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1 Introduction

Complex systems such as global climate models require large computational resources
to run simulations of the physical systems they model. Generally these models take input
parameters xj, j = 1, 2, ..., d, to produce responses, or output variables y = f(x). Varying
the input parameters to test the response of the output variables can be a feasible approach
for certain problems, depending on how much computation time is needed to complete the
experiments. Understanding the relationships between the input parameters of the model
and the output variables can be difficult to discern analytically due to the highly complex
mathematical form of the system. Where the computation time required is is not feasible, a
simpler statistical model, called a meta-model, can be used as an approximation to predict
variable responses for a large number of input parameter combinations. These statistical
models can in tern be used to determine which input parameters have significant impacts on
which output variables. Generalized linear models (GLMs) are commonly used for this task
largely due to their simplicity. Previous work such as [22] employs a GLM, specifically a mul-
tiple linear regression (MLR), and variance-based sensitivity analysis to determine influential
input parameters on top of atmosphere net radiative fluxes in the Community Atmosphere
Model 5 (CAM5). Similarly, [17] uses this method to assess the influence of parameters
on quantitative cloud and aerosol processes in CAM5. The employed GLM method usually
assumes an appropriate approximation to be a function of a linear combination of input pa-
rameters and their interactions, which may introduce biases in the estimation of parameter
importance. An alternative method is to use nonlinear models and the importance measure
suggested in [9]:

V̂ Ij = 1−
ˆV ar[E[f̂(x|x−j)]]

ˆV ar(f̂(x))
(1)

for parameter j1. The drawback of this approach is the need to employ Monte Carlo (MC) or
quasi-Monte Carlo (QMC) sampling to estimate the expected values and variances. In (4),
f̂(·) is the meta-model of f(·). In the case of climate models, usually many output variables
are of interest, which means assessing parameter importance for M variables requires d×M
values of V Ij. The computational costs can be quite high as a result. The paper also
considers a step-wise approach where f(x) is evaluated by adding a parameter xj at each
step, but this also may not be ideal since complex relationships between parameters may
result in importance biases with this approach as well.

The first part of this paper suggests the use of the random forest (RF) permutation
importance measure to be applied to this type of problem for climate models. This avoids
much of the computational costs and provides unbiased estimates of parameter importance.
The second goal of this paper is to outline a process for constraining parameter uncertainty
ranges for a given global climate profile. For a given vector y of climate model output
variables, which could contain, for example, global mean temperature, radiative fluxes, high
cloud percentage etc., there may be many combinations of input parameters x which produce
a similar climate profile to y. Determining these plausible ranges of x involves sampling this
parameter space extensively and finding which values of x produce a climate similar to that
described by y. Evaluating f(x) for each x is not computationally feasible and instead a

1The −j denotes all components of x excluding component j
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meta-model f̂(x) is used to estimate climate model output values. Proposed here is the
use of ε-Support Vector Regression (ε-SV) model for f̂(·). The method is compared to MLR
models which are commonly employed as f̂(x) in climate related literature. Due to the highly
non linear relationships between the input parameters and the output variables in climate
models, ε-SV models should provide much better meta-models than the MLR method. In
a related study [16], the ε-SV model is shown to over-fit on the training data when used to
forecast northern polar stratospheric variability and the author recommends using MLR for
forecasting. It is however noted by the author that the range of tuning parameters explored
for ε-SV may not have been optimal. In this paper, a wider range of parameters are explored
and chosen using 80−20 MC cross validation. The mean squared error (MSE) of the optimal
models are compared with the MSE of a MLR model with variable selection. Results indicate
that ε-SV is better adapted to be used as f̂(·) compared to MLR.

The RF, MLR and ε-SV models are applied to data obtained from 350 ensemble CAM4
runs. Parameters related to black carbon (BC) and sulfate (SO4) aerosols are perturbed in
order to assess their impact on 14 output variables describing the climate profile. In current
GCMs, typical resolutions of the atmosphere component are about 100 to 200km in the
horizontal and 100 to 1000m in the vertical. As such, small scale interactions such as aerosol
radiative forcing, microphysics and impacts on cloud formation -which have large variability
within these grid boxes- must all be parameterized to be included in the models. Including
these effects in GCMs is important as they affect many aspects of the model’s simulation
including Hadley circulation, precipitation patterns, and tropical variability. Unfortunately
these affects are not well understood and are a large source of uncertainty in GCMs. The
aerosol BC which is emitted from combustion of fossil fuels, biofuels and biomass, has large
mass absorption in the shortwave causing warming in the adjacent atmosphere. SO4 can in-
crease this absorption when deposited on BC, hence modeling their interactions is important
to consider. BC can also act as a cloud condensation nuclei (CCN), meaning water droplets
can condense on the particulate causing an increase in cloud formation which can in turn
cause cooling by reflecting sunlight. Aerosols such as BC and SO4 have short lifespans in
the troposphere -about one week- but through their affect on radiative absorption and cloud
formation, can have a large impact on the climate. For more information on BC aerosol
modeling and it’s climate impacts, the reader is refereed to [11] and [1] respectively.

Comparisons between observational data and models shows that models tend to under-
estimate BC mass concentrations. In order to address this, this paper applies the ε-SV model
as mentioned above to estimate CAM4 climate profiles for 220 parameter combinations. The
predictions are compared to find the parameter combinations which produce a climate profile
closest to the default CAM4. The default CAM4 is used since it has been extensively tested
and compared to observations to be considered an accurate model of the current climate. We
expect that the ranges obtained from the parameter combinations which produce climates
similar to the default CAM4 could serve as estimates for the actual distribution and physical
properties of BC and SO4 in the atmosphere.

The layout of this paper consist of an outline of the model data and statistical methods
in section 2. The section starts with a somewhat detailed explanation and derivations for
the techniques as well as comparisons to other methods used in climate sensitivity analysis.
Also, a step by step overview is outlined for determining plausible parameter ranges. Lastly,
the section describes how model selection was performed and provides descriptions of the
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input parameters and output variables. Section 3 contains the results of the methods as
applied to 350 CAM4 experiments with perturbed parameter input values related to BC and
SO4. The first part of the section outlines results with regards to parameter importance
while the latter part provides results related to constraining uncertainty ranges for these
parameters in CAM4.

2 Data and Methods

The gathered data comes from an ensemble of CAM4 runs of 350 cases constituting
350 parameter combinations. A total of 9 parameters were considered relating to BC and
SO4 concentrations and distributions in the atmosphere, including those related to cloud
formation. The latter were considered since aerosols such as BC and SO4 can have indirect
effects on cloud formation, yet these effects are not currently well modeled in GCMs. These
two aerosols can have indirect effects on a climate system such as acting to reduce cloud
fraction as well as act as cloud condensation nuclei. Varying parameters relating to these
indirect effects means we can account for changes in cloud formation. Compared are output
values of 14 variables concerning radiative fluxes, precipitation and cloud distribution.

2.1 Parameter Importance

A very versatile yet simple method for determining feature importance for statistical
modeling is to employ random forests. The RF method has become increasingly popular in
the sciences for its ability to model highly complex interactions and deal with highly corre-
lated predictor variables. When using the method for model building, few assumptions are
made about functional form or data types and indeed, this is one of the large benefits of RF.
On the other hand, when using RF for determining variable importance, major biases may
result and hence care should be taken when using this method. High correlation of predictor
variables may produce unreliable results when determining the importance of these variables
[20]. Also, when predictor variables are of different types, i.e. categorical an continuous, or
the categorical variables have differing numbers of classes, variable importance may again
be unreliable [6]. These problems can be overcome and methods are outlined in the two
previous papers. For the work in this paper, the predictor variables (input parameters of the
model) are all continuous and independent so the importance results can be seen as reliable.
A quick outline of RF is given as well as its application to variable importance.

Decision Trees

The general concept of decision trees can be applied to both regression and classification
problems, the former will be the focus going forward in this paper. An example is given
in figure 1 with two predictor variables x1 and x2. First assume the tree is given and the
goal is to predict the value for an observation with predication variable values x1 = 5.4 and
x2 = 1.1. Since x1 ≥ 5, move down the right branch, and so on for x2 and x1 again, the
predicted response value is at the leaf or node labeled 1.5. These split points partition the
x1, x2 plane into rectangles, which assign a value to each region.
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Figure 1: Left: Example decision tree. Right: Feature space partitioned by the decision tree.

To construct a tree, consider the training observations denoted as {yi, xi} ∈ IR × IRd,
i = 1, 2, ..., N . The goal is to partition IRd and assign the prediction value to be the average
of the response variables whose predictors are located in the partitioned region. To illustrate
what this means, suppose in the previous example, only two training observations lye in
the left most region in figure 1 and have values {3.4, 2, 5} and {3.0, 1, 3.5}. If we have an
observation with xi1 = 2, xi2 = 8 the predicted value would be yi = 3.2. For regression
trees, the aim is to find the partition of the space which produces the lowest sum of squared
residuals (RSS) over the training data. There are clearly many ways the space can be
partitioned and comparing all possible combinations is not computationally feasible. Instead,
a recursive binary splitting approach is applied where at each level in the tree, the partition
is split into two boxes R1(j, s) = {xi|xij < s} and R1(j, s) = {xi|xij ≥ s} for s ∈ IR. In the
two dimensional example, the first step has j = 1 since the split is done on the first predictor,
and s = 5 since this is the value found to be optimal to split on. The boxes R1(1, 5) and
R2(1, 5) are the left and right halves of the plane at x1 = 5 respectively. So at each step we
seek the values of j and s which minimize:∑

i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 (2)

The number of steps depends on a tuning parameter fixing the number of training observa-
tions per leaf. The algorithm can be executed efficiently, but may not be the most optimal
solution since the optimization is performed separately at each node instead of simultane-
ously minimizing the RSS across all predictors. Though decision trees are very interpretable,
they do not by themselves prove to be very good models in real life situations. Instead, boot-
strapping is applied across an ensemble of trees which produces the RF algorithm.

Random Forest

Decision trees suffer from high variance, meaning that splitting the data into different test
and training sets can produce very different results. Bootstrapping works exceptionally
well in reducing the variance of predictions when applied to decision trees. Samples are
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randomly drawn from the data with replacement to create B bootstrapped samples. This
is demonstrated in figure 2 with 3 bootstrapped samples of N = 6 observations. A decision
tree is trained over each bootstrapped sample to produce B trees.

Figure 2: Three bootstrap samples of an original sample of size six.

Denote the bth tree as fb(x) for b = 1, 2, ..., B. The predicted value of the response is
simply the average predicted values over the B trees. Hence the variance of the prediction
is σ2/B where σ2 is the variance of the individual trees. Further, it can be shown [13] that
the variance of the prediction across B trees can be decomposed as follows:

V ar

(
1

B

B∑
b=1

fb(x)

)
= ρσ2 + σ2 1− ρ

B
(3)

where ρ is the correlation between trees. For large enough B, the second term in (3) is
insignificant, while the first term can be reduced by reducing ρ. To achieve a low correlation
between trees, at each split in a tree, a random2 subset of p predictors are chosen out of the
total d predictors. The predictor to be split on is chosen from this subset instead of all avail-
able predictors. This is repeated at each split, usually until each leaf has a predetermined
number of training values.

Permutation Importance

The Random Forest algorithm inherently produces an easy way to measure variable impor-
tance. Referring to figure 2, the last bootstrapped sample does not contain the case (7, 4),
while the first two samples do. On average, about one third of the bootstrapped samples
will not contain a particular observation, these are the out of bag (OOB) samples. This is
clear since the probability of a particular bootstrapped sample not containing a particular
observation (yi, xi) is (1− 1/N)N where N is the total number of observations. For large N ,
say > 20 , (1−1/N)N ≈ e−1 which is about 1/3. As a result, splitting the data into training
and test samples is not required. Instead, for all trees fb(x), b = 1, 2, ..., B, we take all OOB
cases for tree b and produce a prediction using fb(x) and then calculate the MSE.

2This paper uses the word random but it should be understood that pseudo-random is meant when
referring to numbers generated by computer algorithms.
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OOB samples can be used further for determining variable importance by way of the
permutation importance measure. The idea is that by randomly permuting the predictor
variable xj for all samples i = 1, 2, ..., N , it should no longer be useful in estimating the
response y. If the procedure for calculating the MSE is again repeated with this permuted
set, then the MSE should rise substantially if xj is an important predictor. The average
increase in MSE over all B trees is taken and scaled by the standard deviation of this
difference in MSE, denoted σj, to produce a measure of importance for predictor j. By
default the randomForest package [3] in R outputs the scaled variable importance which is
convenient for plotting and other visualization. On the other hand, [6] shows that using the
scaled importance for the purposes of statistical testing should not be done. Instead setting
’scale = FALSE’ to produce the raw importance scores will allow for reliable statistical
testing of significance. Using the RF permutation importance algorithm has been shown to
be unbiased when the predictors are continuous [6] and uncorrelated [13], as is the case for
the parameters considered in this paper. This RF algorithm does not assume a linear model
and is able to better model complex relationships between GCM model inputs and outputs,
and provide a more reliable measure of parameter importance.

Let the set containing all OOB cases for tree b be denoted as Ωb, |Ωb| be the number
of cases in Ωb and xiπj be observation i after permuting predictor j across all observations.
Then the raw variable importance V Ij for predictor j is calculated as:

V Ij =
1

B

B∑
b=1

[∑
i∈Ωb

[(yi − f(xiπj))− (yi − f(xi))]

|Ωb|

]
(4)

V Ij is a random variable even for a fixed sample since the bootstrapped samples as well as
the choice of subset to split at each branch is random. From (4), the null hypothesis that
variable j is unimportant as a predictor of the response variable can be stated as:

V Ij
a.s.∼ N(0,

σ2
j

B
) (5)

by the Central Limit Theorem. A simple z-test can be used to determine significance levels. A
main advantage of the random forest permutation importance measure is that as compared
to univariate importance methods, the permutation test accounts for the impact of the
predictor both individually as well as in multivariate interactions.
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Figure 3: Comparison of GLM (MLR) and RF importance predictions for global mean LWCF
difference between perturbed and default CAM4

For example, using the data in this paper, the RF permutation method identified some
predictors as important which were not identified in an ANOVA analysis of a recursively fitted
GLM. Figure 3 compares importance results for global mean LWCF difference (perturbed-
default). The RF algorithm is seen to identify different parameters compared to the MLR
method. The non-normal distribution of the residuals shows that a linear model is not
optimal. Indeed RF is likely the correct importance measure since no assumptions of linearity
are made, and the predictors are uncorrelated and continuous. The MLR method has clear
limitations in measuring importance and so the RF permutation algorithm is used here.

2.2 Quasi-Monte Carlo Sampling

In order to efficiently sample the parameter space, a natural method to employ is QMC
or low discrepancy points. Intuitively, by discrepancy what is meant is the size of the
gaps left between sampling points in the sampling space. The goal is to distribute the
sampled points along the d-dimensional unit hypercube [0, 1)d as uniformly as possible and
in a computationally efficient way. Note that these points can be scaled to fit any desired
interval. More formally, discrepancy is defined as [7]:

D(A,N) =

∣∣∣∣#{xi ∈ A}N
− vol(A)

∣∣∣∣
where A ⊆ [0, 1)d is a box, #{xi ∈ A} is the number of sample points contained in A and
vol(A) is the volume of A. As an example, Figure 4 is an arbitrary sample of 8 points in a
2 dimensional space where D(A, 8) = 4/8− 1/2 = 0.
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Figure 4: Measuring discrepancy for a sample of 8 points in a 2D space.

The discrepancy is dependent on the choice of A and the worst case discrepancy is
defined as:

D∗(N) = sup
A
|D(A,N)| (6)

called star discrepancy. Star discrepancy can be seen as a metric for a how well distributed
a set of points are in high dimensional space. It can be shown that a simple grid sampling
technique using the Cartesian product along d dimensions is usually not ideal for low dis-
crepancy sampling. Large rectangular gaps are created and points overlap when projected
into lower dimensions, meaning some sampled points are essentially wasted. The three di-
mensional Cartesian product of 23 points in Figure 5 shows the sampled points are separated
onto planes by this method. Their projection onto any two dimensional subspace produces
only 26 unique points as seen in Figure 6.

Figure 5: Cartesian product of 23 points in 3D space

If for example, along each dimension, 2k points are sampled, the Cartesian product
produces N = 2kd grid points. Adding a single parameter to the space increases the number
of required sampling points by a factor of 2k. For a large number of dimensions in the
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parameter space, this can quickly drain computational resources and become impossible to
sample sufficiently.

Other methods such as MC or pseudo-random sampling and Latin Hypercube (LHS)
techniques are shown to have higher discrepancy for large N as compared to QMC [14].
Referring to Figure 6, the four sampling techniques are demonstrated in two dimensions.

Figure 6: Sampling methods in 2D space. Left to Right: quasi-Monte Carlo, Cartesian
Product, Pseudo-Random Numbers, Latin Hypercube.

Since QMC sampling refers to any deterministic sampling of points, there are many
methods for generating samples. This paper uses the Sobol sequence to generate these points
since this is what is used in [14], which provides a comparison of the sampling methods. The
MC and LHS generated points tend to cause clumping and large gaps in the space in Figure
6. The QMC method on the other hand generates a better distribution and also does well
when extended to higher dimensions.

2.3 Support Vector Regression

To predict the output variables from ensemble runs of the chosen climate models, an ε-
SV regression model is trained on values obtained from 350 runs of CAM4. The ε-SV method
in [21] is adapted from the Support Vector Machine classifier first introduced in 1992 [2].
For a given set of training data of size N given by {(y1, x1)T , (y2, x2)T , ..., (yN , xN)T} where
(yi, xi)

T ∈ IR × IRn, the aim is to define a function y = f(x) which estimates the training
response values within an error of at most ε > 0 for all training values. To illustrate the
method, the linear case

f(x) = βTx+ βo (7)

is considered, followed by the generalization to the non-linear case. The restriction of the
error being at most ε implies |yi−βTxi−βo| ≤ ε for i = 1, 2, ..., N . Note that for a given ε, it
is not guaranteed that there exists such a function satisfying the error constraint. To allow
for some observations to have error greater than ε and hence guarantee a solution, introduce
a convex loss functions Lεi. In the case of ε-SV, the loss function is given by:

Lεi(β, βo) =

{
0, |yi − βTxi − βo| ≤ ε

|yi − βTxi − βo| − ε, |yi − βTxi − βo| > ε

The function is convex since it is the composition of a convex function:
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with an affine function (yi−βTxi−βo). Lεi corresponds to the amount by which the training
observation xi is outside of the tube of width 2ε around f(x). Figure 7 depicts this visually
on a one dimensional feature space with ξ denoting the value of the loss function for the
observation with error greater than ε.

Figure 7: ε-SV with a single feature and one observation error exceeding ε by ξ.

Optimization

In this section, derivations of the ε−SV method are based on those in [2], [8], [18] and
[21]. This paper provides justifications and explications for each step beyond what is given
in the above sources. Sources for these ’filled in’ gaps can be found in standard texts on
optimization.

Note that a function given by (7), which satisfies the given error constraint with the
ε-intensive loss function, need not be unique. A desirable property of (7) which can be
imposed is to minimize ||β||. If x is drawn i.i.d., then by minimizing ||β||, the variance of the
predictions from (7) is clearly minimized. In other words, given the choice between functions
satisfying the above constraints, preference is given to the one which is less sensitive to noise
in the data, i.e. perturbing the feature space slightly should lead to an as small as possible
change in the predicted value. Finally, the notation used in [21], which will be used here, is
to represent the ε-intensive loss function in terms of the variables ξi, ξ

∗
i , denoting the amount

of slack given above and below the tube to observation i respectively. This optimization
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problem can be stated as

minimize F(β, ξ, ξ∗) =
1

2
||β||2 + C

N∑
i=1

(ξi + ξ∗i )

subject to


yi − βTxi − βo ≤ ε+ ξi

βTxi + βo − yi ≤ ε+ ξ∗i
ξi, ξ

(∗)
i ≥ 0

(8)

where C is a constant parameter which controls how harshly errors impact the minimization
of the objective function. For instance, larger values of C imply larger penalties for residuals
greater than ε and the scheme therefore produces a steeper (less flat) function. The opti-
mization problem (8) is convex (since F and the constraints are the sum of convex functions
in β and βo) and hence can be efficiently solved. The Lagrangian of (8) is given by:

L =
1

2
||β||2 + C

N∑
i=1

(ξi + ξ∗i ) +
N∑
i=1

λi(yi − βTxi − βo − ε− ξi)

+
N∑
i=1

λ∗i (β
Txi + βo − yi − ε− ξ∗i ) +

N∑
i=1

(νiξi + ν∗i ξ
∗
i )

(9)

where λ(∗) (λ(∗) = λ, λ∗) and ν(∗) and the Lagrange multipliers. In most cases, to solve (8) it
is more efficient to formulate the problem in terms of the dual problem. The dual function
is defined as the infimum of the Lagrangian over the feasible β, βo and ξ(∗):

G(λ(∗), ν(∗)) = inf
β,βo,ξ(∗)

(L(β, βo, ξ
(∗), λ

(∗)
i , ν

(∗)
i )) (10)

This leads to the standard dual problem:

maximize G(λ(∗), ν(∗))

subject to λ
(∗)
i , ν

(∗)
i ≥ 0

(11)

Since we require the Lagrange value to be positive by (11), (9) is a linear combination of
convex function, and hence convex under this constraint. It follows that a sufficient condition
for finding (10) is to set ∇L = 0. The result of this calculation yields:

∂βoL =
N∑
i=1

(λi − λ∗i ) = 0 (12)

∂βL = β −
N∑
i=1

(λi − λ∗i )xi = 0 (13)

∂
ξ
(∗)
i
L = C − λ(∗)

i − ν
(∗)
i = 0 (14)
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Plugging (12),(13) and (14) into (9), the ξ
(∗)
i are canceled and βo drops from the equation

due to (12). From (14), since λ
(∗)
i and ν

(∗)
i are non negative, this implies the constraint

0 ≤ λ
(∗)
i ≤ C. The dual problem is hence given by:

maximize G(λ(∗)) = −1

2

N∑
i,j=1

(λi − λ∗i )(λj − λ∗j)xTi xj − ε
N∑
i=1

(λi + λ∗i ) +
N∑
i=1

yi(λi − λ∗i )

subject to


0 ≤ λ

(∗)
i ≤ C

N∑
i=1

(λi − λ∗i ) = 0

(15)

More generally, minimizing a differentiable F(z) with respect to constraints fi(z) ≤ 0 for
i = 1, 2, ...n and denoting its dual by G(λ), it is clear that G(λ) ≤ F(z) for any feasible z
and λ since:

G(λ) = inf
z
L (z, λ) = inf

z
(F(z) +

n∑
i=1

λifi(z)) ≤ (F(z) +
n∑
i=1

λifi(z)) (16)

Since λifi(z) ≤ 0, G(λ) is a lower bound for F(z), in particular for optimal z̃ and λ̃:
G(λ̃) ≤ F(z̃). At the optimal values, to achieve equality G(λ̃) = F(z̃), i.e. a zero duality
gap, from (16) it is clear that we require λ̃ifi(z̃) = 0 ∀ i. The sufficient conditions derived
above, which produce a zero duality gap for a convex optimization problem, are generally
stated as the Karush-Kuhn-Tucker (KKN) conditions:

1) fi(z) ≤ 0 for i = 1, 2, ..., n
2) λi ≥ 0 for i = 1, 2, ..., n
3) λifi(z) = 0 for i = 1, 2, ..., n
4) ∇L(z, λ) = 0

It is also easy to see from (16) that if G(λ̃) = F(z̃) for feasible z̃ and λ̃, then λ̃ifi(z̃) = 0 for
all i.

In the ε−SV case it is required that:

λ
(∗)
i (yi − βTxi − βo − ε) = 0

ν
(∗)
i ξ

(∗)
i = 0

(17)

for all i. For the first condition in (17) either λ
(∗)
i = 0 or yi = βTxi +βo± ε, i.e. the response

variable yi is on the boundary of the envelope depicted in Figure 7. Substituting (13) into
(7):

f(x) =
N∑
i=1

(λi − λ∗i )xTi x+ βo (18)
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Since most λ
(∗)
i are zero, the final solution is a linear combination of training points in the

feature space which lye on the boundary of the margin, these are termed the support vectors.
In Figure 7 for example, there are three support vectors, one on the upper and two on the
lower margin boundary.

Substituting (14) into (17) implies (C−λ(∗)
i )ξ

(∗)
i = 0 for all i and in particular, λ

(∗)
i = C

for values outside of the tube around f(x). Therefore the constant βo can be found from a
constraint in (8):

βo = yi − βTxi + ε, 0 < λi < C

Kernels

The extension of (7) to the non linear case is accomplished by mapping the feature space to
a higher dimensional space through a non linear mapping: h(xi) : IRn → IRD where D ≥ N
and possibly D = ∞. The goal is to choose a map h(·) such that the relationship between
the features xi and response yi is close to linear. The high (possibly infinite) dimensionality
of the new feature space in IRD may seem computationally unfeasible, but by employing the
so called kernel trick, the problem can be solved efficiently. Before explaining this process,
first suppose the relationship between yi ∈ IR and xi ∈ IRn is best described by a 2nd degree

polynomial. The map h(x) : IRn → IR
n(n+3)

2 :

xi =


x1i

x2i
...
xni

 → h(xi) =



x1i

x2i
...

x1ix2i
...

xn−1ixni
x2

1i
...
x2
ni


(19)

transforms the feature space into one which is larger in dimension by a factor of (n + 3)/2.
More generally the dimension of the new feature space using a polynomial of degree d is

dim(h(x)) =
D∑
d=1

(
n
d

)
(20)

This type of transformation is typical in many algorithms in order to reduce the problem of
model fitting to a linear problem. It is clear that the dimension of the new feature space
increases rapidly with both n and D, increasing computation time. Instead, consider (18) in
the larger feature space for a general h(x):

f(x) =
N∑
i=1

(λi − λ∗i )h(xi)
Th(x) + βo (21)
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here the explicit form of h(x) is is not required, instead knowing the form of the dot product
h(xi)

Th(x) is sufficient. Denote K(u, v) = h(u)Th(v) the kernel of the transformation h(·).
In general, a kernel is a continuous real valued function such that K(u, v) = K(v, u). If also
K(u, v) is square integrable, then it can be expanded in the form:

K(u, v) =
∞∑
i=1

αiφi(u)Tφi(v) (22)

where αi and φ(·)i are eigenvalues and eigenfunctions of the integral operator:∫
K(u, v)φi(u)du = αiφi(v)

The kernel in (22) defines an inner product over some complete Hilbert space if αi ≥ 0 for
all i. This can be guaranteed by ensuring Mercer’s condition holds:∫ ∫

K(u, x)g(u)g(v)dudv > 0

for all square integrable g(·). Some examples of commonly used kernels which satisfy Mercer’s
condition are:

1) dth degree polynomial: K(u, v) = (1 + uTv)d

2) Radial basis: K(u, v) = exp(−γ||u− v||2)
3) Neural network: K(u, v) = tanh(c1u

Tv + c2)

The Radial kernel is an example of an inner product corresponding to an infinite dimensional
space. To see this, let u, v ∈ IRn and set n = 2 to simplify notation, but it is possible to
generalize the following results. Noting that:

−γ||u− v||2 = −γ
2∑
i=1

u2
i − γ

2∑
i=1

v2
i + 2γuTi vi

then taking the exponent and expanding the last term using the Taylor series gives:

exp(−γ||u− v||2) = exp(−γ
2∑
i=1

u2
i )exp(−γ

2∑
i=1

v2
i )
∞∑
k=0

2kγk

k!

(
uTi vi

)k
(23)

Hence (23) is an inner product on the map h(·) whose components are given by:

h(x) = exp(−γ
2∑
i=1

x2
i )(1,

√
21γ1

1!
x1,

√
21γ1

1!
x2,

√
22γ2

2!
x2

1,

√
22γ2

2!
x2

2,

√
22γ2

2!
2x1x2, ...)

T

So h(x) : IR2 → IR∞ and the radial kernel is the inner product of this mapping. Clearly
computing the inner product h(u)Th(v) explicitly is not possible, but using the exponential
representation it can be done with comparatively low computational cost. In the next section,
the radial kernel is used as it was found to work best through cross validation experiments.
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2.4 Implementation of Procedures

This paper essentially does two things: determine parameter importance for 14 CAM4
variables, and produce plausible bounds on parameter perturbation values for combinations
which produce similar climates to the default CAM4. The first is accomplished using RF
permutation importance algorithm. For this the randomForest package [3] was used in R.
First, 100,000 trees are trained on the same amount of bootstrapped samples on the 350 cases
ran on CAM4. This large amount of trees is required for determining variable importance
but not generally needed for prediction. The trees are fully grown, and splits are performed
on 3 variables for each branch. For regression trees with p predictors, p/3 are recommended
[8] to be used at each branch split. The RF permutation importance method gives a relative
measure of how important each parameter is in increasing the accuracy of predicting the
response variable values. Some parameters have importance measures close to zero, but
some are statistically significant.

The second goal of the paper is to reduce uncertainty ranges for the parameter values
above. A separate SVR model is trained on each of the variables using the 350 cases. The
radial kernel is used which has 3 tuning values: C, γ, and ε. The package e1071 [15] which is
used in this paper for SVR automatically scales the parameters and variables to mean zero
and unit variance. This means that value of ε -which controls the maximum size of allowable
prediction error without penalty- does not need to be chosen separately for each variable
and is left to the default of ε = 0.1. The other two tuning values are chosen using a grid
search method where every combination of C ∈ {2−5, 2−3, ..., 215} and γ ∈ {2−15, 2−13, ..., 23}
are used. These grid values are as recommended in [10]. To ensure robustness, a 80 − 20
Monte Carlo (MC) cross validation method is used over 10 samples (10 is used as a trade-off
between robustness and computation time). That is, for each grid point, the SVR is trained
on a random 80% sub-sample of the 350 cases and the remaining 20% is used as the test
sample. The average mean squared error (MSE) is taken, and the combination of γ and C
which produce the lowest average MSE are chosen.

QMC is used to sample the hypercube defined by the parameter ranges in table 1. As a
compromise between sampling the space with a sufficient resolution and computation time,
220 points are taken in the 9 dimensional space. The SVR models are used to predict the
values of the output variables, which are then ranked using a skill score. For the differences
in global mean values, we first normalize the absolute value of these differences from 0 to 1,
denoted mj, j = 1, 2, ..., 14. For each case, the 14 values from 0 to 1 are summed to produce
a number from 0 to 14:

M̄i =
14∑
j=1

mj, i = 1, 2, ..., 220

To bound this number from 0 to 1, divide by maxi(M̄i) to produce the skill score for the
mean difference of case i:

Mi = 1− M̄i

maxi(M̄i)

Here a value close to 1 means the SVR model predicts global mean values closer to the
default CAM4 for parameter combination i, when compared to skill scores closer to 0. A
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skill score for the global variances is created by taking the distance of the variance ratios
from 1, denoted vi. These are summed over the 14 variables to produce:

V̄i =
14∑
j=1

vj

To produce a value between 0 and 1 for each case i, this value is divided by the maximum
over all i denoted maxi(V̄i). The skill score for the variance is then:

Vi = 1− V̄i
maxi(V̄i)

Again, a value closer to 1 implies a spatial distribution which closer matches that of the
default, as compared to a value closer to 0. The skill score for the correlation, denoted Ci is
left unchanged since this value is already from 0 to 1, where values closer to 1 imply better
matching to the default. The final skill score, SSi, is the average of the three, producing a
number between 0 and 1. For important parameters (defined in the next section), bounds
can be determined by analyzing the ranges of these parameters for the cases producing the
highest skill scores. The technique for bounding parameter values for GCMs can be summa-
rized as follows:

1) Sample the parameter space using QMC.
2) Using the previous sampled values, run GCM experiments to obtain global means, vari-
ance correlation values.
3) Train SVR model for each variable using some form of cross validation method.
4) Obtain large sample of the parameter space using QMC.
5) Use SVR models to produce predicted values.
6) Rank the best combinations using a skill score to determine plausible parameter ranges.

Parameter and Variable Data

The 9 parameter values used are listed in table 1 with their description and sample ranges.
The values in these ranges are considered equally likely and are hence sampled uniformly.
The 350 combinations for the ensemble runs were chosen using LHS, but QMC would also
work.
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Table 1: Parameter Descriptions and Sampling Ranges

Label CAM4 Name Description Range

x1 x Fraction of sulfate mass that is hydrophilic 0 to 1

x2 gamma Spatial dist. of BC: 0-confined to land, 1-globally uniform. 0 to 1

x3 delta Scaling factor on total mass of BC. 0 to 40

x4 altitude Altitude dist. of BC. 0 to 39

x5 cldfrc rhminl Min. relative humidity for low stable cloud formation. 0.8 to 0.99

x6 cldopt rliqocean Liquid drop size over ocean. 8.4 to 19.6

x7 hkconv cmftau Time scale for consumption rate of shallow CAPE. 900 to 14,400

x8 cldfrc rhminh Min. relative humidity for high stable cloud formation. 0.65 to 0.85

x9 zmconv tau Time scale for consumption rate of deep CAPE. 1,800 to 28,800

The variables listed in table 2 constitute the output variables used as a measure of
model response to varying the input parameters.

Table 2: Variable Descriptions

Label CAM4 Name Description

1 FNET Net flux= shortwave - longwave.

2 QRS Shortwave heating rate.

3 QRL Longwave heating rate.

4 SWCF Shortwave cloud forcing.

5 LWCF Long wave cloud forcing.

6 CLDH Percent of high cloud.

7 CLDM Percent of medium cloud.

8 CLDL Percent of low cloud.

9 FSNT Net solar flux at TOA.

10 FLNT Net longwave flux at TOA.

11 SHFLX Surface sensible heat flux.

12 LHFLX Surface latent heat flux.

13 PRECT Tropical precipitation.

14 AEROD V Aerosol optical depth.

For the global mean values, the data is in the form of the ensemble mean of the difference
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between default and perturbed cases: perturbed-default. Variance data is a ratio given as
the ensemble mean of:

global mean variance of perturbed

global mean variance of default

Lastly, the correlation data is the ensemble mean of the global correlation between perturbed
and default cases. Naturally, a relative measure of how similar the perturbed and default
models are would be to compare which perturbed model outputs produce ensemble means
closest to zero and variance ratios and correlation values closest to 1 across all 14 variables.
This is quantified using a skill score descried in the next subsection.

3 Results

The techniques outlined in the preceding sections are implemented here to solve the
problem of parameter importance and for finding sets of parameter perturbation combina-
tions which produce climates models similar to the default CAM4. It is found that some
parameters may not impact climate output variables in all three areas of measure (global
means, variance and correlation). This underscores the need to conduct importance testing
of variables across all three measures in order to accurately determine the impact of input
model parameters on model output variables. To determine the set of viable parameter com-
binations which produce realistic climates (default CAM4), from the 220 combinations, the
top 1,000 which produce the skill score closest to 1 are used to narrow the range of realistic
parameter values. For the 220 predictions for each variable, the min, max and medians are
listed in table 6. In addition, for each variable, the significant parameters (95% confidence)
are listed. Since not all parameters have a large impact on the model output variables, for
some parameters, this paper was not able to decrease their uncertainty ranges. Nevertheless,
this section presents bounds on most parameter values which are narrower than previously
used in other work.

3.1 Parameter Importance Results

The global mean values are taken as the difference between the 350 ensemble runs and
the default model values over the 14 variables. The goal is to find the parameter combinations
which produce values as close to zero as possible across all 14 variables. The bar plots, figures
8, 9 and 10, depict the relative importance of of each parameter for all 14 variables. The
higher the proportion of V Ij the parameter accounts for, the more explanatory power it
has for variable j, while the total value of V Ij is not important on its own. In figure 8,
parameter x5 shows a significant impact on all 14 variables except 6 and 7. This is expected
since x5 relates to low cloud formation and variables 6 and 7 are the percentage of high and
medium cloud formation. This shows that there is no significant -in magnitude- indirect
effect of minimum relative humidity for low stable cloud formation on higher altitude clouds
in CAM4. Instead, variables 6 and 7 are mostly impacted by the minimum relative humidity
for high stable cloud formation parameter (x8). Variable 5 and 10 are also highly impacted
by x8 which is also expected since medium and high clouds readily absorb outgoing longwave
radiation.
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Figure 8: Parameter importance for mean values

Of the parameters directly related to BC (x2-x4), x3 is the only parameter which has
a significant impact on any global mean values. This parameter controls the total mass of
BC in the atmosphere and has a large measure of importance for variables 2 and 11-14. BC
is known to absorbs shortwave radiation and heat the surrounding atmosphere. Variables 2
and 11 describe this type of heating and hence should be impacted by x3. Similarly, variable
14, describing aerosol optical depth, is highly impacted by the perturbing of BC mass in
the atmosphere. In contrast to other aerosols which typically absorb more blue light than
red light, BC strongly absorbs light at all visible wavelengths. Hence BC acting as the
largest factor affecting global mean aerosol optical depth, relative to the other parameters
considered in this paper, is consistent with what is expected from what is known about BC.
Lastly, BC has a relativity large importance measure for variable 13, tropical precipitation.
Generally, studies have shown that atmospheric heating by BC can have significant impacts
causing global reductions in global precipitation. For more detailed information see [1] and
[12] for comprehensive reports on the global impacts of BC.

Figure 9 is a bar plot of the importance measures for the mean global variances of the
same 14 CAM4 model output variables. The variance ratio is a measure of how well the
global distributions of of the perturbed model matches that of the default CAM4. This is an
important measure since it is possible for example, for mean global high cloud percentages
to be the same for two climate profiles, but for the high clouds to be distributed much
differently in the two models.
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Figure 9: Parameter importance for variance values

In contrast to figure 8, parameter x2, the spatial distribution of BC has a relatively high
importance for some variables. The spatial distribution of BC affects variables 2, 11 and 14
in a relatively significant proportion. The distribution of BC affects where solar radiation
is absorbed and where the atmosphere is heated, hence the distribution of variable 2, the
shortwave heating rate, is also affected. Variable 11, the surface sensible heat flux, which
is the transfer of heat energy from the Earth’s surface to the atmosphere, is impacted by
whether BC is distributed mostly over the land or water since absorption and reflection rates
of solar radiation vary over these two surfaces. Finally, the aerosol optical depth, variable
14, also varies significantly depending on the BC distribution since BC greatly absorbs solar
light.

Measuring correlation is also an important metric for how similar the perturbed and
default CAM4 models are. This mean global correlation is used to determine whether the
global mean variances of the output variables are of the same sign more often or less often
across regions of the globe. In figure 10, with regards to the parameter affecting BC in the
atmosphere, again x2 and x3 are important for variables 2, 11 and 14. Parameter x9 has the
largest impact across all variables, even more so than for the global variances. It should be
noted that parameters x1 and x4 do not have an important impact on the mean, variance or
correlation values of any of the 14 variables. This was not an expected outcome and should
be explored further. They do however show a statistically significant impact on the variance
and correlation of some variables (see appendix).
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Figure 10: Parameter importance for correlation values

3.2 Plausible Ranges of Parameters

The 350 ensemble runs of CAM4 serve as the training sets for the ε-SV models of the 14
output variables. From the 220 parameter combinations, a predicted values for each variable
is given by the SVR model for the global mean, variance and correlation. Summary statistics
are given in tables 6, 7 and 8 in the appendix. This produces 3×14 ε-SV models which are
chosen by a parameter grid search for C and γ through MC cross validation. Using the skill
score, the top 1000 cases are ranked according to which combinations of parameter values
produce global means close to the default CAM4, variance ratios close to 1 and correlations
close to 1.

The histograms of the parameter values for these best 1000 cases are given in figure
11. For parameters x1,x2 and x4, the distribution is uniform across the entire range they
were sampled. This is an expected result for x1 and x4 since the permutation importance
method showed them to be unimportant features for any of the output variables. Their
uniform distribution also suggests that they are unimportant. For the parameter x2, the
permutation importance algorithm identifies the parameter as important for certain cases,
as an example, for the variance of variable 14. It is possible that for any value of x2, the
other parameters can be chosen in such a way as to offset its impact on the climate. This is
just one possibility and should be investigated further. An interesting result from figure 11
is the distribution of x3.
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Figure 11: Histogram plots of parameter ranges for top 1,000 parameter combinations with
highest skill scores.

It suggests that lower levels of BC mass are more likely to produce the current climate
profile in CAM4. This may give an estimate of the plausible amount of BC currently in the
atmosphere. Other parameter values show considerable reduction of the plausible ranges.
For example, parameter x5 takes on values from 0.8 to 0.94 in our CAM4 runs, but the top
1000 cases are restricted between about 0.84 to 0.94. The distribution of x8 may suggest that
the uncertainty range suggested in the literature may be too narrow, and values of x8 should
be taken below 0.65. The other parameters seems to be fairly normally distributed, but
their ranges are also constrained relative to the initial sampled values. Figure 11 provides a
range of plausible parameter values which can be used to run CAM4 simulations with aerosol
parameters. The next step in this research is to choose a sub sample of the 1000 parameter
combinations and actually run CAM4 to verify that the GCMs produce climates similar to
the default CAM4.
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4 Conclusion

The techniques outlined together could be used as a standard approach for bounding
parameter uncertainty ranges in GCMs. Currently, GLM is widely used in the literature [4],
[17], [22] to achieve measures of parameter importance. This paper suggests using the RF
permutation method over the other importance measures compared in this paper. We have
found that using ANOVA method with MLR can produce different results when compared
using RF for parameter importance. From [6] and [20], RF permutation importance should
provide a reliable measure of importance. In addition, considering the assumption of linearity
is not required for RF, the RF method is likely to be the correct measure of importance for
a highly nonlinear system such as most climate models.

The systematic procedure outlined in this paper for constraining parameter uncertainty
ranges is argued to be well adapted to the problem. The number of sampling points can
be controlled easily using QMC and generally have lower discrepancy as compared to other
methods such as LHS, MC and the Cartesian product. The paper has shown that the ε-
SV method generally produces lower MSE when compared with the commonly used MLR
technique, refer to figures 3, 4 and 5 in the appendix. The computational complexity has
been quite manageable, even for 220 samples, and its improvement in MSE is likely worth
the increase in computation time for most future studies in the field of climate modeling.
A large amount of predicted values can be produced and ranked relatively quickly, which is
ideal for the problem explored in this paper. Further study should be done to examine the
impact of the choice of skill score on the parameter ranges.

The work in this paper also suggests that BC mass in the atmosphere is likely near the
lower bound of current estimates. More accurate physical measurements are needed but the
results here can be used as a guide for plausible BC related parameter ranges for CAM4.
Interestingly, the paper was not able to constrain the altitude distribution ranges of BC in
any way. This should also be analyzed further. Since SO4 is known to impact the CCN
properties of BC, other parameters related to SO4 may also need to be explored. If one
wishes to reproduce the current climate in CAM4 along with BC related parameters, using
the parameter values listed in table 9 in the appendix should provide such a climate profile.
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5 Appendix

Table 3: ε-SV Tuning Values (MEAN)

C γ ε-SV MSE MLR MSE

AEROD V 128 0.007813 1.40E-06 8.25E-06
FNET 2048 0.00195 0.4540698 0.8165151
QRS 32 0.00781 1.67E-06 4.68E-06
QRL 32 0.03125 1.22E-05 2.16E-05
SWCF 32768 0.00195 0.7672817 2.514795
LWCF 2048 0.00781 0.118944 0.4437511
CLDH 8192 0.00195 0.1235529 0.2576635
CLDM 2048 0.00781 0.163513 0.5466679
CLDL 8192 0.00195 0.2132523 0.8729098
FSNT 32768 0.00195 0.8197897 2.554843
FLNT 2768 0.00781 0.2960727 0.9688627
SHFLX 32 0.00781 0.026706 0.0431452
LHFLX 32 0.03125 0.1391119 0.2508728
PRECT 32 0.03125 0.0007351 0.0014376

Table 4: ε-SV Tuning Values (VAR)

C γ ε-SV MSE MLR MSE

AEROD V 512 0.00781 0.00105 0.00956
FNET 512 0.00781 0.00032 0.0007
QRS 8192 0.00195 0.00014 0.00041
QRL 32 0.03125 0.00053 0.00079
SWCF 8192 0.00195 0.00243 0.01048
LWCF 32768 0.00781 0.00224 0.00605
CLDH 32 0.03125 0.00051 0.00165
CLDM 512 0.00781 0.00094 0.00187
CLDL 128 0.00781 0.00066 0.00156
FSNT 512 0.00781 0.00018 0.00056
FLNT 32768 0.00049 0.00013 0.00023
SHFLX 32 0.00781 0.00032 0.00033
LHFLX 2 0.03125 0.00032 0.00035
PRECT 512 0.00195 0.00188 0.00351
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Table 5: ε-SV Tuning Values (COR)

C γ ε-SV MSE MLR MSE

AEROD V 32 0.03125 3.73E-05 0.00031139
FNET 8192 0.00781 3.34E-06 0.00021213
QRS 128 0.00781 6.87E-06 1.11E-05
QRL 32 0.00781 1.22E-05 2.05E-05
SWCF 32 0.03125 0.00010142 0.00038073
LWCF 512 0.00781 3.94E-05 4.25E-05
CLDH 32 0.00781 2.14E-05 1.99E-05
CLDM 32 0.00781 1.85E-05 2.13E-05
CLDL 512 0.00781 2.76E-05 0.00014093
FSNT 32 0.03125 1.34E-06 4.58E-06
FLNT 8 0.03125 3.72E-06 4.33E-06
SHFLX 2048 0.00195 7.51E-06 1.11E-05
LHFLX 8 0.03125 3.89E-06 4.13E-06
PRECT 2 0.03125 0.00011658 0.00010568

Table 6: Variable Ranges (MEAN)

# Name Min Max Median Sig.

1 FNET -29.2335 22.8389 0.8425 x2, x5-x9

2 QRS -0.02053 0.06834 0.02264 x2-x3, x5-x9

3 QRL -0.08019 0.02962 -0.02636 x3, x5-x9

4 SWCF -32.466 29.457 1.997 x3, x5-x9

5 LWCF -8.920 -3.038 0.9329 x2-x9

6 CLDH -7.9094 -0.4732 -3.6714 x2-x9

7 CLDM -9.8212 0.6915 -3.5459 x2-x3, x5-x9

8 CLDL -7.378 16.453 1.182 x5-x9

9 FSNT -32.878 30.886 2.518 x2, x5-x9

10 FLNT -4.1383 9.1242 1.6874 x2-x3, x5-x9

11 SHFLX -3.70067 4.06073 -0.07291 x2-x3, x5-x9

12 LHFLX -5.2260 6.2894 -0.3162 x2-x3, x5-x9

13 PRECT -0.25613 0.28468 -0.03245 x2-x3, x5-x9

14 AEROD V -0.001432 0.048329 0.020163 x2-x3, x5, x7-x9
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Table 7: Variable Ranges (VAR)

# Name Min Max Median Sig.

1 FNET 0.5128 1.4132 0.9741 x1, x5-x9

2 QRS 0.8362 1.2606 0.9988 x2-x9

3 QRL 0.7451 1.2889 0.9657 x4-x9

4 SWCF 0.3965 2.1765 1.0101 x5-x9

5 LWCF 0.3694 1.2423 0.8247 x3-x9

6 CLDH 0.7503 1.2014 1.0220 x2-x5, x7-x9

7 CLDM 0.5481 1.0462 0.8482 x3-x9

8 CLDL 0.850 1.554 1.147 x4-x9

9 FSNT 0.6552 1.3207 0.9998 x1, x5-x9

10 FLNT 0.8394 1.1601 0.9804 x1, x4-x9

11 SHFLX 0.8357 1.2874 1.0353 x1-x9

12 LHFLX 0.8227 1.3049 1.0370 x1,x3, x5-x9

13 PRECT 0.7823 1.5535 1.2540 x3, x5-x9

14 AEROD V 0.9528 1.5126 1.1114 x2-x3, x5, x7-x9
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Table 8: Variable Ranges (COR)

# Name Min Max Median Sig.

1 FNET 0.9214 1.0008 0.9877 x2, x5-x9

2 QRS 0.9124 0.9872 0.9559 x2-x3-x5-x9

3 QRL 0.8698 0.9663 0.9190 x3, x5-x9

4 SWCF 0.7919 0.9704 0.9125 x3, x5-x9

5 LWCF 0.8562 0.9800 0.9329 x2-x9

6 CLDH 0.9117 0.9788 0.9460 x2-x9

7 CLDM 0.8840 0.9721 0.9300 x2-x3, x5-x9

8 CLDL 0.8157 0.9916 0.9513 x5-x9

9 FSNT 0.9674 0.9979 0.9911 x2,x5-x9

10 FLNT 0.9582 0.9916 0.9780 x2, x3, x5-x9

11 SHFLX 0.9257 0.9821 0.9609 x2-x3, x5-x9

12 LHFLX 0.9575 0.9960 0.9807 x2-x3, x5-x9

13 PRECT 0.7934 0.9986 0.8914 x2-x3, x5-x9

14 AEROD V 0.9269 1.0066 0.9834 x2-x3, x5,x8-x9
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Table 9: Top 20 Parameter Combinations Ranked by Skill Score (SS)
SS x1 x2 x3 x4 x5 x6 x7 x8 x9
0.928185 0.07755 0.029574 0.165367 19.42736 0.888602 13.76669 6517.692 0.652453 5416.862
0.926481 0.889292 0.240847 1.54808 27.27764 0.881276 12.77101 5099.567 0.658623 4197.509
0.923623 0.616049 0.284719 2.536392 26.42562 0.888721 12.41507 5155.649 0.651135 6926.616
0.923513 0.727741 0.287045 2.28714 31.84684 0.890337 13.34337 5196.461 0.656445 7822.533
0.922438 0.042838 0.232568 1.043129 36.79269 0.90677 11.53768 6071.329 0.659189 5719.621
0.921143 0.176015 0.226825 3.782921 21.63099 0.896409 13.14958 6165.648 0.651998 6509.865
0.921011 0.526978 0.493789 1.167412 5.570775 0.875204 13.5256 5387.662 0.655942 3825.458
0.919839 0.050089 0.492586 7.7285 32.618 0.889944 12.63873 4955.783 0.653771 6287.932
0.919759 0.463301 0.26689 2.440262 35.35885 0.894771 13.14318 6818.738 0.66226 5994.082
0.919643 0.131081 0.693092 2.379456 4.423622 0.883988 11.75072 3368.319 0.662584 4980.748
0.918503 0.918325 0.204733 4.412613 2.454088 0.877931 10.49314 2485.559 0.652545 2962.474
0.918347 0.591505 0.176344 0.915604 17.75482 0.865912 14.97419 5350.004 0.656126 5958.651
0.918068 0.306308 0.235387 5.233345 9.441184 0.894897 12.47323 5519.421 0.650821 5862.066
0.918059 0.629153 0.499761 4.043159 13.54851 0.879734 12.51527 5373.165 0.661594 4617.04
0.917815 0.773938 0.213389 1.181908 30.5547 0.902319 12.38677 4450.854 0.659608 8124.649
0.917603 0.683937 0.15464 0.450745 8.103676 0.857756 13.83842 3716.036 0.656798 4199.62
0.917556 0.47887 0.609035 2.088165 26.88733 0.888986 12.09 6032.383 0.66115 4336.297
0.916847 0.894547 0.175766 6.87439 14.0186 0.874181 12.45115 4123.595 0.668338 3945.218
0.916092 0.20578 0.323456 1.617432 30.98886 0.896316 11.62485 3811.514 0.669574 5861.371
0.915761 0.161561 0.326003 0.486259 36.76078 0.883519 15.20108 5686.765 0.663425 7956.867
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