can be shown as

ηZn = {c ∈ Rn|∃k∈Zn∀i∈{1,...,n}ci = kiηi}; (4.1.9)

beyond all doubt, the higher precision (small η) will cause higher time and memory con-
sumption in the computer but a higher success rate in finding a feasible symbolic controller.

However, the range of X2 is defined as closed but not unbound, so the problem is not
in a practical sense and not solvable by the computer in a lot of cases. Therefore, it is
doable if only considering the real closed and bounded subset X̄2 ⊆ X2 as

X̄2 := {x2|∃c∈(ηZn∩Ja,bK)x2 = c+ J−η
2
,
η

2
K}, (4.1.10)
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and x2 ∈ X2\X̄2 is called the overflow symbol, which can be ignored in the subsequent
computational process.

To arrow Z1 ⊆ X1 is goal set, the homologous goal set of the abstract system

Z2 = {x2 ∈ X2|x2 ⊆ Z1}. (4.1.11)

Likewise, to arrow I1 ⊆ X1 is the initial set, the homologous initial set of the abstract
system

I2 = {x2 ∈ X2|x2 ∩ I2 6= ∅}. (4.1.12)

Assuming that U2 ⊆ U1 is the finite set, let ϕ(., p, u) is the nominal solution of System
(4.0.1) of the initial value problem without considering the perturbation term:

ϕ̇(t, p, u) = f(ϕ(t, p, u), u), (4.1.13)

where p is the initial condition at the moment t = 0 and t ∈ [0, τ ].

For designing the transition function F2 of the finite system S2, the growth bound
function β : Rn

+ × U2 → Rn
+ will be applied for setting the upper limit gap between the

nominal solution ϕ of the System (4.1.13) and the solution E of the System (4.0.1) on the
time horizon [0, τ ] for u ∈ U2, as follows

|E(τ)− ϕ(τ, p, u)| ≤ β(|E(0)− p|, u). (4.1.14)

The growth bound function (containing the disturbance w term from System (4.0.1))
is established on [0, τ ] as

β(r, u) = exp(L(u)τ)r +

∫ τ

0

exp(L(u)s)w ds, (4.1.15)

where L : U2 → Rn×n is consisted of the Jacobian matrix of f , as follows

Li,j(u) ≥

{
Djfi(x, u) if i = j,

|Djfi(x, u)| otherwise,
(4.1.16)

for letting E(0), p ∈ K ⊆ K ′ ⊆ Rn with K ′ being convex, and ∀x ∈ K ′ and ∀u ∈ U2.

The intuition behind it is only considered the worst-case scenario, which means it
calculates the maximum radius for the reachable set overall states to skip calculating the
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reachable set for each cell in the grid. Supposing System (4.0.1) is without the disturbance
term; the growth bound function can be simplified as written in

β(r, u) = exp(L(u)τ)r. (4.1.17)

It is worth mentioning that Equation (4.1.15) is the general solution to the initial value
problem

ṙ(t) = L(u)r(t) + w,

r(0) = r0;
(4.1.18)

since the general solution is consisted of the general homogeneous solution plus a partic-
ular solution. In the first place, guessing the particular solution is in the form rp(t) =
exp (tL(u))ζ(t), to substitute it into the differential equation (4.1.18) gets

L(u) exp (tL(u))ζ(t) + exp (tL(u))ζ̇(t) = L(u) exp (tL(u))ζ(t) + w. (4.1.19)

After the simplified,

ζ̇(t) = exp (−tL(u))w ⇒ ζ(t) =

∫ t

0

exp (−sL(u))wds, (4.1.20)

and

rp(t) = exp (tL(u))ζ(t) =

∫ t

0

exp ((t− s)L(u))wds. (4.1.21)

Thus, to together with the homogeneous solution based on the initial condition, the
general solution of the growth bound function is

r′(t) = exp (tL(u))r0 +

∫ t

0

exp ((t− s)L(u))wds; (4.1.22)

the initial value problem (4.1.18) can be solved by ode solvers.

The following Algorithm is steps to compute the transition function F2 of the simple
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finite system.

Algorithm 4: Computing the transition function F2

1 Given X̄2, U2, β, ϕ, η, τ ;
2 for c+ J−r, rK ∈ X̄2 and u ∈ U2 do
3 r′ := β(η

2
, u);

4 c′ := ϕ(τ, c, u);
5 A := {x′2 ∈ X2|(c′ + J−r′, r′K) ∩ x′2 6= ∅};
6 if A ⊆ X̄2 then
7 F2(x2, u) := A;
8 else
9 F2(x2, u) := ∅;

Apart from that, the transition function F2(x2, u) = ∅, where ∀x2 ∈ X2\X̄2 with u ∈ U2.

Below, there are some requisites for connecting the relationship between the simple
system S1 and the finite system S2.

Definition 4.1.2 (Admissible Inputs Set). Admissible inputs set US(x) is defined as, for
x ∈ X,

US(x) = {u ∈ U |F (x, u) 6= ∅}. (4.1.23)

Definition 4.1.3 (Feedback Refinement Relation). Assuming that U2 ⊆ U1, there exists
a feedback refinement relation Q ⊆ X1 × X2 from the simple system S1 to the abstract
simple system S2, denotes as S1 4Q S2, if for all (x1, x2) ∈ Q satisfy:

1. US2(x2) ⊆ US1(x1);

2. if u ∈ US2(x2), which implies to Q(F1(x1, u)) ⊆ F2(x2, u).

As well as, there exists the feedback refinement relation, if for all Ω, Ω′ ∈ X2 and all u ∈ U2

satisfy:
Ω′ ∩ F1(Ω, u) 6= ∅ implies to Ω′ ∈ F2(Ω, u). (4.1.24)

Definition 4.1.4 (Abstract Specification). Let S1 and S2 are simple systems, Σ1 ⊆ (X1×
U1)

∞ is the specification, and Q ⊆ X1 × X2 is the feedback relation. The specification
Σ2 ⊆ X2 × U2 is called the abstract specification if (x2, u) ∈ Σ2, where x2 and u are
defined on the time horizon [0, T ) for some T ∈ N ∪ {∞}, and if x1 : [0, T )→ X1 satisfies
(x1(t), x2(t)) ∈ Q for all t ∈ [0, T ), then (x1, u) ∈ Σ1.
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Eventually, if there is a feedback refinement relation between the concrete infinite con-
trol problem and the abstract control problem (S1,Σ1) 4Q (S2,Σ2), then S1 4Q S2 and Σ2

is an abstract specification have to be required. SCOTS can automatically compute the
feedback refinement relation Q.

Something to remind that [29] is one of the early works talked about using abstractions
to solve the nonlinear control problem.

2. Synthesis.

The second step in Figure 4.1 is called synthesis, which aims to solve the abstract control
problem (S2,Σ2). The control specification in propositional modal logic may be but is not
limited to Linear temporal logic (LTL), µ-calculus, etc. Some automate-theoretic schemes
can be used to synthesize the problem to obtain the discrete control strategies (abstract
controllers). SCOTS [32] gives synthetic algorithms for the invariance specification (or
safety specification, which means the trajectory avoids touching a specific set forever) and
reachability specification as (2.1.1).

The synthetic algorithm for solving the reachability problem in SCOTS is based on
Dijkstra’s shortest path algorithm, the pseudo-code is posted in Appendix B. Differently,
[25] improves the synthetic algorithm for the reachability specification by the breadth-first
search algorithm. All synthetic algorithms start from the abstract goal set Z2 to solve the
problem backward; the linchpin is to take the inverse of the transition function (4.1.2)

(x2, u) ∈ F−12 (x′2) (4.1.25)

to explore all possible x2 ∈ X̄2. Due to the problem being solved backward, ABCD can
only solve offline control problems here.

To explain particulars, a map pre(Yi) is necessary to be defined as

pre(Yi) = {x2 ∈ X2|∃u∈US2
(x2)F2(x2, u2) ⊆ Yi}, (4.1.26)

where, for i ∈ N, Y0 = ∅ and
Yi+1 = pre(Yi) ∪ Z2. (4.1.27)

The output of synthetic algorithms is set-valued maps D : X2 ⇒ U2, and the inverse
mapping D−1(U2) is the minimal fixed point of the largest set of initial state Y∞ of Equa-
tion (4.1.27). [2] is a book characterizes about applications of fixed point algorithms in
engineering.
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The abstract control problem can derive an eligible composable feedback controller C2

if and only if the abstract initial set belongs to the minimal fixed point set, which is the
output

I2 ⊆ D−1(U2). (4.1.28)

The output function Hc to yield state-input pairs, which is the imperative component
of the feedback composable C2; it is delineated as

Hc =

{
D(x2)× {x2} if x2 ∈ D−1(U2);

U2 × {x2} otherwise.
(4.1.29)

3. Refinement.

The third step in Figure 4.1 is called refinement. The previous step has already attained
a controller for the abstract control problem; this step is used to reach the controller
C1 for the concrete control problem through the abstract controller C2 and the feedback
refinement relation Q.

Figure B.1 in Appendix B is the rough flow path of the closed-loop control design and
how the refinement relation (as known as a quantizer) applies to the system. The following
Theorem 4.1.1 supports that C1 can solve the concrete control problem (S1,Σ1).

Theorem 4.1.1. If there is a feedback refinement relation Q : X1 ⇒ X2 between the
concrete infinite control problem and the abstract control problem (S1,Σ1) 4Q (S2,Σ2),
and the abstract controller C2 solves the abstract control problem (S2,Σ2), then the refined
controller of serial composition C1 := C2 ◦ Q solves the concrete infinite control problem
(S1,Σ1). As a consequence, the behavior B(C1 × S1) of this closed-loop control design is a
subset of Σ1.

The detailed mathematical proofs for Theorem 4.1.1 and rationale for supporting the
feedback refinement relations are shown in Section V.A and Section VI.A in [30].

To sum up, there are many ready-made ABCD toolboxes, such as [32], [20], [12], for
solving different sorts of systems and specifications. Beyond that, [25] is a modified tool-
box that can handle more mainstream control specifications, such as Büchi and Co-Büchi
specification, and optimize run-time and memory consumption at the same time. In ad-
dition, [38] is the latest ABCD research used the memory-efficient on-the-fly algorithm
and innovative formal correctness methodology during the control synthesis, which has an
excellent performance in resource consumption in some experiments; it also compared the
above toolboxes in all aspects.
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4.2 Abstraction-based Control Design on Account of

the Reference Trajectory

In most situations, ABCD has to compute the entire workspace; nevertheless, the bot-
tleneck is that the computation is costly, and it is effortless to exceed the computer’s
maximum memory if the physical system is in high dimensions and the abstract system
with the relative small grid. A considerable time and memory consumption (commonly
consumes over several hundred gigabytes and hours) are strangling normal users to work
on some simple examples.

A neoteric solution is provided by C++ toolbox GAMARA [26], which is an advanced
toolbox based on SCOTS [32]. First of all, they use trajectory optimization to generate an
open-loop reference trajectory based on the system without uncertainty. Then, regarding
the state xref (tk) of the reference trajectory at each time node tk as the center to create a
new workspace with a constant radius δ,

Workspacenew :=

tf⋃
k=0

xref (tk) + [−δ, δ]; (4.2.1)

more specifically, the radius of each dimension δi of the system is in the form

δi = the number of grids of each dimension× the size of the grid ηi. (4.2.2)

GAMARA yielded a built-in mapping procedure to lead the tube-sharp workspace in
an executable ABCD setting.

Finally, to apply ABCD through SCOTS to find the feedback controller on the new
cutdown tube-shape workspace. It differs from LQR control design; the reference trajectory
is not used for tracking but simply presets an estimated cutdown workspace, then solves
the problem by ABCD. The logic behind it is that the reachable sets for the states inside
the winning domain of the controller will be inside the tube to keep trajectories inside the
tube.

The advantage of this solution is that trajectory optimization conducts to determine
the cut-down workspace to reduce the computational cost obviously and to roughly ensure
the reachability set is within the tube shape workspace around the reference trajectory in
the later steps globally. And, ABCD can guarantee if there are disturbances in the system
locally.
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Howbeit, the solution solved by GAMARA in the optimized workspace can be seen as
the secondary solution solved by SCOTS in the entire workspace, which means GAMARA
can find a solution in the optimized workspace only if SCOTS can find a solution in
the entire workspace. Consequently, the potential limitation is that it has very stringent
conditions for selecting appropriate parameters, such as the growth bound, the size of
each grid and radius, and the time interval, to use GAMARA to find viable solutions that
trajectories are fully located within the tube.

4.3 Computational Experiments

The numerical experiment has been run on Inter Gold 6148 Skylake processor at 2.4GHz
with a limit of 92GB of RAM on the Béluga cluster with the permission of Compute
Canada.

4.3.1 Simple Pendulum System

The system dynamic and parameters showed in System (2.3.1) and Table 2.1, respec-
tively. The experiment and its reference trajectory are based upon the existing simple
pendulum experiment one from chapter 2 rather than the trajectory optimization method
in GAMARA. The reference trajectory (blue trajectory in Figure 4.2 with time horizon
[1,1.95] and the discrete time unit τ = 0.01) exists a little error from the original reference
trajectory because the input of GAMARA is control input, and it unavoidably causes an
error for calculating states by the ode solver.

Given that bounds of the hyper rectangle of state and input are X = [−2, 4]× [−3, 1]
and U = [−4, 4]. The size of single state grid and input grid ηx = [0.001, 0.01] and ηu = 1,
and the number of grids of each dimension is [10,10].

To take the manipulation of Function (4.1.16) to find the Jacobian matrix

L(u) =

[
0 1
mgl
I
− b
I

]
; (4.3.1)

then, to follow the growth bound function without disturbance (4.1.17) has

r′ = β(r, u) = exp(L(u)τ)r =

[
1.001 0.01
0.1957 0.9970

]
r. (4.3.2)
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MATLAB’s expm() function is very convenient for calculating matrix exponential.

The green zigzag trajectory in Figure 4.2 is the experimental result of controlling System
(2.3.1) from the downward position to the upright position without disturbance by ABCD.
It consumed 0.068GB of RAM and took 0.8127s of CPU time for the abstraction part and
0.01404s of CPU time for the synthesis part to solve the reachability problem. The real
trajectory is very approximate to the reference trajectory since the size new tube shape
workspace is relatively tiny.

Further on, everything else remains unchanged; the disturbance W adds to the model
just like System (4.0.1), where the bound |W | ≤ (0.01; 0.01). Following the growth bound
function with disturbance (4.1.15) has

r′ = β(r, u) = exp(L(u)τ)r +

∫ τ

0

exp(L(u)s)w ds

=

[
1.001 0.01
0.1957 0.9970

]
r +

[
0.01 0
0.001 0.01

]
W ;

(4.3.3)

the red zigzag trajectory in Figure 4.2 is the experimental result with disturbance. It
consumed 0.0798GB of RAM and took 0.8104s of CPU time for the abstraction part and
0.0325s of CPU time for the synthesis part to solve the reachability problem.

4.3.2 Simple Vehicle Model

Consider the simplest nonlinear vehicle model, and it is also known as the kinematic
unicycle model

ẋ1 = v cos(θ)

ẋ2 = v sin(θ)

θ̇ = u,

(4.3.4)

where x1 and x2 are coordinates for the vehicle in the two-dimensional space, and θ is the
angle of the steerable wheel. v is a control input of the velocity for this vehicle, and u
is another control input of the steerable wheel’s angular velocity; the bounds for control
inputs are −2.4 ≤ u, v ≤ 2.4. The size of a single input grid ηu = [0.3, 0.3]. The model
shows that ẋ1, ẋ2, and θ̇ do not rely on this vehicle’s location.

Assuming that the reference trajectory has to satisfy with the initial state is (0, 0, π
2
),

and the terminal state is (0, 10, π
2
). The minimum cost reference trajectory is a straight

route in the two-dimensional space (blue trajectory in Figure 4.3) with constant θ = π
2
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Figure 4.2: Reference trajectory (blue), the real trajectory without disturbance (green),
and the real trajectory with disturbance (red) for the simple pendulum system by ABCD.

in the time span [0, 10.3]; this is a weak version experiment from the toolbox. Given the
discrete time unit τ = 0.1, the number of grids of each dimension is [7,7,7], and the size of
a single state grid ηx = [0.025, 0.025, 0.03] to create a new tube shape workspace to solve
the reachability problem within it.

On the basis of the original vehicle model (4.3.4) to consider additional disturbance W
just like System (4.0.1), where the bounds |W | ≤ (0; 0.025; 0.025). GAMARA took a total
of 143.013s of CPU time and 8.54GB of RAM to solve this reachability problem; detailedly,
the abstraction part accounted for 135.014s, and the synthesis part accounted for 7.99881s.
The red zigzag trajectory in Figure 4.3 is a real trajectory found by ABCD to satisfy the
reachability specification in the tube shape workspace, in that the initial state is (0; 0; π

2
)

and exists disturbance.

For comparison, everything else remains unchanged; the green zigzag trajectory in
Figure 4.3 is the same system without the disturbance term W . It took 124.925s of CPU
time for the abstraction part and 7.85452s of CPU time for the synthesis part to solve the
reachability problem.
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Figure 4.3: Reference trajectory (blue), the real trajectory with disturbance (red), and the
real trajectory without disturbance (green) for the vehicle model by ABCD.
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Chapter 5

Conclusion and Future Works

In this chapter, we will make a conclusion based on this research paper and list some
potential research angles.

5.1 Conclusion

Beyond all doubt, trajectory optimization is a powerful weapon for computing an open-loop
nominal trajectory for optimal control problems, especially the direct collocation method.
It can rapidly and accurately solve high-dimensional systems with even some complicated
constraints. [10], [11] are popular well-optimized trajectory optimization toolboxes for
large scale systems.

Sometimes, less is more in the vast majority of scenarios; PID or LQR control de-
signs work decently and simulate in fast time, and experimental results are more close to
practical applications in use (For now, ABCD probably can only give results with theoret-
ical guarantees to solve the control problem). For both LQR control design and ABCD,
difficulties are choosing appropriate parameters; in some cases, adjusting parameters is
time-consuming and interminable. The parameter selection problem is especially promi-
nent on ABCD with an optimized workspace setting in chapter 4; the growth bound, the
size of each grid and radius, and the time interval are all influencing factors in achieving
satisfactory results. For ABCD, effects are disproportional to causes; this means that a
tiny error in any link may bring about the butterfly effect to lead to a mistake or inaccurate
result.
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However, ABCD as a solution also has its unique advantages. It can find a feedback
controller to reduce the impacts of disturbances, handle modeling uncertainties, and solve
many high-level safety-critical applications with mathematical guarantees. ABCD is an
up-and-coming control method in the near future and will receive more attention from
the control field. With the next revolution in computer technology, processing speed and
computer hardware can be significantly boosted so that even smaller grids can segment the
workspace, and even more complex constraints can be added to the problem to improve
the success rate and precision.

5.2 Future Works

• Investigating more complicated nonlinear systems with interesting dynamics and
high-dimensional control inputs, such as CartPole, simple Goddard rocket [3], Quad-
copter, etc.

• As for solving a complete reachability problem by the two-stages LQR design, the
essential part is to find out the reachable set. There are some existing solutions, [36]
refers on the definition of Lyapunov function, [31] is a simulation-based solution, and
[28] uses the level set methods.

• In reality, the majority of systems are stochastic, which means there is noise or
disturbance. The two-stage LQR design can only figure out deterministic systems.
Linear-quadratic-Gaussian control (LQG) [15] is a way to deal with the initial condi-
tion with Gaussian disturbance by adding the observer gain. Besides, [37] is a mature
toolbox to solve stochastic reachability control problems.

• Both LQR control design and ABCD in this research paper solve the problem back-
ward from the goal set; therefore, they can only figure out offline control problems.
In the future, we are perhaps attempting more modern optimal control techniques,
such as MPC, MHE, etc. So then, more realistic online control problems can be
solved.

• In this research paper, only reachability specification was considered. More different
control specifications can be considered in the future. One doable idea is to combine
[26] with our own toolbox [25] to solve even higher-dimensional systems or multi-
agent systems.
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• For the toolbox GAMARA [26], they only simulated trajectories with a single initial
state coinciding with the reference trajectory’s initial state. It is possible to find that
all initial states in the tube belong to the research set for states inside the wining
domain whose corresponding real trajectories are also inside the tube, similar to LQR
design in chapter 2.
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Appendix A

Matlab Code for Tracking the
Reference Trajectory by LQR
Control Design

The following is MATLAB code for the 3-dimensional nonlinear system experiment using
the linear-quadratic regulator control design to track the reference trajectory.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%stage 1_infinite time horizon LQR design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mypi = 3.14159265358;
epsilon = 1e-7;
Q=[10 0 0;0 1 0;0 0 1];R=[20];%LQR parameters
x=sym('x',[3 1]);%variables
u=sym('u',[1 1]);
Nx=length(x);
x_bar=sym('x_',[Nx,1]);
x_=x_bar;
%the dynamics of the system
f_original = [ -cos(u)+sin(x(3))+1 ; 
               sin(u)+sin(x(1));
               exp(x(2))+u-1];
eq_x=[0.0;0.0;0.0]; eq_u=[0.0];%equalibrium point
[A_l, B_l] = linearization(f_original...
    , x, u, eq_x, eq_u);%linearization around the equalibrium point
N=zeros(3,1);
%solving algebraic Riccati equation
[K, S, ~] = lqr(A_l, B_l, Q, R);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%stage 2_finite time horizon LQR design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load('importing your reference trajectory here')
t = soln.grid.time;%ref trajectory's simulating t_{f}
%S_{stage1}
S0=[20.3206,   10.1431,   14.4684;
   10.1431,   10.4979,    9.7904;
   14.4684,    9.7904,   14.6787];
nTime=200;%the number of intervals
tSol=linspace(0,t(end),nTime);
ttSol=fliplr(tSol);
%solving the Riccati equation
[T S] = ode45(@(t,S)Riccartieqn(t, S), ttSol, S0);
T=flipud(T);
S=flipud(S);
Ns = sqrt(size(S, 2));
t_temp = T.';
X_data = soln.interp.state(t_temp);%ref trajectory's states
x1=z_data(1, :);x2=z_data(2, :);x3=z_data(3, :);
u_data = soln.interp.control(t_temp);%ref trajectory's control inputs
%linearization around the reference trajectory
f_Bt([xt;ut]) = B_t;
val_B = f_Bt(x1,x2,x3, u_data);
f_At([xt;ut]) = A_t;
val_A = f_At(x1,x2,x3, u_data);
B_mat = zeros(length(t_temp), 3);
for i=1:length(t_temp)
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    B_mat(i, 1) = double(val_B{1}(i));
    B_mat(i, 2) = double(val_B{2}(i));
    B_mat(i, 3) = double(val_B{3}(i));
end
A_mat = zeros(size(val_A, 1), size(val_A, 2), length(t_temp));
for i=1:length(t_temp)
    for j = 1:size(val_A, 1)
        for k = 1:size(val_A, 2)
            A_mat(j, k, i) = double(val_A{j, k}(i));
        end
    end
end
%feedback control gains
K_t = zeros(length(t_temp), 3);
for i=1:length(t_temp)
    K_t(i, :) =  (1/R).* (B_mat(i, :) * reshape(S(i, :), [3 3]));
end
for i=1:5%the number of simulating potential trajectories
csize=0.3;%the random region
plot3(0,0,0,'bo','MarkerSize',7,'LineWidth',3)
hold on
X_init=[x1(1)+csize*(2*rand(1)-1),x2(1)...
    +csize*(2*rand(1)-1),x3(1)+csize*(2*rand(1)-1)];%random initial state
plot3(x1,x2,x3,'b')%reference trajectory
xlabel('x1') ylabel('x2') zlabel('x3')
grid on
syms xx yy zz %variables
%linear interpolating
Ref=soln.interp.state(tSol);
x1_Ref=Ref(1,:);x2_Ref=Ref(2,:);x3_Ref=Ref(2,:);
uRef=soln.interp.control(tSol);
xFit=polyfit(tSol,x1_Ref,10);
yFit=polyfit(tSol,x2_Ref,10);
zFit=polyfit(tSol,x3_Ref,10);
uFit=polyfit(tSol,uRef,10);
Kx=K_t(:,1);Kx=Kx';Ky=K_t(:,2);Ky=Ky';Kz=K_t(:,3);Kz=Kz';
KxFit=polyfit(tSol,Kx,10);
KyFit=polyfit(tSol,Ky,10);
KzFit=polyfit(tSol,Kz,10);
controller = @(t,X) feedbackcontroller(t,X(1,:),X(2,:),X(3,:) ...
    ,xFit,yFit,zFit,uFit,KxFit,KyFit,KzFit);%feedback controller
Func = @(t,X)3dnonlinear(t,z,controller(t,X)); %leading-in the system
[~, x_real] = ode45(Func,[0,t(length(t))],X_init);%potential trajectory
plot3(x_real(:,1),x_real(:,2),x_real(:,3),'r-')
end
 



Appendix B

Some Supplements about
Abstraction-based Control Design

The following algorithm is the Pseudo-code of synthesizing the controller for the abstract
control system S2 with reachability specification.

Figure B.1: The flow of the concrete control problem (left), including the refinement step of
transferring the abstract controller to the concrete controller for the cyber-physical system;
the flow of the abstract control problem (right) from [32].
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Algorithm 5: Synthesizing the reachability specification for the finite system

1 Given S2 = (X2, U2, F2), Z2 ⊆ X̄2, u0 ∈ U2;
2 Q := Z2;
3 V :=∞;
4 M := 0;
5 E := ∅;
6 for x2 ∈ X̄2 do
7 D(x2) := ∅;
8 if x2 ∈ Z2 then
9 V (x2) := 0;

10 D(x2) := {u0};
11 while Q 6= ∅ do
12 x′2 :∈ Q;
13 Q := Q\{x′2};
14 E := E ∪ {x′2};
15 for (x2, u) ∈ F−12 (x′2) do
16 M(x2, u) := max{M(x2, u), V (x′2)};
17 if F2(x2, u) ⊆ E and V (x2) > 1 +M(x2, u) then
18 V (x2) := 1 +M(x2, u);
19 Q := Q ∪ {x2};
20 D(x2) := {u};
21 Then outputs are D and V .
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