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1 Abstract

Facial expression recognition (FER) has attracted significant attention in

computer vision. It has many applications in real-life, such as human-computer

interactions, surveillance, visual reality, video conferencing, customer satisfac-

tion studies. Due to its fast-growing need in the market, many researchers have

proposed different methods to improve both accuracy and processing speed. So

far, many FER systems can achieve real-time recognition. Facial expression

classification has three steps: facial detection, facial alignment, and feature ex-

traction combined with classification. Traditional computer vision finds features

and then applies classifiers on top of the feature. However, due to the recent

rapid development of deep neural networks, both academic and industrial re-

search are sometimes more likely to combine feature extraction and classification

into one network structure. In this paper, we will discuss some effective meth-

ods that can be used for each step and will design our own automatic facial

expression detector.

2 Introduction

Facial expressions are more powerful than language. You can see through

a person by only reading his or her facial expression. A series of facial expres-

sion images have the potential to predict whether this person is lying or not.

However, the reality is that as humans, we cannot even assure that we would

not make any mistakes in reading facial expressions. Many datasets have seven

categories: anger, disgust, fear, happiness, sadness, surprise, and neutral. By

only reading faces, happiness, sadness, and surprise are relatively easy to dis-

tinguish, but the rest are not. Some other datasets that label facial emotions

with more than one emotion since people can have complex emotions as well.

For example, a person can be both disgusted and angry, which makes the classi-

fication task more difficult. In this paper, we focus on performing classification

on the FER2013 dataset which contains only one emotional label for each im-
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age. FER2013 is a dataset in the Kaggle competition [1], and it contains seven

different facial expressions. In the training data, there are 28709 images. Faces

in those images are registered which means that the faces are already aligned.

Each has a size of 48 × 48 pixels. The first-place winner on the leaderboard

achieved 71% accuracy. A subset of these images are shown in Fig. 1.

Figure 1: FER2013 data

In the FER2013 dataset, we are working with grey scale images. We usually

express a digital image by a M × N matrix. Customarily, we denote intensity

value of a pixel as aij or a(i, j), 1 ≤ i ≤ M , 1 ≤ j ≤ N . In an 8 bit-per-pixel

image, all elements aij are integers in the domain of [0,255]. This is stored as

UInt8 type. Here, aij = 0 is black and aij = 255 is white.

The dataset states that the faces have been automatically registered which

means that the faces are being centered and have roughly the same sizes. How-
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ever, our goal is to design an automatic detector. We are asked to detect and

create multiple registered faces from the original image or video frame. We can

do this by using the Viola-Jones face detector method and some face alignment

methods. We use face alignment methods to find facial landmarks, such as the

tip of a nose, canthi, etc. Next, we want these landmarks to occupy roughly the

same sizes within a 48× 48 image.

We organize the layout of this essay as follows. Section 3 and 4 deal with

facial detection and face alignment, respectively. In Section 5 and 6, we explain

feature extraction and classification, respectively. In Section 7, we discuss the

deep neural network method that can perform feature extraction and classifica-

tion. In Section 8, we provide some experimental results. Finally, in Section 9,

we draw some conclusions from our observations.

3 Face detection

3.1 Viola–Jones method

Paul Viola and Michael J. Jones [34] developed a face detection method

using the so-called “Haar feature and cascading classifier.” Even though the

Viola-Jones method is more robust in finding the front face than the side face,

it is still widely used in the field. This approach has four steps. It uses the Haar

feature to find common attributes of faces. The integral image method is then

used to calculate block subtractions efficiently. Next, it uses a classifier that can

distinguish faces from non-faces. Finally, a cascading classifier is used so that

we do not have to scan through an entire image with different size filters.

In general, faces have some common attributes. For example, the eye region

is darker than the cheeks, and the nose is brighter than surrounding area. The

Haar feature concentrates on the rectangular neighborhood region at a specific

location. It accumulates the pixel values from the sub-rectangular regions and

then subtracts them from each other. In the paper, we have two, three, and

four sub-rectangular Haar features which are shown in Fig. 2. For the two
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sub-rectangular Haar feature, we have six critical locations that include four

corners and two points on the boundary that join two sub-rectangles together.

Therefore, we need six, eight, and nine points to indicate the locations of the

block within two, three, and four sub-rectangular Haar features, respectively,

and we present these positions in red in Fig. 2. More importantly, the Haar

feature has different sizes to capture different scales of faces. Therefore, within

a 24× 24 image, we have 162336 features.

Figure 2: the Haar features [23]

The above computation is very expensive. Viola and Jones purposed an

“integral image method” to calculate the sum of pixel values in any rectangular

region of an image. Given an image f , the integral image I is defined as follows,

I(x, y) =
∑

1≤x′≤x

∑
1≤y′≤y

f(x′, y′) , (1)

where (x′, y′) indicates a pixel location. We show original image f and its

corresponding integral image I in Fig. 3 and Fig. 4, respectively. [9].

Figure 3: An original image f
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Figure 4: The integral image I

In order to compute the integral image more efficiently so that we do not have

to use the accumulated summation of the intensity values in every calculation,

we record the portion of the integral image and then calculate I as follows,

I(x, y) = f(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1) . (2)

For example, given f(2, 3) = 17 in Fig. 3, we want to find I(2, 3). From

the known values of I(x, y) for x < 2 and y < 3, we compute, using Eq. (1),

I(2, 3) = 17 + 71 + 56 − 43 = 101. Suppose a, b, c, d stands for the positions of

the rectangle in f . To calculate the sum of pixel values of rectangle abcd we

assume a = (xa, ya), b = (xb, yb), c = (xc, yc), and d = (xd, yd). The sum of

pixel values within the rectangle can be expressed as follows,

Sa,b,c,d = I(xd, yd)− I(xb, yb − 1)− I(xc − 1, yc) + I(xa − 1, ya − 1) . (3)

For example, referring back to Fig. 3, if we want to find the sum of the

pixel within the rectangle abcd such that a = (3, 4), b = (5, 4), c = (3, 5), and

d = (5, 5). Therefore, Sa,b,c,d = I(5, 5) − I(5, 3) − I(2, 5) + I(2, 3) = 450 −

254− 186 + 101 = 111. Now, we can find the Haar features efficiently by above

method.

AdaBoost [16] is the strong classifier that is able to classify faces and non-

faces. It has a series of weak classifiers and a weak classifier can be in any form.

Assume that each feature is a high dimensional data point and assume we have

n of these data points. We treat these data points as our training data. In this

case, the Haar features of a region may or may not contain a face is a data point.
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We assign a weight wi to each data point, setting wi = 1
n initially. Assuming

that we want to use J number of weak classifiers h, for each j ∈ [1, J ], we pick

the optimal hj which minimizes the weighted error as:

Lj =

∑n
i=1 wiI[yi 6= hj(xi)]∑n

i=1 wi
. (4)

Here, y is the label and I is the Boolean function. If our prediction hj(xi)

predicts the output correctly, I produces 1, otherwise 0. In extreme case, Lj =

0 indicates the weak classifier hj is good enough to classify all training data

correctly which is not likely if we have sufficient data to train. Lj = 1 indicates

the otherwise. Next, we define the corresponding weight αj = log
1−Lj

Lj
for this

particular weak classifier hj . If Lj is indeed equal to 0, even though, we fail

to assign weight; however, we already found the robust classifier. We simply

assume Lj is not equal to 0. By assignment weights to these classifiers, we can

overweight the weak classifier with lower Lj and underweight the weak classifier

perform poorly on training data. So far, we have obtained a weak classifier

that can reasonably classify training data as faces or non-faces. We now want

to pay more attention to the training data that was not classified correctly by

each weak classifier hj . Therefore, we update the weight of all training data

with respect to each weak classifier hj , putting more weight on the misclassified

training data as follows,

wnewi,j = wie
αjI[yi 6=hj(xi)] . (5)

We find the next weak classifier and continue this process until we obtain J

number of weak classifiers. We can simply assume weak classifier as a simple

threshold function. During each iteration, we determine how well each weak

classifier performs and then design our final classifier as follows,

h(x) = sign
( J∑
j=1

αjhj(x)
)

. (6)

Finally, we use the cascading method. The idea of cascading is to pay

attention to regions that potentially contain faces and removing areas that have
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no faces at the beginning. We cascade the strong classifiers that trained using

AdaBoost. At any level, if the strong classifier rejects a window which contains

faces, we reject this window.

4 Face alignment

4.1 Related work

Most face alignment methods can be traced back to the original paper on the

so-called active shape model (ASM) [11]. It is sometimes called the “smart snake

model” because ASM was developed from an active contour model, sometimes

called the “snake model.” We will be focusing on the active contour model

method since this is the ancestor of many other face alignment methods. Other

methods based on ASM include using the active appearance model (AAM) [10]

and Constrained Local Model [13]. Following this roadmap, the relatively new

algorithms that have been developed are Cascaded Pose Regression [15] and

Explicit Shape Regression [8][28].

Here, we also mention other methods such as predicting the facial landmarks

by gradient tree boosting and cascade [19], Supervised Descent Method com-

bined with Parameterized Appearance Model [37], and finding face alignment

with shape regression [8]. Also, Bulat [7] successfully aligns face using FAN

network and was able to transfer a 2D face to a 3D face. Mollahosseini [25] uses

bidirectional wrapping for AAM fitting. Zhu [41] uses mixing of trees model to

align faces.

4.2 Active Contour Model

Here, we introduce the Active Contour Model, also called the “snake model.”

Since Kass [18] invented this method in 1987, many segmentation methods other

than face alignment were developed based on the snake model. The snake model

is particularly useful when we know the approximate shape of the contour. It

is a deformation model that is based on the points that roughly outline the
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object which adjusts the position of these points to minimize an energy function.

We can think of ASM as a discrete version of an active contour model. The

difference is that instances of ASM are deformed by training data with hand-

crafted landmarks.

A snake mode has initial control points v(s) = [x(s), y(s)], s ∈ [0, 1] which

are connected head-to-tail to form the initial snake. The energy function has

the form:

E∗snake =

∫ 1

0

Esnake
(
v(s)

)
ds =

∫ 1

0

[Eint
(
v(s)

)
+Eimage

(
v(s)

)
+Econ

(
v(s)

)
]ds ,

(7)

where

Eint = (α(s) | vs(s) |2 +β(s) | vss(s) |2)/2 , (8)

and

Eimage = wlineEline + wedgeEedge + wtermEterm . (9)

Here, Eint, Eimage, and Econ are the internal energy, image forces, and con-

straint forces, respectively. The external energy is combined with image forces

and constraint forces. Our goal is to minimize the energy of the closed snake v.

In the internal energy equation, the first derivative of v indicates the elastic

energy and the second derivative of v gives us the bending energy of the snake.

The parameters α and β are adjustable. We can think of α as the coefficient for

succession, and it penalizes the distance of successive points on the snake. β is

coefficient of curvature. It punishes an oscillation of the snake. If we set β = 0,

we allow corners in our snake. We use internal energy to control the internal

deformation of the snake, and it can preserve the continuity and smoothness.

Internal energy has nothing to do with our object but only the shape of the

snake.

Now, suppose we have a facial image I. According to the above equations,

we can express the image forces as a weighted linear combination of Eline, Eedge
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and Eterm.

Generally, we define Eline = I(x, y) and the sign of wline to decide whether

the snake is attracted to brighter or darker contour. In addition, we want

Eedge = − | ∇I(x, y) |2 , (10)

so that the snake is attracted to the contour that has the larger gradient. As the

snake moves toward in the direction of increasing gradient, the external energy

decreases. Next, we define

Eterm =
∂θ

∂n⊥
=
∂2C/∂n2

⊥
∂C/∂n

=
CyyC

2
x − 2CxyCxCy + CxxC

2
y

(C2
x + C2

y)3/2
, (11)

where θ = tan−1(Cy/Cx), n = (cosθ, sinθ), n⊥ = (−sinθ, cosθ) and C is the

curvature of snake. Finally, Econ is optional and it can guide the snake to move

under some particular constraint.

Even though the snake model was initially designed for segmentation, many

researchers expanded the usage of snake model, and ASM is one of many exam-

ples. In ASM [11], the authors prepared hand labeled face images as training

data. They labeled critical landmarks and established correspondence for each

training example, such that using four landmarks on the mouth, three landmarks

on the tip of the nose and many other landmarks forming one high dimension

vector. Suppose that n landmarks are labelled on the 2D Cartesian coordinate

system, we will have 2n dimension vector. The authors denoted these landmarks

as feature points. The goal is to scale, rotate, and translate these feature points

to fit a new face.

In hand-craft training data, we are not able to label these features points

that exactly located on edges and this is the reason why snake model is useful.

By connecting these manually labeled features point, we have a contour that

indicates the rough shape of the organ such as a mouth. The Active Contour

Model can adjust the contour to better fit the shape of the organ and hence, we

can update the location of feature points in training data. For example, in Fig.

5, all feature points are away from the object. In this case, the external energy
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is high and the snake is attracted to higher gradient which is the boundary of

the object. Also, in Fig. 6, we display a result of face alignment using ASM.

Figure 5: adjust training feature points using snake model

Figure 6: result of face alignment using Active Shape Model [14]

5 Feature extraction

5.1 Related work

Some methods classify emotion using the Local binary patterns (LBP) fea-

ture [31, 30]. Many others use the Gabor feature [40]. Wiskott developed a

Gabor function-based elastic bunch graph matching (EBGM) to recognize facial

images [36]. It was an improvement of Dynamic Link Architecture framework

(DLA) by Lades [21]. Zhang’s method [39] uses the histogram of Gabor features

11



to recognize faces. These methods showed a significant improvement compared

to other techniques for face recognition.

Some other feature extraction methods also perform well. For example,

Mollahosseini [24] uses bidirectional warping of Active Appearance Model and

IntraFace to extract facial landmarks. IntraFace uses SIFT features for feature

mapping. Boughrara [6] presents the use of a biological vision based facial

description called perceived facial image and then reduces the dimension using

PCA. Kotsia [20] applies a 3D face mask called the “Candide grid” on an image.

Wang [35] uses 3D shaded facial range model. Bartlett [4] uses Haar features

with cascade. Tian uses [33] both geometric feature and appearance feature.

5.1.1 Local Binary Patterns

Ojala’s proposed LBP method [27] is a good method for texture feature

finding. LBP focuses on the intensity values of images. The operators of LBP

were extended to different shapes. But the main idea is the same. We use the

center pixel intensity as the threshold and label the surrounding pixel into a

binary pattern. It is very robust to illumination changes since the local region

will have the same lighting condition. We lower the pixel intensity value of the

original image, and we can see the LBP image in Fig. 7.
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Figure 7: Top: Input images with various lighting conditions. Bottom: The

corresponding LBP features.

The basic LBP operator has a size of 3×3 pixels. In this case, we have 8-bit

data which contains 256 combinations, and this is called LBP feature. To extend

this idea to larger operator sizes, the dimension, i.e., the combinations, of the

data will grow exponentially. The authors define an LBP feature as uniform

when it contains at most two bit-wise transitions, otherwise, it is defined as

circular. By setting the LBP feature this way, we can reduce the dimension

from 2P to P (P − 1) + 2. For the same operator that has the size of 3× 3, we

reduce features from 256 to 58. Also, the texture feature of images depends on

the size of LBP operator.

The authors record all circular patterns as one category and record every

combination in a uniform pattern. The reason for doing this is that a uniform

pattern contains 90% of useful patterns. Next, the authors define the histogram

based on the LBP features such that

Hi =
∑
x,y

I{fl(x, y) = i}, i = 0, ...n− 1 , (12)
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where n is the number of different labels produced by the LBP operator and

I(A) =

1 A is true ,

0 A is false .

(13)

In the facial expression recognition problem, our faces might have different

spatial positions. However, we find that finding LBP features for different facial

expressions yield no visual differences in our histogram of 59 dimension features.

We decided to modify the LBP to make it more robust to spatial changes by

dividing an image into different regions. For example, in Fig. 8, instead of

having a global LBP histogram, Ahonen [3] uses local LBP histograms. We

split 48 × 48 image into 6 × 6 blocks, so that each block contains 8 × 8 pixels.

We extract an LBP feature for each block instead of the whole image. Then

we concatenate all the histograms to form a whole to obtain a new feature

histogram and obtain 6× 6× 59=2124 dimension features. It is a local LBP in

a sense, since we are fixing local region, yet it contains more spatial information

than global LBP features. Also, we can integrate local LBP histogram to obtain

global LBP histogram.

Figure 8: divide an image into blocks

5.1.2 Gabor

Drawbacks of LBP due to orientation can be solved by Gabor filters. Dennis

Gabor invented the Gabor filter [17]. A Gabor filter is nothing more than a

product of a sinusoidal function and a Gaussian function. This is the equation

for a 2D Gabor filter:
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g(x, y;λ, θ, φ, γ) = exp

(
− x′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
, (14)

where x′ = x cos θ + y sin θ; and y′ = −x sin θ + y cos θ. The Gaussian serves

as a localized “window.” The frequency response is two Gaussian pulse corre-

sponding to the modulated sinusoid. We can visualize these Gabor filters in

Fig. 9.

Figure 9: Gabor features

The wavelength λ, aspect ratio γ, and orientation θ govern width, height,

and rotation of the Gabor filter, respectively. φ is the phase offset. In the

above equation, the value of σ is determined by λ and bandwidth b. For a large

bandwidth, the envelope increases allowing more stripes appear in the filter.

With the small bandwidth, the envelope tightens. We estimate σ as follows,

σ =
λ

π

√
ln 2

2
· 2b + 1

2b − 1
. (15)

In Fig. 9, we fix the bandwidth and vary the rest of the parameter to create

five different scales and eight different orientations Gabor filters.
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6 Classification

6.1 Support Vector Machine

Boser [5] and Cortes [12] initially proposed the idea of support vector ma-

chine (SVM). After decades of development of SVM algorithms, we now have

hard margin SVM, soft margin SVM and kernel SVM. SVM is famous because

it has a strong mathematical foundation and outstanding classification per-

formance. Hard margin SVM can classify the linearly separable problem and

cannot tolerate error. Soft margin SVM allows errors to occur at the wrong

side of decision boundary, but we always want to minimize error. Kernel SVM

is more suitable to handle high dimensional data.

In short, SVM is trying to find a decision boundary that separates two

classes, maximizing the distance between the decision boundary and the closest

points from each category. The decision boundary is the position that has the

maximum uncertainty. We consider the decision boundary as a hyperplane, and

there is an infinite number of hyperplanes that can separate different classes of

data. We need to find the “best” hyperplane that has the maximum margin.

Here, the definition of margin is the distance between the hyperplane and the

closest point. SVM is very robust in the two-class problem, also called the one

vs. one problem. For multiclass classification problem, also called the one vs.

all problem, we can pick one class and assign the rest data as the other class.

By doing this, we transfer one vs. all problem to one vs. one problem.

Assume that we can represent the hyperplane in Rn in the form βTx+β0 = 0,

where x, β, β0 ∈ Rn. Let the label of the data yi be either -1 or 1. We then

assume di = βTxi + β0 and classify on data based on sign(di). Let the margin

be the distance between hyperplane and the closest point which is equal to yidi.

Since yi and di have the same sign, their product is always positive. Our goal

is to maximize the margin. Next, we normalize di as follows,

di =
βTxi + β0
|| β ||

. (16)
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If the point is on the hyperplane di = 0, otherwise di > 0. We have the

following objective function,

max

(
min

(yi(βTxi + β0)

|| β ||
))

. (17)

Assume that we do not have point on the hyperplane, in which case yi(β
Txi+

β0) > 0, and yi(β
Txi+β0) ≥ C for some positive C. Now assume that β = β/C

and β0 = β0/C. Hence, yi(β
Txi + β0) ≥ 1. Therefore, our objective function

can be expressed in the following form,

max(
1

|| β ||
) . (18)

We can recast the objective function into L2 norm form as below,

min( 1
2 | β |

2)

yi(β
Txi + β0) ≥ 1 .

(19)

We can solve above optimization problem using the following Lagrangian

function,

L(β, β0, α) =
1

2
| β |2 −

n∑
i=1

αi[yi(β
Txi + β0)− 1]

=
1

2
| β |2 −βT

n∑
i=1

αiyixi −
n∑
i=1

αiyiβ0 −
n∑
i=1

αi ,

(20)

where α is the Lagrange multiplier. Taking the derivatives of L with respect to

β and β0 and setting them equal to 0 yields the following equations,

β =

n∑
i=1

αiyixi (21)

and

n∑
i=1

αiyi = 0 . (22)

We substitute the results into the Lagrangian and obtain the following:
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L(β, β0, α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj . (23)

subject to αi ≥ 0 and
∑n
i=1 αiyi = 0. We can use quadprog function in Matlab

to solve the quadratic problem in Eq. (22), Eq. (23) and Eq. (24). The

critical step here is to select the support vector to create our classifier. In

order for this problem to have a solution, the so-called Karush–Kuhn–Tucker

(KKT) optimization conditions must be satisfied. These include stationary, dual

feasibility, complementary slackness, and primal feasibility. We are concerned

about complementary slackness condition so that we want

αi[yi(β
Txi + β0)− 1] = 0 (24)

and we determine the support vector by satisfying

yi(β
Txi + β0) = 1 , (25)

where αi > 0. We then substitute Eq. (22) into

yi(β
Txi + β0) = 1 (26)

in order to find β0.

6.2 Multilayer Perceptron

Rumelhart [29] gave the structure of multilayer perceptron (MLP). The

structure of MLP has at least three layers, one input, one output and at least

one hidden layer, as illustrated in Fig. 10.

18



Figure 10: MLP

The number of neurons in the input layer is equivalent to the dimension of

inputs. There is nothing in the neuron in input layer but the inputs themselves.

In the hidden layers, neurons are fully connected with the neuron from input

layer with a set of weights w1 and a set of associated biases b1. Here, fully-

connected means that we have weights between a previous layer’s neurons and

the next layer’s neurons. The number of hidden layers and neurons in hidden

layers are hyper-parameters. Suppose we have input vector X, the input of the

first hidden layer is output from the input layer which is X as well. The neuron’s

structure starting in hidden layers are different than the previous neuron from

input layer. These neurons have two parts. First of all, they linearly transform

the input X with weight and the bias factor. Next, each neuron contains an

activation function f such as rectified linear unit (ReLu), sigmoid and tanh.
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Hence, we can write the output of the first hidden layer as f(w1X + b1), where

w1 ∈ w1 and b1 ∈ b1.

Finally, after hidden layer, output layer is fully connected to hidden layer

as well using w2 and b2, where w2 ∈ w2 and b2 ∈ b2. The number of neurons

in the layer is equivalent to the number of classes we have. The structure

of neuron in this layer is the same as them in the hidden layer, except for

using softmax, denoted as g, which is the activation function. The input of

output layer is output of hidden layer f(w1X + b1), and the final output is

g(w2f(w1X + b1) + b2).

We have an optimization problem so that we want to find the appropriate

wi and bi for the classification. We call this process “learning.” We use least

squared error to measure the loss between our corrected label and predicted

label. We can think of it as the following objective function,

J(w) =
1

2

∑
i

(yicorrect − yipredict)2 . (27)

where yipredict = g(w2f(w1Xi + b1) + b2) and yicorrect is the label of the training

data. We can solve this optimization problem by gradient decent. We randomize

all the initial weights and biases and update them using the Chain Rule.

7 Deep neural network

7.1 Related work

Ng [26] fine-tuned AlexNet and VGGNet using FER2013 data set and EmotiW

dataset. Tang [32] replaces softmax activation function on the last layer with

support vector machine. Liu and Yu [22, 38] use convolutional neural network

(CNN) to extract feature and classify emotion.
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7.2 Convolutional Neural Network

In a previous section, we discussed the simple structure of neural networks

such as the MLP. More recently CNN is one of many structures that perform

well in image classification. CNN has great potential to capture the essential

features of image inputs. What makes all the pixels in an image meaningful

depends on the pattern and order of arrangement. For example, the human

face has various objects, such as eyes, lips, nose, etc. Therefore, if the spatial

positions of these complex object are different, conventional neural networks

will fail to classify the classes since they assign one neuron to each pixel. As a

result, the spatial relationships of inputs are not preserved. On the other hand,

CNN can capture some level of spatial relationships. This capability is given

by the kernel. A larger size of a kernel has more power to capture the spatial

relationship but less ability to capture the local details of objects. We will start

by observing the structure of CNN in Fig. 11.

Figure 11: CNN’s structure [2]

We will not discuss the fully connected layer here since it is somehow sim-

ilar to MLP. MLP has the same structure as CNN except that MLP does not

have convolutional layers. We will denote the convolutional layer as Conv. All

layers are fully connected just like MLP. Good initialization can produce faster

convergence and has a lower chance of overfitting. Overfitting means that our

model is complex enough to classify training data correctly, but this model is

too complex to perform well on test data. Usually, we want to use kernel sizes
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of 3× 3 or 5× 5. Of course, we need 3× 3× 3 or 5× 5× 5 for an RGB image.

More neurons in Conv can capture more features, and we can pass through the

feature to the next Conv layer. To calculate the output of Conv, we will need

to introduce two important concepts, padding and stride. Assume that W and

O are the height/length of input and height/length of output, respectively, K

is the kernel size, P is the padding size, and S is the stride. We can express the

output size of Conv as follows:

O =
(W −K + 2P )

S
+ 1 . (28)

Fig. 12 shows output after we apply the trained kernel to the input data.

The first layer Conv can capture the texture feature of input, and the second

layer representation is good enough to detect eye, mouth, and other organs.

Figure 12: CNN’s features [2]

The number of parameters of a neural network dataset can easily go above

a million. Thanks to today’s technology, we have enough computational power

to easily calculate mathematical operations in a neural network. Sometimes,

however, we still want to save time in order to improve training efficiency. We

can do this by using 2 × 2 polling layer to downsample the size of input to a

quarter for a binary image. There are max pooling and average pooling, two

different kinds of pooling layers. Max pooling selects the max pixel value, and

average pooling takes the average in a window that has a size of 2× 2.
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8 Experiment

As mentioned earlier, there are 28709 input images in the FER2013 dataset.

We decided to divide them into 90% training data and 10% validation data.

Our results might be slightly different than the scores on the leaderboard since

the competitors in the challenge had 3589 more images to train during public

submission, and they submitted the result for the other 3589 images in private

test set. In other words, we can achieve at best the same result as the competi-

tors since we have fewer data to train. The purpose here, however, is only to

illustrate our method. Therefore, we are not going to apply any data augmen-

tation such as increasing our training data by flipping, rotating, or adding noise

to the training images.

We want to try three different features for this classification task. First

of all, CNN is a feature extraction method as well as a classification method.

It extracts features of an image using the convolutional layers and processes

the feature to fully connected layers. The fully connected layers can be used

for classification, as is done by MLP. However, CNN has its advantages and

disadvantages.

Traditionally, neural networks have some issues include overfitting, vanishing

gradient and easily stuck at the local minimum during backpropagation. The

concept of overfitting was discussed in Section 7. Conventional methods that

prevent overfitting include weight decay method, add noises to training data,

early stopping method and add dropout layers. Vanishing gradient means that

the parameters stop updating due to extremely small changes calculated by

Chain Rule. This will stop the system from further training. We can reduce

the effect of vanishing gradient by replacing sigmoid with ReLu. Also, to avoid

getting stuck at the local minimum, we can train the network by first using

relatively large learning rate and then reduce it. However, extracting CNN

features from the deep neural network is quite difficult since we are using Keras

and its codes are highly encapsulated. Therefore we are not going to extract

CNN feature and apply it on SVM. By using CNN, we use batch size 128, 20
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epochs, 2 Conv layers with 32 and 64 kernel with ReLu, respectively, one max

pooling layer with 0.25 dropout after it, and stochastic gradient descent with

0.1 learning rate. For the FC layers, we use 128 neurons with 0.5 dropouts. It

is worth mentioning that we are going to use the same structure as our MLP

for Gabor and LBP to make the results comparable.

Next, we are going to implement LBP and Gabor with the different clas-

sifiers. SVM has different kernel methods such as linear, radial basis function

(RBF), poly and sigmoid. We will also try MLP using LBP and Gabor features

as well. Combining two features has potential to achieve higher accuracy. In

Table 1 are shown the results of our experiments with various strategies.

Table 1: experiment results

methods training accuracy validation accuracy

LBP + SVMlinear 0.6898 0.4433

LBP + SVMrbf 0.3577 0.3448

LBP + SVMpoly 0.2518 0.2466

LBP + SVMsigmoid 0.2518 0.2466

Gabor + SVMlinear 0.9978 0.4284

Gabor + SVMrbf 0.7968 0.5426

Gabor + SVMpoly 0.9488 0.5806

Gabor + SVMsigmoid 0.2518 0.2466

CNN 0.7175 0.5047

LBP +MLP 0.5862 0.4928

Gabor +MLP 0.6697 0.5238

Figures 13, 14 and 15 show the accuracy curves of training data and vali-

dation data of CNN, LBP+MLP, and Gabor+MLP, respectively. From above

table, we calculate the training accuracy by dividing the number of successful

classification of training data by the numbers of training data. On the other

hand, we calculate the validation accuracy as calculating the training accuracy

but using the numbers of successful classification of validation data and the

numbers of validation data instead. We should pay more attention to the val-
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idation accuracy since training accuracy only tell us how likely this method

would be overfitting.

SVM in Sklearn package in Python does not provide the training and valida-

tion accuracy update history, and therefore, we only show the final accuracy in

the table. For anything that uses the neural network, we can plot the accuracy

versus epoch figure as above. The number of epoch means the number of times

that we update our prediction model. Plus, to replicate our result, as mentioned

earlier, we are using MLP with 128 neurons with 0.5 dropouts as we did in CNN.

Also, we are picking the best validation accuracy in 20 epochs’ training.

Figure 13: CNN plot

Figure 14: LBP+MLP plot
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Figure 15: Gabor+MLP plot

As we can observe from the table, overfitting appears almost in every column

in our result. So far, Gabor and SVM with poly kernel achieve the best score at

58.06% and Gabor feature, in general, perform better than LBP feature. There

is no absolute answer that which is better with classification, SVM or MLP.

However, SVM has a strong mathematical foundation while easy to use. MLP,

on the other hand, requires a lot of time for training and fine-tuning techniques

to achieve the optimal result.

9 Conclusion

Our experimental results on different methods are tabulated in the table

above. It can be seen that for the dataset under consideration, Gabor feature

and CNN feature perform in better describing facial expression. Gabor with

SVM is a bit more accurate. However, by fine-tuning the CNN, it has potential

to surpass other methods. On a side note, what exactly is happening in this

process is that people are trying to develop a mathematical form to represent

and identify human emotions!
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[36] Laurenz Wiskott, Norbert Krüger, N Kuiger, and Christoph Von Der Mals-

burg. Face recognition by elastic bunch graph matching. IEEE Transactions

on pattern analysis and machine intelligence, 19(7):775–779, 1997.

[37] Xuehan Xiong and Fernando De la Torre. Supervised descent method and

its applications to face alignment. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 532–539, 2013.

[38] Zhiding Yu and Cha Zhang. Image based static facial expression recognition

with multiple deep network learning. In Proceedings of the 2015 ACM on

International Conference on Multimodal Interaction, pages 435–442. ACM,

2015.

[39] Baochang Zhang, Shiguang Shan, Xilin Chen, and Wen Gao. Histogram

of gabor phase patterns (hgpp): A novel object representation approach

for face recognition. IEEE Transactions on Image Processing, 16(1):57–68,

2007.

[40] Zhengyou Zhang, Michael Lyons, Michael Schuster, and Shigeru Akamatsu.

Comparison between geometry-based and gabor-wavelets-based facial ex-

pression recognition using multi-layer perceptron. In Automatic Face and

Gesture Recognition, 1998. Proceedings. Third IEEE International Confer-

ence on, pages 454–459. IEEE, 1998.

[41] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and

landmark localization in the wild. In Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on, pages 2879–2886. IEEE, 2012.

31


