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Abstract

In this tutorial article the rich variety of transfer functions for systems described by partial differential equations is illustrated
by means of several examples under various boundary conditions. An important feature is the strong influence of the choice of
boundary conditions on the dynamics and on system theoretic properties such as pole and zero locations, properness, relative
degree and minimum phase. It is sometimes possible to design a controller using the irrational transfer function and several
such techniques are outlined. More often, the irrational transfer function is approximated by a rational one for the purpose of
controller design. Various approximation techniques and their underlying theory are briefly discussed.
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Most of the analysis of control systems and the develop-
ment of algorithms for controller design has been for sys-
tems modeled by ordinary differential equations, which
provide adequate models for RLC circuits, rigid robots
and many other systems. However, in many systems
the physical quantity of interest depends on several in-
dependent variables. For instance, the temperature of
an object depends on both position and time, as does
the deflection produced by structural vibration. When
there is more than one independent variable, the equa-
tion modeling the dynamics involves partial derivatives
and is thus a partial-differential equation (PDE). The
aim of this article is to acquaint the reader with a num-
ber of examples of systems with dynamics modeled by
a partial-differential equation and in particular, to de-
rive and analyze their transfer functions. Although the
theory is generally applicable, for simplicity of exposi-
tion, all the examples are single-input-single-output and
in one space dimension.

Since the solution of the PDE reflects the distribution of
a physical quantity such as the temperature of a rod or
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the deflection of a beam, these systems are often called
distributed-parameter systems (DPS).

As is well known, the transfer functions of systems
modeled by ordinary differential equations, often called
lumped-parameter systems, are rational functions. In
contrast, the transfer functions of distributed-parameter
systems are irrational functions. Another difference is
that the state space is infinite dimensional, usually
a Hilbert space. Consequently, DPS are also called
infinite-dimensional systems. In this article we do not
discuss state-space realizations of these systems, but in-
stead concentrate on the frequency-domain description
in terms of the transfer function.

The analysis of rational and irrational transfer functions
differ in a number of important aspects. The most ob-
vious differences between rational and irrational trans-
fer functions are the poles and zeros. Irrational trans-
fer functions often have infinitely many poles and ze-

cosh /s e 28 sinh s
sinh v2s’ s(1+e~%) and cosh 25 but
e~ ® and many other functions have neither poles nor ze-

ros, as is the case for

se °

ros. “Dead-beat” transfer functions, such as % el have
finitely many poles and zeros. In this article, we concen-
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trate on transfer functions derived from PDEs. In these
systems the location of the poles and zeros depends cru-
cially on the choice of boundary conditions. Another
striking difference between rational and irrational func-
tions is that of limits of the transfer functions at infinity;
there can be several distinct limits at infinity depending
on the path taken in the complex plane. For example,
if you approach infinity along the real axis, e~° has the
limit zero. However, if you approach infinity along the
imaginary axis, the values oscillate and so this limit does
not exist. While concepts like relative degree and min-
imum phase are important for irrational functions, the
definitions used for rational functions are no longer ap-
propriate. For example, e® has infinite relative degree
and is not minimum phase, despite the fact that it has
no zeros. Consequently, it is necessary to generalize the
usual definitions of the above concepts, as well as other
concepts, to make them meaningful for irrational func-
tions.

Since the best way to appreciate the rich diversity of
infinite-dimensional behavior is through studying exam-
ples derived from typical PDEs, we derive the transfer
functions of some representative examples of controlled
systems under various boundary conditions: a heated
rod, a vibrating string, noise in a duct, and a flexible
beam. For all these examples we also analyze the main
properties relevant to control design, including the pole
and zero locations, the stability properties, the relative
degree and the existence of limits of the transfer func-
tions at infinity. In addition, we check whether or not
the system is minimum phase or positive real. Precise
definitions are given in the appendices.

If a transfer function model is available, it is possible to
design a controller using frequency domain techniques.
We briefly indicate some of the relevant theory that has
been developed for irrational transfer functions. Since
practical controller design is usually based on rational
approximations, we briefly discuss the main approxima-
tion techniques, and the underlying theory. In particu-
lar, balanced order reduction is a common approach and
conditions under which this is justified are given.

This paper is intended as a tutorial paper, not a survey,
and no attempt is made to list the extensive literature
on control of distributed parameter systems.

1 Heat Flow in a Rod

One of the simplest examples of a system modelled by a
partial-differential equation is the problem of controlling
the temperature profile in a rod of length L with con-
stant thermal conductivity K, mass density p and spe-
cific heat C),. Applying of the principle of conservation
of energy to arbitrarily small volumes in the bar leads
to the following partial-differential equation for the tem-
perature z(x, t) at time ¢ at position x from the left-hand

end [18, sect. 1.3

0z(x,t) 0%z(z,t)

Cor e TR0 g

x € (0,L), t>0.
(1)

In addition to modeling heat flow, this equation also
models other types of diffusion, such as chemical diffu-
sion and neutron flux. To fully determine the tempera-
ture, one needs to specify the initial temperature profile
z(x,0) as well as the boundary conditions at each end.
We show how different boundary conditions for the heat
equation (1) influence the transfer function.

1.1 Neumann boundary control

Consider the situation where the rod is insulated at the
end x = 0. At the other end, x = L, the rate of heat flow
into the rod is controlled. Applying Fourier’s law of heat
conduction we obtain the boundary conditions

Oz 0z
5,0 =0, Koz (L1) = ult), (2)

where u(t) is the rate of heat flow into the rod.

The temperature is measured at a fixed point zy on the
rod, where 0 < g < L and so the observation is given by

y(t) = 2(wo, 1) 3)

An expression for the transfer function can be derived
in two ways. Perhaps the best known is to take Laplace
transforms with respect to the time variable ¢, assuming
an initial condition of zero. The Laplace-transformed
PDE yields an ordinary differential equation with the
solution §(s) = G(s)u(s), where @, § denote the Laplace
transforms and G(s) is the transfer function. (For the
mathematical justification of taking Laplace transforms
in this manner see Example 4.3.12 in Curtain & Zwart
[10, sect.4.3] and Cheng & Morris [9] .) By the nature of
the Laplace transform, the relationship between u and
7 is defined only on the region of analyticity of G which
is {s € C: Res > a} for some real «. In other words,
7(s) = G(s)u(s) for s in this region, but not necessarily
elsewhere. A counterexample is given in Curtain & Zwart
[10, Ex. 4.3.8].

An alternative approach is to seek a solution of the form
2(z,t) = et 29(x) with the input u(t) = €%, which has
a signal interpretation Zwart [44]. This approach leads
to the same ordinary differential equation and the same
solution, but this approach needs no special justification
and, moreover, it yields a transfer function that is well-
defined for nearly all s.

Suppose we take Laplace transforms of (1), (2) with zero
initial condition z(-,0) = 0. Denoting the Laplace trans-



forms by Z, @, the resulting boundary value problem is

K()% = Cppsi(z, s), (4)
dz dz
T0.5) =0, Koo (L,s) = a(s). ()

The general solution of the differential equation (4) is
Z(x,s) = Asmh(fx) +Bcosh(fz>

where « is the thermal diffusivity and a2 = Apply—
ing the boundary conditions (5), we obtain the solution

« cosh (%) R

Ky+/ssinh (%) e)

Z(z,s) =

and since

Q(S) = 2('1707 S)’
the transfer function Gpear1(xo,s) = 58
is given by

o cosh ( \/iﬂfo )

Ko+/3sinh (%) '

(6)

Gheatl (an 5) =

The function Gpeqr1 should be considered a function of
s, with xg a parameter indicating the dependence of the
transfer function on the choice of observation point.

The poles of Gpeqt1 are the zeros of the denominator
and are the real nonnegative numbers —(kmwa/L)?, while
the zeros are the zeros of the numerator and are the
real negative numbers —((kr + 7/2)a/z0)?, where k =
0,1, .... Note that, due to the pole at 0, Gpeqs1 is nOt
stable, but it is proper and well-posed. ( See Theorem
A.2 and Definitions B.1 and B.2. )

We can rewrite Gpeqr1 as

ae et (1+e 2 )
Gheatl (J;Oa S) = K()\/g (1 ~ 2V5L ) :
—e .~

In the case that zo = L, we have, for real A,

a
li AG A S) = —
)\l_)n(;lo f heatl( 5 S) KO 5
which means that Gpeqt1(s) has finite relative degree.
(See definition C.1.) However, in the case that x¢ # L,
there does not exist an integer k such that for real A

limy oo A¥Gheat1 (\) exists and is non-zero, which means
that Gheqt1 does not have finite relative degree.

As explained in Appendix D (or Curtain & Zwart [10,
Example 4.3.12]) we can express Gpear1 (o, s) as the in-
finite partial-fraction expansion

a? 2L 2. (=1)* cos(kmxo/L)
KoLs = Ko &= L%s + (kra)?

(7)

Gheatl (xOv S) =

When oy = L, it is easily seen that the transfer function

a? 1
G ea L7 = T To . /7. \9°
h tl( 5) KoLs + Ko ; L2s + (k’ﬂO&)2

is positive real (Definition E.1). Consequently, Gpeqt1 (L, 8)
can be stabilized by the feedback u(t) = —ky(t) for any
positive gain £ (Theorem E.2).

1.2 Dirichlet boundary control

Suppose now that we can vary the temperature u(t) at
the end point x = L and we can measure the temper-
ature at an interior point x¢ of the rod. The boundary
conditions become

20,8) =0,  2(L,t) = u(t). (8)

We still measure the temperature at a point zy and so
the observation is

y(t) = z(zo,1).
We derive a closed-form expression for the transfer func-

tion, as before, by solving the ordinary differential equa-
tion (4) with the boundary conditions

2(0,s) =0, 2(L, s) = u(s),

which are the Laplace transforms of (8), to obtain the
transfer function
sinh ( IO)
[0

sinh (‘/EL> .

[e3

B

Gheat2 (1'0’ S) =

Note that the zero at s = 0 of sinh (\/jL) in the denomi-
nator cancels with the zero of sinh (@) in the numer-

ator. Thus the poles of Gjcqt2 are the same as Gpeqt1, €X-
cept that there is no pole at s = 0. The transfer function



is analytic and uniformly bounded in the open right half-
plane and, since, the poles are all in the open left half-
plane, Gpeqt2 is stable. (See Theorem A.2.) Hence Geqro
is well-posed and proper. In fact, unless xo = L, Gpeatr2
is strictly proper. As is the case for Gpeqi1, for xg # L,
G heat2 has infinite relative degree (Definition C.2). The
zeros are at s = —(kma/x0)%, k = 1,2..., and, using the
same technique as in [8], it can be shown that the sys-
tem is minimum phase (Definition F.1). As for Gheat1,
we can calculate an infinite partial-fraction expansion.
The infinite partial-fraction expansion for Gpeqs2 1S

[e.e]

Z 1)k 12k sin(kmao/L)
L2s + (kra)? '

GheatQ xOv
=1

1.8 Mixzed boundary conditions

Suppose that again we consider heat flow in a rod de-
scribed by (1) with the control action the heat flow at
x = L as in (2), and with the measurement of the tem-
perature at x = xo. However, instead of an insulated end
at © = 0 as in (2), we suppose that the temperature is
kept constant at x = 0, which leads to the observation
(3) and the boundary conditions

2(0,) = 0, Kog (L,t) = u(t).

Taking Laplace transforms as above, we obtain the trans-
fer function

asinh (@)

Ko+/s cosh (‘/EL) .

Gheat3 =

This transfer function has zeros at (km) E=1,2.

and poles at —(W)z, k=0,1,2..., which are dif-
ferent from those of Gpeqr1 and Gpeqr2- The transfer
function Gpeqt3 is analytic and uniformly bounded in the
open right half-plane and since the poles are all in the
open left half-plane, it is stable. Hence Gpeqiz is well-
posed and also strictly proper. For xg # L, Gpears has
infinite relative degree and it is minimum phase. The in-
finite partial-fraction expansion for Gpeq3 is

1 < (
o

k=1

—1)*2Lsin((k + 3) 7xo/L))
L2s + ((km 4+ m/2)a)?

Gheat3 (.1307 S) =

2 Vibrating string
2.1  Undamped vibrations

The application of Newton’s law to a vibrating string of
length L yields the partial-differential equation, known

as the wave equation,

2 2
azag’ﬂ:cﬁg(;’t), 0<z<lL,

t>0,

(9)
for the deflection z(z, t) at time ¢ at the position x along
the string. The constant ¢ = I where 7 is the string

tension and p the density, Towne [39, chap.1]. The wave
equation models many other situations such as acoustic
plane waves, lateral vibrations in beams, and electrical
transmission lines.

To complete the model, appropriate boundary condi-
tions as well as initial conditions z(+, 0) and %(-, 0) need
to be defined. Suppose that the ends are fixed with con-
trol and observation both distributed along the string.
For simplicity we normalize the units so that L = 1 and
¢ = 1 to obtain the equations

22(x 22(x
0 a(tz’t) = 9 8( 5 ) + b(z)u(t), (10)

2(0,8) = z(1,1) =0, (11)
ot _/ 32 (x, t dz, (12)

where b € L2 (0, 1) describes both the control and obser-
vation action, which is a type of distributed colocation.
As in the previous examples, the transfer function can
be calculated by taking Laplace transforms of (10) — (12)
with respect to ¢ with initial conditions z(z,0) = 0 and
2(x,0) = 0. Alternatively, the transfer function can be
found by seeking a solution of the form z(z,t) = %' zg(x)
with u(t) = e*. With either approach, the resulting
boundary value problem is

d?*2(z, s)

drz s23(x, s)—b(z)u(s); 2(0,8) =0 =

2(1,s).

(13)
This equation is a forced, linear ordinary differential
equation in the variable x, which can be solved by stan-
dard methods, such as variation of parameters. Another
approach is to put the differential equation into first-
order form and then calculate the exponential matrix of
the resulting system. The first-order form is

d | 2 01z 0 )
i) - o) 4] [
—— N

A

The matrix exponential of A with respect to z is given
by

cosh (sz)

E(a:,s):EA”:l isinh(sx)],

ssinh (sx) cosh (sx)



and the general solution of the system of equations is,
for initial conditions 2(0, s) = o and %(0, s) = 3,

« v 0 R
= E(z,s) [51 —/0 E(&,s) ll] blx—¢&)u(s)d €.

Applying the boundary conditions from (13) we obtain

z

dz
dx

3z, 5) = U ( Smh(en) [ sinh((1— €) 5)b(€) d&...
— [T sinh((1 - €) $)b(&) dg).
(14)
After taking the Laplace transform of the observation
(12) and dividing by (s) we obtain the system transfer
function

1

Gwavel(s) = . b(x)a(x,s) dz
where
_ sinh(sz) [! 0 s
a(x’s)_isinh(s) /0 sinh((1 — &) s)b(£)d¢...

—/0 sinh((1 — &) s)b(&)d &.
With the choice

1, 0<z<1/2
b(z) = sz <1/
0, 1/2<z<1,

the transfer function is

1 2cosh (§) — cosh® (£) — cosh
2s s2 sinh(s)

The poles are at ik, for integers k, and so Gyape1 18
neither stable nor proper. Moreover, G,qve1 has finite
relative degree. By the same process as for (7), we can
calculate an infinite partial-fraction expansion

s —ikm

Graer () = % ; 2 <Res(””> s Res(—zkw)>

s+ 1km

Res(tk)
+2 Z 2+k2ﬂ-2’

where the residue at k7 is Res(ekm)=R (*’Lkﬂ') = U,
var = 0,v4p41 = mﬂqwﬂ = (4r+2) Tarro2.2 ) Var+3 =
m. It is readily verified that Gave1(s) is positive
real and so it can be stabilized by the feedback wu(t) =
—ky(t) for any positive k.

If instead of the velocity measurement (12) we measure
position so that

y(t) = /O (2, Db(x)da, (15)

the analysis is very similar. The calculation of the trans-
fer function is identical up to (14). Then using (15) in-
btead of (12) we obtain that the transfer function is now

Gw(wel( ), which has finite relative degree, but is not
posmve real.

2.2 Damped vibrations

The model (10) with boundary conditions (11) does not
include any dissipation, an unrealistic assumption. To
capture the effects of damping we introduce some light
damping into the model, as in Russell [37]. Letting &
indicate a small positive constant, the wave equation
becomes a type of telegrapher’s equation Guenther &
Lee [18, chap. 1].

0?z(z,t)

0z(-,1) _ 0%z(w,t)
o T b

Db(a) = 5

+ b(x)u(t),

where b € Ly(0,1) with the same boundary conditions
(11) and observation (12) as before.

To obtain the transfer function of this system we note
that this system is the result of applying the feedback
u(t) = —ey(t) + v(t) to the undamped positive-real sys-
tem (10)). The function v(¢) indicates the uncontrolled
signal. The transfer function of the damped system is
thus
GwaveQ(S) = Gwavel(I + EGwavel)_l

and it is stable. In this way we obtain that G qpe2 is
given by

£ sinh (s) + 2 cosh (%) — 3 cosh? (5)+1
s(s+ £)sinh (s) +(2cosh (§) — 3cosh® (3) + 1)

Since Gavez is stable, we know that all the poles
lie in the open left half-plane. To obtain more pre-
cise information we recall from Russell [37] that if
b=, wV2sin(krz), 0 < |y,| < M/k, then the
poles asymptote to the imaginary axis according to

2

g
Mk:ZWk 'Ylk|+0(k2 2)

where £ = +£1,2,3,.... Our choice of b above satisfies

these conditions with

=2 (1-cosi).



Although all poles lie in the open left half-plane, the real
parts of the poles asymptote rapidly to zero, as displayed
in Figure 2 .

Since Gyqve1 is positive real and € > 0, Theorem E.2
implies that Gieve2 is also positive real. Furthermore,
it is stable. It is readily verified that Giqve2 has finite
relative degree and so by Theorem F.3 we conclude that
it is minimum phase. Consequently G qve2 has no zeros
in the open right half-plane.

3 Acoustic Waves in a Duct

Consider the modeling of the acoustic waves in a duct
such as that shown in Figure 3. The pressure in a duct
p(x,t) and the particle velocity v(z,t) are functions of
space and time. Denoting the air density by pg and the
speed of sound by ¢, the following well-known partial-
differential equations describe the propagation of sound
in a one-dimensional duct Towne [39, chap. 2]

1 Op(x,t) ov(z,t)

2 o P er (16)
dv(z,t) _ Op(z,t)

P~ or (17)

We can combine the above system of two first-order
equations to obtain the well known wave equation

Pz(x,t) 0%

C )
ot? Oz

where z can indicate the pressure, the velocity, or the
displacement. (The latter equation is obtained by using
v = %, p=— pOCQ%.) The same equation also describes
the motion of an undamped string. (See (9).)

Let L indicate the length of the duct. There are various
ways to model the boundary conditions at theends z = 0
and x = L. Let us consider the simplest first.

3.1 Semi-infinite duct

A loudspeaker acting as a source of noise is mounted at
2z = 0, and it can be regarded as a velocity source u(t)
so that

0(0,1) = u(t). (18)

The simplest way to model the effect of the other end
of the duct is to assume that the duct is long enough
so that the duct is effectively infinite in length and to
neglect the effect of the end.

Taking Laplace transforms of the equations (16) — (18)
leads to the ordinary differential equations

(2, 9) =~ po G (,5),
posi(a, ) =~ L (z, ),
5(0,5) = (s)

Imposing the requirement that velocity and pressure re-
main bounded for all z leads to the the solution

a(s).

The transfer function relating the pressure measured at
point zy to the acoustic velocity applied at x = 0 is
therefore

x x

oln
oln

O(x,s) = e Ted(s), p(x, s) = poce”

s
o g

G ducto(T0,8) = poce”
Although this system is stable, and has no zeros, it is
not minimum phase and has infinite relative degree.

This pure time-delay transfer function predicts that a
wave travels in one direction, with no attenuation or
reflection. In reality, both occur at the end of a duct.
The speed of transmission of a wave is ¢, which means
that sound waves in air at 20°C' will travel from one
end to the other end of a 100 meter long duct in about
1/3 seconds. Therefore it is necessary to consider the
behaviour of waves at the end of the duct.

3.2 Zero impedance

Since the end = = L is open it is reasonable to assume
that the pressure at the end is equal to the exterior pres-
sure,

p(L,t) =0. (19)
The impedance Zy, at © = L is defined as
p(L,s)
Z =
Lo, s)

so this boundary condition is equivalent to assuming
that the impedance is zero.

Taking Laplace transforms of the partial-differential
equations (16), (17) subject to the boundary conditions
(18), (19), we obtain the transfer function of the velocity
source u(t) to the pressure measured at a point zq to be

sinh((L — xg) £)

Gductl(an 3) = pocC

cosh (£2)
PSSRl 1-— 82(3:0_1‘)5
=poce "Pc W
The poles are at %(k+1/2)m and the zeros are at L“ic;o )

for integers k. All poles and zeros lie on the imaginary



axis, and so this system is not stable nor is it minimum
phase. If the observation is at a point zg # 0, for real A
we have

lim Gductl(m07 )\) =0.

A—00

(If the observation is at xg = 0, then this limit is pgc.)
The above limit occurs exponentially fast and the sys-
tem has infinite relative degree. The pure delay term
e~ ¢ indicates that for observation points zg # 0, a
step input will not be observed immediately. This is an
effect of the time of transmission of waves. However, the
term e~%0< only decays as Re s — oo and so the transfer
function has a different limit depending on how the limit
is taken. If we are interested in the energy transmitted
at high frequencies we should consider the behaviour of
|G quct1 (2o, w)| for large w. This transfer function ex-
hibits oscillatory behaviour and so there is no attenua-
tion in the energy transmitted at higher frequencies.

3.3 Constant impedance

The boundary condition p(L,t) = 0 is only an approxi-
mation to the behavior of the acoustic waves at an open
end. In reality, not all of the energy in the acoustic waves
is reflected. A model that includes dissipation at the
open end is obtained by assuming that the impedance at
the boundaries lies between p(L, t) = 0 (zero impedance)
and v(L,t) = 0 (infinite impedance). The boundary con-
dition at x = L is then

p(L,t) = Zpv(L,t),

where the constant impedance Z; > poc. Taking
Laplace transforms as before with this new boundary
condition, we obtain that the transfer function relating
the pressure measured at xy to the acoustic velocity
u(t) applied at = 0 to be

ez 1+ apelTo—he
Gauct2(wo,8) = e "< pyc Wa (20)
—ay, s

where the reflectance

ap = Z1, — poc
Zr, + poc’

(Note that as the impedance Z; — 0, the reflectance

oy, — —1 and we recover the original transfer function

G auct1-) The poles of this system are, for integers k,

_iln( )_A'_k;ﬂ
Pk = o mlern) e

The poles of this system still lie on a vertical line, but
now, since oy, < 1, they are in the left half-plane and the
system is stable. As for the previous transfer functions

for the duct it is not minimum phase and it has infinite
relative degree.

3.4 A more realistic model

A more accurate, frequency-dependent, model of the be-
haviour of the acoustic waves at an open end was ob-
tained in Beranek [5]. Letting @ indicate the duct radius,
define Ry = poc/ma?, Ry = 0.504Ry, C' = 5.44a>/pyc?
and M = 0.1952p/a. The end impedance is closely ap-
proximated by Beranek [5, pg. 127]

(Rl + RQ)MS + R1R2M082
(Rl + RQ) + (M + RlRQC)S + ]%1_]\4'C'S27
(21)

Z1(s) = ma*

with reflectance

Z1,(s) — poc
Zr(s) + poc’

ap(s) =
and the new boundary condition,
p(L,s) = Zr(s)0(L, s).
As before, we assume that the control is produced by a
velocity source at © = 0,
v(0,t) = u(t).

The transfer function relating the pressure measured at
Zo to the velocity u(t) applied at = 0 is now

Gduct3 (-7707 S) = pocC e_xO%Go(xm 3)7

where .
It ag(s)eX@o-Dzg

Golo,8) = = (5 2%

(Note that as the impedance Zr(s) — 0, we recover
the original transfer function G gyet1.) This model leads
to a more accurate prediction of the system frequency
response than the simpler model Ggyct1 (20) with zero
impedance Zp, see Zimmer, Lipshitz, Morris, Van-
derkooy & Obasi [43]; and it is also more accurate than
models with constant impedance, see Zimmer [42].

The impedence transfer function Zj (s) is positive real
and so |ar(s)| < 1 for all Re (s) > 0. Thus, all the poles
of the transfer function Ggyct3(xo, s) have negative real
parts and the system is stable . Since ar(s) = —% for
large |s|, where 8 > 0, for large |s| the poles asymptote
to the exponential curve: |y| = Be~2L%. (See Figure 4.)

The zeros also have negative real parts and a similar
qualitative behavior for large |s|. The function G, is an-
alytic on an open set containing the closed right half-
plane, it has no zeros in the closed right half-plane and

lim G,(zg, s) = poc.

|s|—o0



Hence, by Theorem F.2 it is a minimum-phase function
and Ggyet3 is the product of a minimum-phase function
and e~%0¢. The transfer function Ggyers has infinite rel-
ative degree. Although Ggyct3 has no zeros in the closed
right half-plane, unless the observation is at xg = 0, that
is, at the same location as the control, there is a time
delay and the system is not minimum-phase.

The effect of step inputs on the system is found by cal-
culating for z¢ # 0 and real A

lim Gduct3($07 )\) = 0

A—00

Moreover, G gyuct3(o, A) converges to zero exponentially
fast. This property is consistent with the fact that due to
the time of transmission, a step input is not immediately
observed. However, the limit of |G gyct3 (o, w)| along the
imaginary axis does not exist, which shows that energy
is transmitted at high frequencies.

3.5 Including actuator dynamics

More sophisticated models that include the loudspeaker
dynamics are analyzed in Zimmer, Lipshitz, Morris, Van-
derkooy & Obasi [43]. The boundary condition

v(0,t) = u(t)

implies that, when undriven, the loudspeaker acts as
a perfectly rigid end with zero velocity. Thus, the
impedance

_ p(0,5)
Zo(s) = (0, 5)

is infinite. In fact, a loudspeaker has stiffness, mass and
damping, even when undriven. So it will not act as a
perfectly rigid end and has finite impedance. At low fre-
quencies the loudspeaker can be modeled as a simple
mass-spring-damper system. Indicating the driving volt-
age of the loudspeaker by Vp(t), the governing equations
of the loudspeaker are

mDi':D(t) + dDI'D(t) + kDID(t) = BVD(t) — ADp(O(, t)),
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where mp, dp, kp, B and Ap are loudspeaker param-
eters (Beranek [5]). The loudspeaker is coupled to the
duct by the pressure at the end p(0,t¢) and also by

ADi'D(t) = 7'('(121}(0715), (23)

where v(z, t) is the particle velocity in the duct. Taking
Laplace transforms of the loudspeaker model in (22), we
obtain

Bl

o Vb(s) — Zo(s)0 (0, 5)

ADﬁ(Ov 8) -

where )

ma
ZO(S) - ADS

is the mechanical impedance of the loudspeaker, and
Vp(s) is the Laplace transform of the driving voltage
Vp(t). Even when the loudspeaker is undriven (Vp(s) =
0), since the impedance Z is not infinite for all frequen-
cies, the velocity at x = 0 is only zero if the pressure is
zero. Defining the reflectance at = 0 by

(mDs2+st+k:D) (24)

0(s) = pocAp
Z()(S) ~+ pocAp
na?(mps? +dps+ kp) — pocAhs

= 25
na?2(mps? + dps+ kp) + pocALs’ (25)

ap(s) =

we obtain the transfer function

Gduct4(x07 S) = p0667$0%S(S)G02(3)

where (1 + aL(S)GQ(xofL)%,)
Goals) = (1— aop(s)ar(s)e2LE)’

2RcoilZO(3)
Using (24,25) , S(s) can be rewritten as

BZADS
Reoit(ma2(mps? + aqs + kp) + pocAs)’

S(s) =

Thus the zeros are the same as those of G g,¢3 plus one
at s = 0. The poles are similar to those of Ggyct3 plus
additional poles due to the loudspeaker dynamics: the
two roots of ma?(mps® + aqs + kp) + pocA%s. Both
these additional roots are in the left half-plane. Since Zy
and Zj, are positive real transfer functions, |ag(s)] < 1
and |ar(s)] < 1 for all Re (s) > 0. All the poles of
Gauctsa are in the left half-plane and the system is stable.
Since ap(s) — 1 as |s| — oo the asymptotic behaviour
of the poles is the same as for Gg,c3. The system is
stable and strictly proper, but it is not minimum phase
due to the exponential decay term and it has infinite
relative degree. However, G gyct4(20, s) — 0 as |s| — oo.
Including a model of the actuator dynamics introduces
a low-pass filter into the transfer function and now

lim Gayeta(zo,w) = 0.

w—00

Unlike the simpler models of the duct, no energy is trans-
mitted at high frequencies.

4 Vibrating Beams

The simplest example of transverse vibrations in a struc-
ture is a beam, where the vibrations can be considered to



occur only in one dimension. A photograph of an exper-
imental set-up for a vibrating beam is shown in Figure
4. The analysis of beam vibrations is useful in calculat-
ing the dynamics of flexible links, and also in obtaining
an understanding of the dynamics of vibrations in more
complex geometries, such as large structures.

Consider a homogeneous beam of length L experienc-
ing small transverse vibrations. For small deflections the
plane cross-sections of the beam remain planar during
bending. Under this assumption, we obtain the classic
Euler-Bernoulli beam model for the deflection w(z,t),

0?w(z,t) 0*w(x,t)

oz THEITg =0
where F, I are material constants Guenther & Lee [18,
chap. 6]. This simple model does not include any damp-
ing, and predicts that a beam, once disturbed, would vi-
brate forever. To model more realistic behaviour, damp-
ing should be included. The most common model of
damping is Kelvin-Voigt damping, sometimes referred
to as Rayleigh damping which leads to the PDE

Pw(x,t)\
O0x20t )_O’ (26)

2 2 2
w0 <E18 w(a:,t)+CdI

22 T oa2 912

where ¢4 is the damping constant.

4.1 Clamped-free beam with shear force control: a naive
approach

Assume that the beam is clamped at z = 0 and free at
the tip x = L, with control of the shear force at the tip.
The boundary conditions are

w(0,t) =0, 2%(0,t)=0,
2 3
9u(L,t) =0, —EIZ%(L,t)=u(t),

where u(t) represents an applied force at the tip, with
positive direction the same as positive direction for the
deflection w. If we measure the tip velocity, we have the
observation 9

w
y(t) = E(Lat)' (27)
Asin the previous examples, the transfer function can be
calculated by taking Laplace transforms of (26) — (4.1)
with respect to ¢t and then solving the resulting boundary
value problem. Defining

m(s) = (EITEWJ (28)

and taking the Laplace transform of (27) we obtain the
transfer function

sN(s)

Gheam1 (5) = W

where

N(s) = cosh(Lm(s)) sin(Lm(s))—sinh(Lm(s)) cos(Lm(s)),
(29)

D(s) = 1+ cosh(Lm(s)) cos(Lm(s)). (30)

The poles are the solutions g, p—k, k > 1 to the quadratic
equation in s

s2 + cdfais + Elai =0,
where aj, are the roots of the equation in «
1 + cosh (La) cos (La)) = 0. (31)

The solutions to (31) are either real or pure imaginary and
since only af occurs in (31) it suffices to consider only the
real, positive solutions. Since for large real «, cosh(alL) =
%e"‘L, these solutions converge to W
infinity. The poles of Gpeam1 are

as k approaches

—cala} + \/(cdl)zai —4FEIa}

k=

2
—calag, — +/(cal)2a§ — AEIaj
f—k = -
2
All poles lie in the left half-plane and limg_, o pr = f%
and limg oo pi— = —cqla} = —ch(W)‘l. The transfer

function is analytic on an open set containing the closed right
half-plane. All poles are in the left half-plane, but although
the transfer function is analytic on the open right half-plane,
it is not bounded there. Using the exponential formulas for
sinh, cos and so on, we obtain that there are constants c1, ca
such that for Re s > 0,

lim ef‘/?Lm(s)N(s) =c1,

|s|—o0

lim e_ﬁLm(s)D(s) =ca.

|s|—o0
Thus, for positive Res > 0 we have

N(s)

lim
|s|— o0 D(S)

= constant.

But |—5| is unbounded as s — oo and so although all
poles are in the left half-plane, the system is not well-posed
(Definition B.2). Hence it is unstable. In particular, the mag-
nitude of the frequency response increases with frequency,
which does not reflect the physics. Consequently this model
is incorrect. The mistake lies in the omission of the effect of
damping on the moment in the boundary conditions (4.1).

4.2 Clamped-free beam with shear force control: an im-
proved model

If M denotes the moment, then for a free end, we have

oM
M(L,t) =0, (L) =0.



The moment M of an Euler-Bernoulli beam is equal to
EIg dw? + only when there is no damping in the system. Kelvin-
V01gt damplng affects the moment, which becomes
0w Pw
El— I——
922 T gr2ar

The correct boundary conditions for a free end are therefore

M(z,t) =

02w 8w
BIS (L, t)+cd18 28t(L,t):0, t>0, (32
w 0w
~BISS = I+ 38t(L H=ut), t>0. (33

With these boundary conditions at the tip and the original
ones at the fixed end (4.1), we obtain the transfer function

sN(s)

Gream2(s) = m?(s) (ET + scal) D(s)’

where m is as in (28), N in (29) and D in (30).

This transfer function has the same poles as Gpeam1 €xcept
for an extra pole at —F/cq and so it is analytic in the closed
right half-plane. But now, since

lim ————— =0,
|s|—o0 m3(8)(ET + scql)

Gream2(s) is stable and strictly proper . In fact, for some

nonzero constant ¢, and real A,

lim AY*Greama(N) = ¢

A—o00

and the system has finite relative degree .

The zeros are the solutions to the quadratic equation in s
s+ cdl'y,is + Elyﬁ =0,
where 7 are the roots of the equation in ~
cosh (L) sin (L) — sinh (L) cos (L) = 0.

The roots 7, are either real or pure imaginary and so it
is sufficient to consider only the positive solutions. These
solutions converge to W s k — oo. It follows that,

except for a zero at 0, all the zeros are in the open left
4
half-plane and they converge to —% and —cql (W) .

Since the transfer function also has finite relative degree, by
Theorem F.2 we can conclude that it is minimum phase.

As explained in Appendix D, the transfer function has the
infinite partial-fraction expansion

Coramals) = 3 sl | Res(pi)

k1 O Bk ST H-k
_i 4 (Hk L )
< fiok = e \S— [k 85— Hk

s2 4+ calats+ Elad

ol
Il

1
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which shows that Gpeam2 is positive real .

If, instead of the velocity measurement, we take the position
measurement y(t) = w(L,t), then in an similar fashion as
above we obtain that its transfer function is

1
GbeamS (5) - g GbeamZ (S) .

The transfer function Gpeqms(s) is not positive real, which
demonstrates that physical collocation of actuators and sen-
sors is not enough to obtain a positive-real system. However,
Gbeams is stable and minimum phase and it has finite rela-
tive degree.

4.8  Clamped-free beam with torque control and mea-
surement of angle at tip

If the beam is still clamped at 0, but we exert a torque wu(t)
at z = L the boundary conditions are (4.1) at x = 0 and the
tip boundary condition becomes

0w 3w
BIZS(L,0) + cal 5o
83 34

(L,t) =

——(L,t)=0, t>0.

Suppose we now measure the angular velocity at the tip and

so the observation is

w

otox

y(t) = (L,1).

By following our previous steps we obtain the transfer func-
tion

_ sN2(s)
Gheama(s) = m(s)(EI + scal)D(s)
_ _m’(s)Na(s)
sD(s) '’
where m(s) is as in (28) , D in (30) and

Nz(s) = cosh(Lm(s)) sin(Lm(s))-+sinh(Lm(s)) cos(Lm(s)).

The poles are the same as those of a clamped-free beam with
force control, Gpeqamz. Furthermore, as before, the transfer
function is also proper and therefore the system is stable.
However, the zeros are very different from before. They are
the roots of the quadratic equation in s

s* + cal Brs + EIB; = 0,
where [ are the roots of the equation in 3
cosh (L) sin (LB) + sinh (L) cos (LB) = 0.

The solutions 3 are either real or pure imaginary and we only
need to consider the real, positive solutions, which converge

to W as k — oo . Except for a zero at 0, the zeros are

all the the open left half-plane and they converge to —=

Cd



(4k+3)m
4L

4
and —cgl ( ) . The transfer function also has finite

relative degree and so by Theorem F.3 it is minimum phase.
The infinite partial-fraction expansion is

G (s) 7% 4sa} »
beam4 —k71 52+cd1ais+Elai

sinh? (arL) sin? (ar L)
L [sinh (o L) + sin (o, L))*’

where ay, are the roots of (31). Since the coefficients are all
positive, the transfer function is positive real.

If, instead of measuring %(L, t), we measure the angle
of rotation y(t) = g—z‘:(L,t)7 then in an similar fashion we
obtain that its transfer function is Gpeams(s) = %Gbgamzl(s).
The function Gpeams is not positive real, but it is stable and
minimum phase and it has finite relative degree.

4.4 Pinned-free beam with shear force control

Suppose that instead of the clamped boundary conditions
(4.1) at = 0, the beam is pinned at x = 0. The boundary
conditions at x = 0 become

2
W 0,1) =0,

w(0,t) =0, 52

t>0. (34)

The end x = L is free, with control of the shear force at the
tip as in Section 4.2 and the boundary conditions at x = L
are (32), (33). Assume that we are again measuring the tip
position and the observation is

y(t) = w(L, ).

Taking Laplace transforms of the same beam equation (26)
and solving the resulting ordinary differential equation with
the boundary conditions (34), (32), (33), we obtain the trans-
fer function

2 Sinh(Lm(S)) sin(Lm(S))
Gheams(s) = m3(s) (E1 + scqal) N(s)

where N is defined in (29). The poles are at the zeros of
Gream2(s) plus —Cﬂd and the zeros of m(s). Hence they are
all in the open left half-plane. Using our previous estimates,
we see that Gpeame behaves like% as |s| — oo.
Hence it is stable and strictly proper and it has finite relative
degree. The zeros of Gpeams are given by

k2 AETL?
2 Ca) 11— >1
51z (Cal) ( (lerd)2> k21,

plus another zero at the origin. By Theorem F.2, it is mini-
mum phase.

s =

Although the only change in the model is that the clamped
condition at * = 0 was changed to a pinned condition, the
poles and zeros of the transfer function are quite different
from those of the clamped beam transfer function Gpeamz2.
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The first 10 poles of the pinned-free and clamped-free beams
are compared in Figure 6. In many applications, the ac-
tual boundary condition at = 0 is intermediate between a
pinned and a clamped condition, see Bellezza, Lanari &Ulivi
[4] and Morris & Taylor [31].

5 Other DPS Examples

These examples illustrate that the transfer functions of
PDE’s and their properties are sensitive to boundary condi-
tions. In particular, all the examples illustrate that boundary
conditions affect both the zeros and the poles dramatically.
For other examples of transfer functions of DPS see Curtain
& Zwart [10].

The transfer functions of the wave and duct examples are of
a delay type: rational functions of s and e®*® for finite k and
ar, < 0. Although obtained from partial-differential equation
models, these transfer functions are similar to those obtained
for delay-differential equations. Such transfer functions are
studied in, for instance, Glover, Lam & Partington [15].

On the other hand, the transfer functions for the heat and
beam examples have fractional powers of s. The latter be-
long to the class of fractional transfer functions which have
recently received increasing attention in the literature [12].
Typical examples are s%, m,e_sa, where 0 < a < 1.

For physical applications we refer to Duarte Ortigueira &
Tenreiro Machado [12].

6 Stabilization and Control

If a closed form expression of the transfer function of a sys-
tem can be obtained, it may be possible to design a controller
directly in the frequency domain: the direct controller design
approach. Many controller design approaches used on finite-
dimensional systems can be extended to certain classes of
DPS. In particular, the fractional representation approach
to controller design (Vidyasagar [40]) extends readily from
rational transfer functions to various algebras of irrational
transfer functions, see Vidyasagar [40], Foias, Ozbay & Tan-
nenbaum [13] and Logemann [27] .

Examples of these algebras are 7 = Ho/Ho and the
Callier-Desoer class B from Callier & Desoer [6,7]. Functions
in B have a decomposition

G(s) = g(s) + h(s),

where g is an unstable proper rational function and h is a
stable irrational function in the class A_- C Hs. A function
Gstab € A_ if there exist a positive € and a function f, such
that e® fo(-) € L1(0,00) and f, € C such that

Gotan(s) = fals) + fo+ D fae ™",
n=1

where t, > 0 and > °°  |fnle®” < oco. (The notation * de-
notes the Laplace transform.) Thus, any transfer function



Gstap € A— is the Laplace transform of a distribution of the
form

fll(t) + foé(t) + Zfﬂ f"(s(t - tn)? t> 01

16 = 0, t < 0.

Consequently, transfer functions in B are proper and, they
do not have infinitely many poles asymptoting to the imagi-
nary axis (see Appendix B). Our heat flow and flexible beam
examples are in the Callier-Desoer class, but the string ex-
amples are not. For a detailed treatment of this class with
more examples and the solution of various robust stabiliza-
tion problems, see Curtain & Zwart [10, Chap. 9].

Stability of a closed loop system is defined for systems with
irrational transfer functions exactly as for those with ratio-
nal transfer functions: for G, K € 7 (or B), K stabilizes G if
(I+KG) ' GUI+KG) ™, (I+KG)'K,(I+GK) ' € He
(or A_). Coprime factorizations are also defined analogously
to the rational case, and the Youla-Jabr-Bongiorno param-
eterization of all stabilizing controllers has a natural gener-
alization. However, while every G € B has a coprime factor-
ization, this is not the case for 7. In fact, G € 7 can be
stabilized if and only if it has a coprime factorization, see
Inouye [20] and Smith [38].

Generalizations of many well-known finite-dimensional re-
sults such as the small gain theorem and the Nyquist stabil-
ity criterion exist, see Logemann [26], [27, sec.5]. The latter
reference also surveys PI-control solutions to servo-problems
for irrational transfer functions and the internal model prin-
ciple. More recent results on tracking for infinite-dimensional
systems can be found in Rebarber & Weiss [35] and Loge-
mann [28]. Just as for finite-dimensional systems, any posi-
tive real system can be stabilized by the static output feed-
back u = —ky for any £ > 0 (Theorem E.2). Passivity gener-
alizes in a straightforward way to irrational transfer functions
(Desoer & Vidyasagar [11, Chapters V, VI]). Note that for
some of these results it is not required to know the transfer
function in order to ensure stability of the controlled system.
It is only required to know whether the transfer function lies
in the appropriate class. A theory of robust Hso-control de-
signs for infinite-dimensional systems with transfer functions
in 7 is described in Foias, Ozbay & Tannenbaum [13]. More
recent results on this approach can be found in Kashima &
Yamamoto [22] and references therein. However, the most
powerful results for direct controller design are obtained for
the Callier-Desoer class.

A drawback of direct controller design is that, in general, the
resulting controller is infinite-dimensional and must be ap-
proximated by a finite-dimensional system. For this reason,
direct controller design is often known as late lumping since
the final controller is approximated by a finite-dimensional,
or lumped parameter, system.

For many practical examples, controller design based on the
transfer function is not feasible, since a closed-form expres-
sion for the transfer function may not be available. Instead,
a finite-dimensional approximation of the system is first
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obtained and the controller design is based on this finite-
dimensional approximation. This approach is known as in-
direct controller design, or early lumping. In fact, the most
common method of controller design systems modeled by
partial differential equations is to first approximate the orig-
inal system and to then design a controller for the reduced-
order model. The hope is that it has the desired effect on the
original system. That this method is not always sucessful was
first documented in Balas [2], where the term spillover effect
was coined. Spillover refers to the phenomenon that a con-
troller that stabilizes a reduced-order model need not nec-
essarily stabilize the original model. Systems with infinitely
many poles either on or asymptoting to the imaginary axis
are notorious candidates for spillover effects. Some issues as-
sociated with approximation of systems for the purpose of
controller design are discussed in the next section.

7 Approximation Theory and Practice

Approximation or model reduction of a distributed param-
eter system involves finding a rational approximation to
the original irrational transfer function in some appropriate
norm. The appropriate choice of norm depends on the pur-
pose for which one intends to use the reduced-order model:
simulation, prediction, or as a means to design a controller
for the original system. Most infinite-dimensional systems
are either stable, or are the sum of a stable system and
a finite-dimensional unstable part. Usually, approximation
proceeds by a finding an approximation to the stable infinite-
dimensional part.

The two most common norms used as a measure of the ap-
proximation error are the Hs- and the Hoo-norms ( Ap-
pendix A ). Approximation in the Hz-norm is linked to the
response of the system to initial conditions, or to a particu-
lar input. Every input in L2 (0, c0) has a Laplace transform
u in Ha. Suppose that G is stable and let G be the transfer
function of a rational approximation. We obtain the estimate

1Gu — Grullz < |G = G |loo[ul]2-

Consequently, the error in the Hoo-norm between the orig-
inal transfer function G and an approximation Gy yields a
uniform bound on the approximation error over all inputs.
The gap or graph metric (Zames & El-Sakkary [41]) is the
generalization of this measure of distance to unstable sys-
tems; details can be found in Vidyasagar [40].

The transfer functions in He that can be approximated in
the Hoo-norm by rational transfer functions are those that
are continuous on the imaginary axis and have a well-defined
limit at infinity; that is

lim G(w) =

w—~+00

lim G(w).

w— — 00

The functions Guwavel, Gauctl, Gauctz and Ggucrs are not
approximable by rational functions in the Hoo-norm. More-
over, transfer functions of the form e °G,(s) are only ap-
proximable in the Hoo-norm by a rational transfer function
if G, is a strictly proper stable transfer function. Approx-
imation in the Hoo-norm is particularly suitable for use in
robust Hoo- or Hy /Hoo-controller design, since the original



infinite-dimensional plant can be regarded as belonging to an
uncertainty set around the finite-dimensional system. See,
for example, Curtain & Zwart [10, chap.9].

Frequency-domain approximation methods for delay-type
systems, such as Padé, Fourier-Laguerre and many others
are surveyed in Partington [34]. Delay-type systems have a
transfer function that is a rational function of s and e~ %*s,
and k belongs to a finite set. For example, the transfer func-
tions Guave2, Gauct2, Gducts and Ggycta are of this type.

However, approximation is generally based on the partial-
differential equation model. Common methods are modal
approximations and numerical approximations, such as
finite-element schemes or proper orthogonal decomposition

(POD).
7.1 Modal approzimation

If the eigenvalues and eigenfunctions (or modes) of the par-
tial differential equation problem are known, or if one has
an infinite partial fraction expansion of the transfer function
available, the most popular way to obtain the high-order ap-
proximation is by modal approximation.

Consider the heat flow transfer function Gheqt1. When we
truncate the infinite partial-fraction expansion (7), we obtain
the N-th order modal approximation

N—-1

>

k=1

o 2L
KoLS K()

(=1)* cos(kmzo /L) '

Gheatl,N = L28+ (kﬂ'a)z

The Hoo- error can be made arbitrarily small by increasing
N, since

2L 1
_ o X —m—= 75
HGheatl Gheatl,NH = K0(7T0é)2 k:ZN k2

Modal approximations will also provide good low-order ap-
proximations in the Hoo- norm for all the heated rod exam-
ples and for all the flexible beam examples. However, it is
not a panacea. For example, if a system, for instance Gyqve1,
has infinitely many unstable poles, a modal approximation
will not produce a finite Hoo-error. Moreover, to obtain a
reasonable H.-error it may be necessary to use a very high-
order approximation, as in the case of Guyqve2, Where the
poles asymptote to the imaginary axis.

Although modal approximations reproduce the lower-order
poles exactly, and often have good error bounds, unfortu-
nately, they do not necessarily approximate the zeros well,
see Cheng & Morris [8] and Linder, Reichard &Tarkenton
[25]. The actual zeros and the zeros of a modal approxima-
tion for the heat equation with Dirichlet control are shown
in Figure 7. The system is minimum phase and all the ze-
ros lie on the negative real axis. However, not only does the
approximation have complex zeros, but it has zeros in the
open right half-plane. These spurious zeros are likely due to
the fact that the original system has infinite relative degree.
Since any finite-dimensional approximation will have finite
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relative degree, the behaviour at high frequencies can only
be reproduced by introducing additional zeros into the ap-
proximation. Basing controller design on observation of the
calculated zeros could lead to a number of erroneous predic-
tions. For instance, most results for adaptive controllers are
restricted to minimum-phase systems. Also, achievable sen-
sitivity reduction is limited by the number of right half-plane
Z€ros.

7.2 Other approximation methods

For more complicated PDE models it may not be possible
to obtain a series or closed form expression for the trans-
fer function. Moreover, obtaining an approximation of the
transfer function using numerical calculations of the eigen-
values and eigenvectors is not efficient.

Current practice is to obtain a numerical approximation of
the original PDE, often using a finite-element method, and
use this as the approximating system. The use of approxi-
mations in design of linear-quadratic controllers has received
much attention in the literature, see for example, the sur-
vey paper Banks & Fabiano [3] and the two-volume book
Lasiecka & Triggiani [24].Conditions for which approxima-
tions can be used in state-space design of Ho-controllers can
be found in Morris [30].

Although finite-element approximations perform well in
simulations, they may not converge in Ho-norm. For dis-
tributed observation and control sufficient conditions for the
convergence of the transfer functions in the Heo-norm for
stable systems and in the gap metric for unstable systems
are given in Morris [32].

As is the case for modal approximations, the zeros of finite-
element approximations may differ widely from the true zeros
and this can have an effect on the performance of a controller
(Cheng & Morris [8] and Grad & Morris [17]).

7.8 Approximation of Large Scale Systems

For complex systems, numerical PDE methods lead to ap-
proximate models of extremely high order. Often an explicit
PDE description may not be available, but only an approx-
imate finite-dimensional model of extremely high order (of-
ten in the thousands). So a further approximation step is
required to obtain a lower-order model that is tractable for
controller design. The most common method is to reduce a
balanced realisation of the very high-order finite-dimensional
system. Recently, the POD approach has gained in popular-
ity. It is interesting to note that in Lall, Marsden &Glavaski
[23] it is interpreted as a type of balancing. In Appendix G it
is explained that the Hoo-error incurred in balancing depends
on the sum of the singular values of the system to be approx-
imated. Consequently, in this method there is an implicit as-
sumption that the large-scale finite-dimensional model is a
good approximation in the Hoo-norm to the original infinite-
dimensional system. It is this initial unknown error that is
the Achilles heel in this approach (see the subsection on
“Hankel singular values” below). Consequently, no theoreti-
cal error bounds are available for the resulting reduced-order
models for complex systems. Other finite-dimensional reduc-
tion methods are discussed in the recent book Antoulas [1].



Clearly, numerical issues are paramount in the reduction of
the high-order model. Much experience in the numerical ap-
proximation of large-scale dynamical systems has been de-
veloped during the past few years and this is surveyed in
Antoulas [1].

7.4  Hankel singular valuse

The Hankel singular values of a rational transfer function
determine the error in the Ho.-norm of the truncated bal-
anced realisation (Appendix G). The theory of truncated
balanced approximations for irrational transfer functions is
analogous to the rational case, only now there are typically
infinitely many Hankel singular values o (Glover, Curtain
& Partington [16]). A necessary condition in this theory is
that the system is nuclear, i.e., >, ox < co. If the system
is nuclear, then approximation by truncating a balanced ap-
proximation produces a Hoo-error bound of

IG-Glw<2 Y o

k=r+1

where G, is the reduced model. Hence the implicit assump-
tion underlying the balancing approach is that the original
system is nuclear. Unfortunately, the calculation of the Han-
kel singular values for irrational transfer functions is only
feasible for very simple delay systems. However, the follow-
ing two tests may prove useful.

A necessary and sufficient condition for a stable system to
d?G(s)

be nuclear is that Partington [33], writing G (s) = “5%,

/ / |G" (z + wy)|dydz < co.
0 —o00

Another necessary and sufficient condition for nuclearity is
that G has an infinite partial fraction expansion of the form

) an
G(s) = , 35

W=3 (39)

valid for Re (s) > 0, where Re (pux) <0 and Y .2, R':";‘Jkl <

oo (see Partington [33]).

Using (35) we can conclude that Ghreat2, Goeami, = 1,...,6
are nuclear and so easy to approximate in the Ho-norm.
(The transfer function Ghreqt1 is the sum of 1/s and a nuclear
transfer function.)

For certain delay systems good estimates can be obtained
Glover, Lam & Partington [15]. Using these results one can
show that the Hankel singular values of Guyave2 and Gaucta
are O(1/k). Thus these functions are not nuclear.

None of Gauct1, Gauct2, Gauets can be approximated in the
H-norm by rational functions. However, including a model
of the actuator dynamics of the duct example introduces
a low-pass filter into the transfer function, which leads to
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smaller Hankel singular values in Ggycta. This transfer func-
tion can be approximated by rational functions, but not us-
ing balanced truncation, because it is not nuclear. The fil-
tered model ?;llGductzL is nuclear, and so easy to approxi-
mate. This illustrates how precompensation by a low-pass
filter can be a means of arriving at a better approximation
in the Hoo-norm.

Unfortunately, it is not feasible to calculate balanced realisa-
tions of irrational transfer functions. The practical approach
is to first obtain a good, possibly very high order, approxima-
tion with a small Ho-error bound and then approximate this
finite-dimensional model to obtain a reduced-order model .

Why is it important to know that a transfer function is
nuclear, when we know that this property is not necessary to
obtain a rational approximation in the Hoo-norm? Suppose
that we have a sequence G of rational approximations of
order N of the irrational transfer function G such that |G —
GnN|loc = en where ey — 0 as N — oo. We choose N
sufficiently large to obtain a small error ey, and calculate
a truncated balanced approximation of G, G, of order r.
Since G is finite-dimensional, we obtain the error bound
IGn — Gl < QZkN:T_H ok, where 0%, k = 1..N, are the
singular values of Gn (Appendix G ). It follows that G
approximates G with an error

N
|G =GNl <en+2 > ox.
k=r+1

The Hankel singular values of Gn converge to those of G as
N — oo (Glover, Curtain & Partington [16, Appendix 2]).
Suppose that G is not nuclear so that Y -, o) = 0o, where
o) are the singular values of G. Although ey can be made
arbitrarily small by increasing N, the tail term ZQ:H_I ok
will increase without bound as N increases. In other words,
balanced truncation of a non-nuclear transfer function may
not lead to a low-order approximation that has a small error
in the Hoo-norm.

8 Conclusions

The aim of this paper was to illustrate the main differences
between the rational transfer functions obtained from ODE
models and the irrational transfer functions that are ob-
tained from PDE models. Boundary conditions are one as-
pect of PDE models that does not appear in ODE models.
Boundary conditions have a strong effect on the dynamics
and many properties of the transfer function, such as the
location of poles and zeros. We also illustrate how errors in
modeling the boundary conditions can lead to an improper
transfer function. The main systems theoretic concepts, such
as stability, minimum-phase property and relative degree,
have extensions to irrational transfer functions. However,
extra complexities are introduced into the analysis. Appro-
priate formal definitions of all concepts are given in appen-
dices. Stability theory and common controller design meth-
ods can be extended to PDE models. However, in practice,
finite-dimensional approximations generally need to be used
in controller synthesis. Often, these finite-dimensional ap-
proximations are of very high order and need to be further
reduced in order to obtain a practical controller. Some of



the common approximation techniques were outlined, along
with the relevant approximation theory underlying this step.
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A Stability and norms

Consider the Hilbert space

L2(0,00) = {u: [0,00) — C]| /000 lu(t)|?dt < oo}

The Lo-norm, [lull2 = [[;~ |u(t)\2dt}1/2, often has a phys-
ical interpretation as the energy of the signal and so it is
reasonable to consider only inputs u in L2 (0, c0) and to ask
that outputs y also be in L3(0, c0).
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All u € L2(0, 00) have a well-defined Fourier transform

() = /0 T u(t)e .

The Fourier transform can also be interpreted as the Laplace
transform on the imaginary axis, or the system frequency
response. If u € L3 (0, 00) then 4 is in the frequency-domain
space

1 [ ) 1/2
LaliR) = {7 R = Cllfle = 5 [ Ifw)faw] <o)

and ||d|l2 = |Ju|l2. The Laplace transform of a function in
L2(0,00) is analytic in the open right half-plane and so the
Laplace transform is in

[ee]

H; = {f : C — C|f analytic & sup/ |f (z+w)|*dy < oo}.
z>0

— o0

The restriction of a function in Hs to the imaginary axis is
in L2(2R), and defining the norm on Hs to be

=

1 o 2
1fllz=|sup o= [ |f(z+w)l*dy| ,
x>0 2T — o
the norms in these two spaces are equal.

Definition A.1 If a system maps every input u in L2 (0, 00)
to an output y in L2(0,00) and

yll2

Ssu
5 Il

u#0

< 00,

the system is stable.

The smallest number ~ such that for every input u in
L>(0,00), the corresponding output y satisfies

lyllz < yllull2

is the Lia-gain of the system.

The easiest way to check stability comes from the following
well-known result.

Theorem A.2 A linear system is stable if and only if its
transfer function G belongs to

H. = {G:C{ — C|G analytic & sup |G(s)| < oo}

Res>0

with norm
[Gllec = sup |G(s)]-

Res>0

In this case, we say that G is a stable transfer function.

Furthermore, ||G||oo is the La-gain of the system.



B Proper transfer functions

For every transfer function G of a lumped system, the limit
lims—.oo G(s) exists and furthermore, has the same value re-
gardless of the direction in which s approaches infinity. We
say that these functions have a limit at infinity. However,
unlike transfer functions of lumped systems, transfer func-
tions of DPS may not be bounded as |s| becomes large.
Furthermore, even if this is the case, the limit need not
be unique. For example, the limit along the imaginary axis
limy oo G(iw) is in general different from the limit along
the real axis limy_.oc G(A). For clarity we reserve the nota-
tion |s| — oo for the limit that is taken in all directions in
the closed right half-plane, as |s| increases. More precisely,
we say that G has the limit Go at infinity if

lim |G(s) — Geo| := lim

|s|— o0 p— 00

sup |G(s) — Go|| = 0.

Res>0N|s|>p

It is natural to define a transfer function to be proper if it has
a finite limit at infinity. However, since irrational functions
need not have limits at infinity we need the following more
general definition.

Definition B.1 The function G is proper if for sufficiently
large p,

sup
Res>0N|s|>p

If the limit of G(s) at infinity exists and is 0 , we say that G
is strictly proper.

IG(s)] < oo.

Proper functions are bounded at infinity on the imaginary
axis. A function that does not have this property may still
satisfy the following definition.

Definition B.2 The function G is well-posed if |G(s)| is
uniformly bounded on {s € C: Res > a}, for some real .

The state-space interpretation of a well-posed system is that
for every finite T' > 0, inputs in L2(0,7T") map to outputs in
L2(0,T). This is a property of physical systems.

A function for which we can choose a = 0 in Definition B.2 is
not only well-posed but also proper and stable (Appendix A).
Stable transfer functions are always well-posed and proper,
but they need not possess a limit at infinity.

C Relative Degree

Definition C.1 A scalar transfer function G has finite rel-
ative degree if there erists a positive number k and a
nonzero constant K such that such that, for real

limsup NG| = K.

A—o0

(C.1)

For rational transfer functions, there is always an integer n
and a nonzero constant M such that

lim s"G(s) = M.

§—00
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This situation may occur with irrational transfer functions.
However, it is possible that, even for real A\, a non-zero limit
of A"G(A) does not exist for any integer n. For instance,
with observation at xg = L the transfer function of the heat
equation with Neumann control (6) satisfies, for real A,

(%

1
i 3 - =
/\lgr;o A2 Gheat1(L, M) iR
Thus, although the system has finite relative degree, no in-
teger order of A" yields a non-zero finite limit.

It is also possible that limy_.o A*G(A\) = 0 for all posi-
tive numbers k. For example, a simple delay e™° has this
property; as does the transfer function Gheqt1 (o, s) for any

Xo ;é L.
Definition C.2 If, for all positive numbers k,

lim A*G(\) = 0,

A—o00

we say that the function has infinite relative degree.

The transfer function Gpeqt1(xo,s) has infinite-relative de-
gree if zo # L. Note that relative degree is only concerned
with the behaviour of a transfer function on the real axis;
while properness considers the growth of the function in some
right half plane. Unlike rational functions, an irrational func-
tion can have positive relative degree, and not be strictly
proper. An example of this is e™® which has infinite relative
degree but is not strictly proper.

D Partial-fraction expansions

Many, but not all, irrational transfer functions admit a
partial-fraction expansion of the form

Gls) = i Res(Ax)

b
s—A
k=0 k

where \i; k > 0 are the poles of G and the residue at Ay is
Res(Ax) = lirg\l (s = Ak)G(s).

A—Ap

The partial-fraction expansion can be determined either us-
ing state-space realizations (see Curtain & Zwart [10, Lemma
4.3.10]) or by a direct approach based on the Cauchy residue
theorem as in [10, Example 7.14]. In particular, if G can be
written

N(s)

D(s)

where N and D are entire functions and D(p) = 0, but
D'(p) # 0, then the residue at p is readily calculated using
I’Hopital’s rule as

G(s) =

=

(s

Res(p) = lim (s — p)

5—p D(s)
o (6= DN
5—p D'(s)
_ N
D'(p)



Hence the residue at each pole p is g/<(’; )). For example,

the transfer function for the heat equation with Neumann
boundary conditions is (6)

N(s)
D(s)

Gheatl(x07 8) =

where

L
N(s) = acosh(\/ixo ), D(s) = Ko\/gsinh(%).
The residue of the pole at 0 is

N(@©0)  o?
D'(0) KoL’

This is the coefficient of % in the partial fraction expansion.
The residues at the other poles are calculated similarly.

E Positive real

Definition E.1 The scalar transfer function G is positive
real if it is analytic on the open right half-plane and it
satisfies the following conditions there:

real:

G(s) = Gs)

positive:

G(s) +G(s)* > 0.

The following result is a direct generalization of the corre-
sponding result for rational transfer functions and can be
shown by straightforward manipulation of the transfer func-
tions.

Theorem E.2 Consider the control system defined by

y(s) = G(s)u(s)
u(s) = —ky(s) + v(s).

If G(s) s positive real, then for any positive constant feedback
K, the controlled system with input v and output y is stable
and positive real.

F  Minimum-Phase

Stable rational transfer functions are minimum-phase if they
have no zeros in the closed right half-plane. For irrational
transfer functions the situation is more complicated.

Definition F.1 (Rosenblum &Rovnyak [36, pg. 94]) For a
scalar transfer function G(s) € Ho define the multiplication
operator A : Ho — Ho by Acf = Gf for all f € Ha. Then
G is minimum-phase or outer if the range of A is dense
n Hg.
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Thus, minimum-phase systems are approximately invertible
in the following sense: for every y € Hy and € > 0 there is
u € Hy with [|Gu — y||, < e. For rational transfer functions
this definition corresponds to having no zeros in the open
right half-plane: s/(s + 1) is outer.

This is not true for irrational transfer functions. Consider
a pure time-delay of T seconds which has transfer function
e~T*. Consider its action on functions in Lz (0, c0). All func-
tions in the range equal 0 on [0,7] and so the range of this
operator is not dense in L2(0,00) . Since, as explained in
Appendix A, Hs corresponds to the Laplace transforms of
functions in L2 (0, 00), a pure time-delay transfer function is
not minimum-phase, even though it does not have any zeros.
Note also that the inverse of a time-delay is an advance in
time and so this operator cannot be inverted, even approxi-
mately.

Any function G € Hy that does not have any zeros in the
open right half-plane can be written (see Hoffman [19, pg.
133])

ts+1
t+1s

G(s) = e exp {— / du(t)} hs),  (P.1)

where p,« are real, p > 0, pu is a finite singular positive
measure on the imaginary axis and h is outer or minimum-
phase. Even if a function G € Ho has no zeros in the closed
right half-plane, it may not be outer due to the presence of a
z:‘;; du(t)] . However,
transfer functions with real coefficients (G(s) = G(3)) must
have o = 0. If, in addition, G is analytic on a set that
includes the closed right half-plane, then there is no singular
factor. In this case the factorization (F.1) simplifies to G(s) =
e P°h(s). One way to check whether or not p = 0 is to check
if G has finite relative degree. We summarize this in the
following useful theorem.

delay e ”® or a singular factor exp [—

Theorem F.2 ( Jacob, Morris & Trunk [21]) The transfer
function G € Hoo with real coefficients is minimum phase if
1t

(1) has finite relative degree,

(2) 1is analytic on an open set containing the closed right
half-plane and

(3) has no zeros in the open right half-plane.

The following result is also useful.

Theorem F.3 (Jacob, Morris &Trunk [21]) The transfer
function G € Hoo is minimum phase if it

(1) has finite relative degree

(2) is analytic on an open set containing the closed right
half-plane and

(3) is positive real.



G Balanced order reduction

For a stable finite-dimensional system with transfer function
and realization (A, B, C) the controllability gramian L. is
the positive semi-definite solution to

AL.+ L.A* = -BB*

while the observability gramian L, is the positive semi-
definite solution to

A*Lo+ L, A= -C"C.

Definition G.1 The Hankel singular values of the sys-
tem equal the positive square roots of the nonzero eigenvalues
of the product LgLc.

The singular values of a system do not depend on the real-
ization; see for instance Antoulas [1].

Definition G.2 A balanced realisation for a stable ra-
tional transfer function is one for which the controllability
gramian and the observability gramian are equal: L = Lc .

Truncation of a balanced realisation leads to a reduced or-
der model with a Hoo-error that depends on the neglected
singular values .

Theorem G.3 (Moore [29]) If the original system (A, B, C)
has order n with singular values o,k = 1,..n and G" is the
truncated balanced realisation of order r < n, then

|G =G e <2 > on

k=r+1

This method is often used to obtain an approximation with
a low order r and a known bound on the Hi.-error. The
infinite-dimensional version of this result can be found in
Glover, Curtain & Partington [16]. Using these results one
can show that the Hankel singular values of Guyqve2 and
Gaucta are O(1/k). So they are not nuclear, although they
can be approximated by rational functions in the Hoo-norm.
We recall that this was not the case for Gayct1, Gauct2 or
Gaucts. Including a model of the actuator dynamics of the
duct example introduces a low-pass filter into the transfer
function, thus making it easier to approximate.
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Fig. 1. Heat Flow in a Rod. The regulation of the temper-
ature profile of a rod is the simplest example of a control
system modelled by a partial differential equation. The con-
trol action can be effected by varying the heat flow at one
end (Neumann boundary conditions) or by keeping the tem-
perature at one end fixed (Dirichlet boundary conditions).
The temperature is measured at some point along the rod.
The choice of these boundary conditions and the measure-
ment position affect the location of the poles and zeros of
the system significantly.
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Fig. 2. Poles of a damped string with damping parameter
€ = 1. In the idealized model of an undamped string, all
poles lie on the imaginary axis. The introduction of damping
to the model results in all poles lying in the open left half-
plane. However, as |s| increases, the magnitude of the real
part decreases, which causes the poles to asymptote to the
imaginary axis. The poles were calculated by finding zeros
of the denominator of the transfer function.



Fig. 3. Acoustic noise in a duct. A noise signal is produced
by a loudspeaker placed at one end of the duct. In this photo
a loudspeaker is mounted midway down the duct where it is
used to control the noise signal. The pressure at the open end
is measured by means of a microphone as shown in the photo.
How the behavior of the acoustic waves at the open end is
modeled affects the location of the poles significantly. (Photo
by courtesy of Prof. S. Lipshitz, University of Waterloo)

Fig. 4. A flexible beam is the simplest example of transverse
vibrations in a structure. It has relevance to control of flexible
robots. This photograph shows a beam controlled by means
of a motor at one end. (Photo by courtesy of Prof. M.F.
Golnaraghi, Simon Fraser University)
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Fig. 5. Poles of Acoustic Noise in a Duct. In an idealized
model the open end is assumed to have zero impedence (
p(L,t) = 0), which results in all poles lying on the imaginary
axis. In a model assuming a constant nonzero impedence at
the open end the poles are located on a vertical line in the
left half-plane. However, if a more detailed model is used
to obtain the impedence, (21) , the locations of the poles,
shown in this figure, are quite different. All poles are all in
the left half-plane and as |s| increases they asymptote to the
exponential curve |y| = Be 2Lz, (a =.101 m, ¢ = 341 m/s,
L = 3.54 m, p = 1.20kg/m®) The poles were calculated by
finding zeros of the denominator of the transfer function.
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Fig. 6. Poles of Clamped-free and Pinned-free Beams. This
figure shows the poles of two beams that are identical ex-
cept that in one beam one end is clamped, while in the other
beam the same end is pinned. (In both beams the other end
is free.) The poles were calculated by finding zeros of the
denominator of each transfer function. Although the asymp-
totic behavior of the poles of both beams is similar, the po-
sitions of the poles vary considerably, depending on the type
of boundary conditions. (L = 1m, E = 2.68 x 1010N/m2,
I=164x10""m4, C, = 2Ns/m, Cd = 107Ns/m2 )
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Fig. 7. The zeros of a rational approximation can be quite
different from the exact zeros. This figure shows the exact
zeros of a heat equation on [0, 1] with Dirichlet control at
z = 1 and temperature measurement at z = 1/2, compared
to the zeros of a modal approximation comprising the first
10 terms in the modal expansion. Note that the exact and
approximated zeros are remarkably different. The original
system is minimum phase and all the zeros are real and nega-
tive. However, the rational approximation contains complex
zeros, including some in the open right half-plane. Conse-
quently, the rational approximation is not minimum phase.
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