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Motivation

• In the study of Systems Biology it is necessary to simulate cellular processes
and chemical reactions that comprise biochemical systems. This is achieved
through a range of mathematical modelling approaches.

• Standard methods use deterministic differential equations, but because many
biological processes are inherently probabilistic, stochastic models must be
used to capture the random fluctuations observed in these systems.

• The presence of noise in a system can be a significant factor in determining
its behavior. The Chemical Master Equation is a valuable stochastic model
of biochemical kinetics.

•One critical tool in the study of biochemical systems is sensitivity analysis,
which aims to quantify the dependence of a system’s dynamics on model
parameters. A number of approaches to sensitivity analysis of these models
have been developed.

•We provide a comparison of several methodologies and introduce a strategy
based on tau-leaping. We identify which approach is most efficient depend-
ing of the features of the model. This result can serve as a guide to efficient
sensitivity analysis, which can serve as a foundation for the formulation,
characterization, and verification of models.

Modelling Assumptions

•A well-mixed isothermal system of chemical reactions is confined to a con-
stant volume Ω.

• The chemical species are [S1, S2, ..., SN ], where N ≥ 1 is the number of
molecular species in the system.

• The chemical species are subject to the reaction channels [R1, ..., RM ], where
M ≥ 1 is the number of different reactions in the system. Assume that the
reactions are instantaneous events.

•At time t, the system state is described by the vector X(t) =
(x1(t), x2(t), ...xN (t))T , where xi(t) is the number of molecules of species
Si at time t. X(t) is a Markov process.

•A reaction channel Rj can be characterized by:

– The propensity function aj(x), defined as aj(x)dt = the probability that
a single reaction Rj occurs in the infinitesimal time interval [t, t + dt), if
at time t, X(t) = x.

– The state change vector νj, which describes the change in the molecu-
lar populations when reaction Rj occurs. Thus, if one reaction Rj fires
over the time interval [t, t + dt], then the state of the system at time
t + dt is X(t + dt) = x + νj, provided that X(t) = x. We denote

νj = [ν1j, ν2j, ..., νNj]
T , where νij is the change in the molecular abun-

dance of Si when reaction Rj occurs. The matrix v = (νij)1≤i≤N,1≤j≤M
is the stoichiometric matrix.

Mathematical Models of Chemical Kinetics

Chemical Master Equation: The behaviour of a well-mixed isothermal
biochemical system is governed by the Chemical Master Equation, a stochastic
discrete model. Define P (x, t|x0, t0) to be the probability of the system to be
in state x at time t, X(t) = x, given that initially X(t0) = x0.
The Chemical Master Equation (CME):

dP (x, t)

dt
=

M∑
j=1

[aj(x− νj)P (x− νj, t)− aj(x)P (x, t)].

Reaction Rate Equation(RRE)

•Very near the thermodynamic limit, the dynamics of the well-stirred bio-
chemical system may be modelled using the reaction rate equations, a con-
tinuous deterministic model.
The reaction rate equations (RRE):

dX(t)

dt
=

M∑
j=1

νjaj(X(t))

Gillespie’s Algorithm

•With the system in state x at time t, evaluate asum(X(t)) :=∑M
k=1 ak(X(t))

•Generate two independent uniform (0, 1) random numbers, ξ1 and ξ2 and
compute j and τ according to

• j = the smallest integer satisfying
∑j
k=1 ak(X(t)) > ξ1asum(X(t)).

• τ = ln(1/ξ2)/asum(X(t)).

• Compute X(t + τ ) = X(t) + νj and update t to t + τ .

•Return to step 1.

Tau-leaping Method

• The tau-leaping method:

X(t + τ ) = X(t) +

M∑
j=1

νjPj(aj(X(t)), τ )

– It is valid if for all j = {1, . . .M}
aj(X(s)) ' constant for t ≤ s ≤ t + τ .

• The number of reactions Rj within [t, t + τ ] are approximated using the

independent Poisson random variables {Pj(aj(X(t)), τ )}Mj=1, having mean

and variances aj(X(t))τ , respectively.

• The tau-leaping algorithm with leap time τ can be summarized as:

• 1. Draw samples {pj}Mj=1 from the distributions of independent Poisson

random variables {Pj(aj(X(t)), τ )}Mj=1.

• 2. Set X(t + τ ) = X(t) +
∑M
j=1 νjPj and update t to t + τ .

• 3. Return to step 1.

RTC Algorithm

1. Initial Conditions, i = 0, T0 = 0, Sj = 0, kj = 1, X(T0) = x0, and I
j
+ = E

j
1

for j = 1, ...,M

2. begin loop

3. check break condition; break loop if met

4. find propensity function, aj(X(Tj)), for each reaction

5. compute ∆T , set j∗ to index of minimum found

6. set X(Ti+1) = X(Ti) + vj∗

7. for each reaction, update Sj = Sj + aj(X(Ti))(∆T )

8. set kj∗ = kj∗ + 1

9. set I
j∗

+ = I
j∗

+ + E
j∗

kj∗

10. set i = i + 1

11. end loop

Summary

CME/Gillespie discrete, stochastic

↓ aj(x) ' constant in [t, t + τ ),∀j

Tau-leaping discrete, stochastic

↓ aj(x)τ � 1,∀j

CLE continuous, stochastic

↓ thermodynamic limit

RRE continuous, deterministic

Sensitivity Analysis

• Sensitivity analysis describes how properties of the system change when vari-
ations are introduced into the model parameters.

•A model output has high sensitvity to model parameter if a small change in
the parameter results in a large change in the system output.

• Sensitivity analysis plays an important role in assessing the accuracy of a
model, in model development and in model reduction.

• Sensitivity analysis helps to make decisions on which parts of the model are
actively contributing to the system dynamics.

Monte Carlo Sensitivity Approaches

Infinitesimal Perturbation:

• Pathwise differentiation (PD)

Finite Perturbation:

• Independent samples:

– Independent random numbers (IRN) with SSA

• Correlated sample:

– Common random numbers (CRN) with SSA

– Common reaction Path (CRP) with RTC

– Coupled Leaping Sensitivity (CLS)

Common Random Numbers (CRN) Algorithm

1. begin loop over number of trajectories, N , for each i

2. generate large array of random numbers, r∗

3. choose system parameter, c0, and execute Gillespie’s algorithm for the nom-
inal system, X(T, c0), using array of random numbers, r∗j

4. set parameter to c0 + h, and execute Gillespie’s algorithm, calculating for
perturbed system, X(T, c0 + h), using the same array of random numbers,
r∗j

5. find sensitivity by si = [f (X(T, c0 + h))− f (X(T, c0))]/h

6. end loop over i

7. find mean and standard deviation of {si, for i = 1, ..., N}

Common Reaction Path (CRP) Algorithm [5]

1. loop over number of trajectories, N , for each i

2. generate large array of random numbers, r∗j for each reaction

3. choose system parameter, c0, and execute RTC algorithm, calculating for
the nominal system, X(T, c0), using array of random numbers, r∗j

4. set parameter to c0 + h, and execute RTC algorithm, calculating for per-
turbed system, X(T, c0 + h), using the same array of random numbers, r∗j

5. find sensitivity by si = [f (X(T, c0 + h))− f (X(T, c0))]/h

6. end loop over i

7. find mean and standard deviation of {si, for 1, ..., N}

Coupled Leaping Sensitivity (CLS) Algorithm

1. loop over number of trajectories, N , for each i

2. choose system parameter, c0, and the perturbed parameter, c0 +h, and exe-
cute a leaping algorithm with tight coupling, calculating for nominal system,
X(T, c0), and for perturbed system, X(T, c0 + h)

3. find sensitivity by si = [f (X(T, c0 + h))− f (X(T, c0))]/h

4. end loop over i

5. find mean and standard deviation of {si, for i = 1, ..., N}

Numerical Results

Michaelis-Menten Model:

Ri Reaction Propensities Reaction rate

R1 S1 + S2
C1−→ S3 a1 = C1X1X2 C1 = 1.661× 10−3

R2 S3
C2−→ S1 + S2 a2 = C2X3 C2 = 10−4

R3 S3
C3−→ S4 + S2 a3 = C3X3 C3 = 0.1000
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Figure 1: The Michaelis-Menten model: the comparisons for the different sen-
sitivity methods with perturbation parameter h = 5 × 10−5, using 10, 000
trajectories, on the interval [0, 10] (species S1) .

Birth Death Model:

Ri Reaction Propensities Reaction rate

R1 �
C1−→ X a1(x) = C1 C1 = 2.5

R2 X
C2−→ � a2(x) = C2X C2 = 0.1
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Figure 2: The Birth Death Model: the comparisons for the different sensitivity
methods with perturbation parameter h = 5×10−5, using 50, 000 trajectories,
on the interval [0, 10] (species X)

Schlogl Model:

Ri Reaction Propensities Reaction rate

R1 A + 2X
C1−→ 3X a1 = C1AX(X − 1)/2 C1 = 3× 10−7

R2 3X
C2−→ A + 2X a2 = C2X(X − 1)(X − 2)/6 C2 = 10−4

R3 B
C3−→ X a3 = C3B C3 = 10−3

R4 X
C4−→ B a4 = C4X C4 = 3.5
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Figure 3: The Schlogl Model: the comparisons for the different sensitivity
methods with perturbation parameter h = 5× 10−9, using 5, 000 trajectories,
on the interval [0, 5] (species X).

Remark The leaping sensitivity method is 25 times faster than the CRP and
5 times faster than the CRN for the Schlogl model. It is also more accurate
than CRP and CRN.

Discussion

•We discussed several sensitivity analysis strategies for the stochastic discrete
model of well-stirred biochemical kinetics, the Chemical Master Equation,
and introduced a strategy for approximating sensitivities based on a leaping
method.

• The methods presented employ finite difference estimators to approximate
sensitivities.

• The leaping based strategy uses coupling between the nominal and the per-
turbed processes to reduce the variance, which may lead to a reduced com-
putational cost of the algorithm, for a similar accuracy.

• This result can serve as a guide to efficient sensitivity analysis, which can
serve as a foundation for the formulation, characterization, and verification
of models.
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