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1 Abstract

There are instances where an image has data missing from it, so some form of approximation
needs to be used to complete the image.In the literature, the approximating of missing
data is referred to as image inpainting. A solution to this problem is to use a local
process that when applied to the image, gives an approximation to the missing data.
In this paper, a multilevel approach is used in conjunction with a single-level solution
to the problem. This method has various advantages over other existing approaches
due to the fact it utilizes multiple levels. This allows for a more global understanding
of the problem since the fine and coarse level information are both considered. This
multilevel approach has the same order of computational complexity as the single-level
base method being used. Here, the coarse solution is used as an initial approximation
to the solution of the finer level. The order of the complexity is not increased, rather,
the size of the coarser levels decreases in such a way that the summation of those sizes
only doubles the computational cost of the single-level problem.

2 Introduction

There is currently an explosive growth in the field of image processing. A new bre
akthrough is discovered in area of digital computation and telecommunication almost
every month. Noticeable developments came from the public as computers became
affordable and new technologies such as smart phones and tablets now allowing the
internet to be accessed anywhere. As a result of this there has been a wave of instant
information available to many homes and businesses. This information can usually be
found in four forms: text, graphics, pictures, and multimedia presentations. Digital
images are pictures whose visual information has been transformed into a computer
ready format that is made up of binary 1s and Os. When referring to an image, it is
understood that the image is a still picture that does not change over time unlike a
video. Digital images are being used for storing, displaying, processing and transmitting



information at an ever increasing frequency. So it is important that there be effectively
engineered methods to allow for the efficient transmission, maintenance and improvement
of the visual integrity of this digital information.

Image processing is an important topic of research due to its large amount of varied
research and industrial applications. Many branches of science have sub disciplines
using recording devices and sensors to capture image data from the world. The data
is usually multidimensional and may be arranged in such a way to be viewable to us.
Viewable datasets such as these may also be regarded as images and processed using
methods that are currently in use in image processing, even if the datasets have not
been obtained from visible light sources such as x-rays or MRI.

There are instances where an image has data missing from it. In the literature, the
approximating of missing data is referred to as image inpainting. A way to correct
the incomplete image is to use a local process that when applied to the image, gives
an approximation to the missing data. In this paper, a multilevel approach is used in
conjunction with another single-level solution to the problem. This method has various
advantages over some other existing approaches because the multiple levels allow for a
more global understanding of the problem since the fine and coarse level information
are both being considered. In addition, this multilevel approach has the same order of
computational complexity as the single-level method being used as a base. Here the
coarse solution is used as an initial approximation to the solution of the finer level. The
order of the computational complexity is not increased since the size of the coarser levels
decrease, in such a way that the summation of those sizes only doubles the computational
cost of the single-level problem. The approach allows for repeated iterations to get a
better approximation.

The noise in the image affects a critical step in the original single level algorithm. The
problem often affected the final result to such an extent to be noticeably ‘wrong’ to the
human eye. A solution to the problem could be achieved in the following ways:

e Use an image restoration technique focusing on edge preservation
e Techniques that damp/remove noise

Neither approach can satisfactorily solve the issue. The edge preservation techniques
are time costly, and ineffectively integrated into the framework. The damping/removing
noise algorithms, while time-cost effective, suffers from requiring user defined values and
loss of edge information on the local scale. This paper explores an approach which
better solves the problem in a way that is less computationally intensive, and preserves
the edges on the local scale. The solution is line-space or 26 space.



Figure 1: From left to right there is an object in the foreground of the image which is
removed then filled in such a way as to appear natural. Image courtesy of [18]

3 Research Problem

Advances in technology allow a scene to be captured in the form of a picture stored in a
digital format. This format allows images to be altered with the aid of a computer. Often
when a picture is taken a part of the scene is judged to be undesirable and removed.
The problem is how should this now missing information be completed without causing
any other undesirable parts to appear within the scene? Figure 1 is the image of a bird
at the edge of a road. The bird is deemed to be undesirable in the image so the user
must manually remove the bird, creating a hole. This hole is called the mask in the
literature. The mask is completed by using an approximation. Once the approximation
is made, the image is said to be complete. One difficulty in completing an image is
matching multiple textures. In image processing, a texture gives us information about
the spatial arrangement of colour or intensities in parts of an image. In Figure 1 there
are two distinct textures that border on the hole that was the bird. There is grass and
there is road. Grass has many vertical lines that are relatively thin compared to the
resolution of the image. This image contains low amplitude but high frequency changes
in a local area. The road is smooth in a local area but has shadows cast on it that
change the intensity over a global area. A good approximation for the missing data
would match both of these textures in the mask. Mathematically this problem is said
to be ill-defined because there does not exist a unique solution to the problem since
being a ‘correct’ solution comes down to an individual preference for how the missing
data is approximated. The preference for an image completion is to have the human
brain perceive no artificially induced discrepancies, commonly referred to as wanting an
image to ‘look natural’. It is difficult to solve since the words ‘look natural’ are not well
defined mathematically, so forming an equation to solve can be time consuming and it
is quite difficult to know exactly what information our brain is using to determine if the



image ‘looks natural’ or not. In the literature so far, it has proved important that the
textures be replicated and continuing structures that extend into the missing data should
be completed as well. Those two aspects should be maintained on a local and global
scale simultaneously for the image to ‘look natural’. The main idea of the method being
presented in this paper is to achieve very simple structure completion by propagating
textures into the unknown region while maintaining a balance with respect to the global
and local scale. Employing a given image completion method that works on a local scale
within a suitable multilevel framework should achieve a completion that works globally
and it should therefore improve the robustness of the local method substantially. The
method will be used to complete synthetic and natural images.

4 Previous Work

Inpainting methods can generally be sorted into several categories. One approach is to
view the image as the domain of a problem where the values in the grid are the discretized
version of a PDE solution that is sought [3, 4, 11]. This approach utilizes numerical
methods to solve diffusion equations by extending the image into the missing data region
iteratively. In [7], convolution was used to propagate the diffusion to achieve a faster
restoration compared to previous PDE methods. In [24] the algorithm approximated
the missing data one pixel at a time by using the mean and variance of a block in
a multi-resolution framework. It was proposed in [23] to use edge detection methods
to approximate the structure of the data in the missing region. Once the structure is
completed, only then is the rest of the missing data approximated. All of these methods
produce very smooth results inside the missing data region which rarely matches the
smoothness of the known parts of the image. These methods work well when the region
of missing data is small in size compared to the entire domain. A second approach
to the problem is to use texture synthesis to fill regions of missing data that are large
compared to the domain, with texture sampled from the known data in the image. This
approach was used by [9, 15, 19, 27] to approximate the missing data pixel by pixel.
The value of the pixel was determined by sampling its local neighbourhood and using
a best case match found in the known data of the image. One way to speed up this
process involves copying a small region of known data to the missing data. The authors
of [2, 15] define these regions as patches or blocks and the process of approximating the
missing data as filling. From this, it is unclear in what order the mask should be filled.
The order should create an image that minimizes seams between the patches. What
constitutes a seam cannot be properly defined since it is a judgment of the human eye,
but in practice the idea is to minimize any ‘noticeable’ pattern of discontinuities in the
image that matches the pattern of the filling. [22] determines the shapes and which
order to fill them in by using a graph cutting algorithm. The problem of determining
the order to fill the missing data was shown to be relevant by Harrison in [19], where the
priority of the next patch in the missing region to be filled was chosen by the entropy
of its local neighbourhood. A combination of PDE and texture patching is used in [6].



Images were defined to be a combination of structure and texture, and completion of
the mask is done on each component separately. Once the image is decomposed into two
parts, a PDE method from [4] is used to fill the structured image and a texture synthesis
method from [14] is used for the textures of the decomposed image. Once both parts
are completed they are recombined to form the completion of the original image. This
method captures both structure and textural data when filling in the image. However,
since it uses a PDE diffusion model, it must be restricted to filling in small regions of
missing data otherwise it suffers the same problem as the previous algorithms. In [10]
the missing region was filled using a pyramid search in the known data, but the patch
size was arbitrary, so there may have been better choices available. [25] included a form
of guidance from the user where the user would extend the important structures into
the missing region. The algorithm would then fill in the gaps using Belief Propagation
[17] around the structures, and the remaining parts of the missing region would be filled
using texture synthesis patch by patch. However, the major issue of this algorithm is
that it requires supervision by the user, which may be time-consuming and inefficient.

The method presented in this paper is meant to compete with the method of Gazit [20].
Gazit uses multiple levels where each level has undergone edge-preserving smoothing of
the previous level. Gazit uses the approach of Criminisi [12] to determine the order in
which to fill the mask. A matching patch is selected by considering the Mean Square
Error (MSE) on all levels. The matching patch provides and initial guess that is refined
by moving from the smoothest level to the original image. Then a new patch in the
mask to fill is chosen according to the Criminisi [12] algorithm and the whole process
is repeated until the mask is completely filled in. One of the purposes of the algorithm
presented in this paper is to lower the computational complexity necessary to match the
single level algorithm of Criminisi [12] by using a multigrid framework, where the grids
on the different levels are decreasing in size by a factor of two in each dimension. The
Gazit [20] levels are all the same size. Using levels of the same size avoids problems
encountered using decreasing grid sizes. They are described later in this paper.

The algorithm of this paper uses the method of [12] which is a computationally feasible
method with complexity O(mnlog(n)) where m is the number of patches and n is the
number of pixels defined by the resolution of the image. The algorithm uses exemplar-based
synthesis to patch the missing region and the order of the patching is calculated by the
direction and size of gradients that border the boundary of the missing region. The goal
of Criminisi is to extend the linear structures located along the boundary of the missing
region into the missing region with texture synthesis so that both structure and texture
are filled in at the same time.

The method presented in this paper uses the single-level patching [12] as the smoother of
a multigrid cycle for solving elliptic PDEs. Using the PDE solver framework ensures that
the order of computational complexity is not increased from the single-level patching of
[12], while improving the final results.



5 Notation

Let I denote a digital image represented by a matrix of real numbers on a set of pixels ().
Let € be partitioned into two regions 2 = 2 US),,, where £, is the subset of pixels where
I is known and (), is the subset of pixels where [ is unknown. This unknown region is
the missing data and in the literature is referred to as the mask, see figure below. An
algorithm which fills in the missing data is referred to as a completion algorithm. It
can be defined as a function C such that J = C(I(f2)) satisfies J(2) = I(Q), where
C applied on an image with missing data returns an identical image except inside the
missing region which now has been approximated. C' approximates the missing data in
the image I with the goal of the now-filled missing region not appearing ‘unnatural’ to
the human eye, which is a subjective goal.

6 Bertalmio PDE method, [5]

6.1 Contribution

The algorithms devised for film restorations are not appropriate because they rely on
the mask which is small in comparison with the image and they rely on the existence
of information from several frames. Algorithms based on texture synthesis can fill large
regions, but require the user to specify what texture to put where the technique the
authors propose does not require any user intervention, once the region to be inpainted
has been selected the algorithm is able to simultaneously fill regions surrounded by
difference backgrounds without the user specifying “what to put where”. No assumptions
on the topology of the region to be inpainted or on the simplicity of the image are made.
The algorithm is devised for inpainting in structured regions (e.g. regions crossing
through boundaries) though it is not devised to reproduce large texture areas.

6.2 Algorithm

The algorithm is divided into two parts: Perona Malik Anisotropic diffusion, and the
new part that is the isophote pushing part. An isophote is a region of sharp change in
the pixel values that separate regions in a image. The Perona Malik part is to model
the image as a discretized PDE of the form: The isophote pushing part is described by
the authors of [5] as “estimate a variation of the smoothness, given by a discretization
of the 2D Laplacian in our case, and project this variation into the isophotes direction”.



6.3 Discussion

It is an early algorithm in the image inpainting field. The user only needs to define the
mask. It connects simple structure in the image. The algorithm suffers from various
limitations that render it difficult. It is complicated to implement. It uses only local
information. The algorithm only works on small regions. It is heuristic with no guarantee
of good result. There is no guarantee of convergence. It has no stopping criteria. It
has many free parameters such as: time step, diffusion constant, epsilon to counter
division by zeros, number of iterations of anisotropic diffusion, number of iterations of
their method.

6.4 Conclusion

As early algorithm in image inpainting it is quite good. The main advantage is the
automatic restoration of the mask. Unlike film restoration techniques, it does not use
any other frames to complete the mask. The algorithm easily admits a parallelization.
It fails to reproduce texture on large regions. The method is heuristic in nature with too
many free parameters to be able to easily tune the algorithm for a good result. There is
no stopping criteria.

7 Patch-based Inpainting

Many patch-based inpainting algorithms rely on the Mean Square Error (MSE) as a
measure of the similarity of two images. The similarity of two images can be used
to choose the best match. The benefit of using MSE is that it can be calculated
efficiently using a Fast Fourier Transform (FFT). The FFT MSE calculation reduces
linear calculations by orders of magnitude. The derivation below shows how to achieve
the speedup.

7.1 FFT with analytical derivation

Let f and g be the images that are being matched with p and ¢ as the shift in the
horizontal and vertical directions respectively. h represents a binary choice with it being
one when ¢ and j are between 0 and w — 1, zero otherwise. Using these functions allows
an O(n*) calculation to be completed in O(n?logy(n)). @ and b are the initial coordinates
of the patch to be matched in g from the image f.
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8 Efros and Leung [16]

8.1 Approach

The algorithm grows the texture, pixel by pixel, outwards from an initial seed. A single
pixel p is chosen as the unit of synthesis so that the model captures as much high
frequency information as possible. All previously synthesized pixels in a square window
around p (weighted to emphasize local structure) are used as the context. For each
new context the sample image is queried and the distribution of p is constructed as a
histogram of all possible values that occurred in the sample image. This non-parametric
sampling technique, although simple, is very powerful at capturing statistical processes
for which a good model has not been found.

8.2 Algorithm

It models texture as a Markov Random Field. It is assumed that the probability
distribution of brightness values for a pixel given the brightness values of its spatial
neighbourhood is independent of the rest of the image. The neighbourhood of a pixel
is modeled as a square window around that pixel. The size of the window is a free
parameter that specifies how stochastic the user believes this texture to be. If the texture
is presumed to be mainly regular at high spatial frequencies and mainly stochastic at low



spatial frequencies, the size of the window should be on the scale of the biggest regular
feature.

8.3 Synthesizing 1 pixel

Take a window centered at the pixel of dimensions w by w. Use a distance metric
to compare p with all possible pixels by using the metric to compare w(p) and the
windows around all the other pixels. Copy the intensity value of the pixel with the
lowest distance from w(p) to the missing pixel p. The metric itself is a normalized sum
of square differences weighted with a Gaussian to give higher weights to the pixels closer
to the unknown pixel itself. The success of the method is dependent on the assumption
that there exists self similarity within the image.

8.4 Synthesizing Texture

Discussed previously is the synthesizing of a pixel when its neighbourhood is known. This
(above) method cannot be used for inpainting because only some of its neighbourhood
pixels will be known. The method is unsuitable for inpainting because not all of the
neighbourhood pixel values are known. The correct solution would be to consider the
joint probability of all pixels together but this is intractable for images of realistic size.
To complete the image in a computationally realistic time, a heuristic is proposed where
the texture is grown in layers outward from a 3 by 3 seed randomly taken from the
sample image( in the case of hole filling, the synthesis proceeds from the edges of the
hole). Now for any point p to be synthesized only some of the pixel values in w(p) are
known (i.e. have already been synthesized). Thus the pixel synthesis algorithm must
be modified to handle unknown neighbourhood pixel values. This can be easily done
by only matching on the known values in w(p) and normalizing the error by the total
number of known pixels when computing the conditional PDF for p. This heuristic
does not guarantee that the PDF for p will stay valid as the rest of w(p) is filled in.
However, it appears to be a good approximation in practice. One can also treat this
as an initialization step for an iterative approach such as Gibbs sampling. However,
the trials have shown that Gibbs sampling produced very little improvement for most
textures. This lack of improvement indicates that the heuristic indeed provides a good
approximation to the desired conditional PDF.

8.5 Discussion

This method can be parallelized. There is only a single free parameter which is the
window size. Let n? be the number of pixels in the image, let m be the number of pixels
in the mask. Then FFT means going from O(mn?w?) to O(mn?log(n)) operations. The
constant in from is 3 and 8 respectively. The parallelization does not scale linearly with



the number of processors. The structure inside the mask must be very simple. The
algorithim may be slow if the size of the mask is O(n?) where the number of pixels
in the image is O(n?). Manual selection of the window size can be problematic if the
texture has many scales of textures. As with most texture synthesis procedures, only
frontal parallel textures are handled. However it is possible to use Shape-from-Texture
Techniques [1, 8, 21] to pre-warp an image into frontal-parallel position before synthesis
and post-warp afterwards. One problem of the algorithm is its tendency for some textures
to occasionally “slip” into a wrong part of the search space and start growing garbage
or get locked onto one place in the sample image and produce identical copies of the
original. These problems occur when the texture sample contains too many different
types of texels (or the same texels but differently illuminated) making it hard to find
close matches for the neighbourhood context window.

8.6 Conclusion

By performing in a pixel-by-pixel manner, the algorithm can capture and replicate high
frequency textures either random if the picture is random or structure if the picture is
structured. There is only a single free parameter The method admits a parallel version.
If the size of the mask is in the order of the number of pixels of the image then the
process takes O(n*w?) or with FFT O(n*log(n)) with constants 3 and 8 respectively.
The growing of garbage is a fault but the authors claim it can be remedied by automatic
backtracking when an accumulation of error is detected.

9 Criminisi [13]

The idea is to first fill regions of the mask that have linear structures penetrating the
boundary of the mask. This is done in a way that allows the linear structures to be
extended first, and then neighbouring regions are slowly filled in as well. Every pixel has
its corresponding patch in the same way that every patch has a central pixel. Features
of a pixel are computed using data within its patch. The pixels in the unknown region
located on the boundary to the known region represent the set of patches that are to
be filled in. Since each pixel has a patch, some patches overlap and share much of the
same data. The patch is square and its size is defined by the user. Selection of the patch
in the missing region is based on two components, the data term and the confidence term.

The data term D(p) of the patch p is then defined as the absolute value of their dot
product: D(p) = |VI* - 7| where n is the normal vector of the mask boundary. The
linear structures of a patch are determined by using the maximum gradient inside the
patch and then constructing a vector of equal magnitude that is perpendicular to the
gradient. That vector is constructed from the colour data within the image and defined
as VI+. The data term should then be normalized, which depends on the scale of the

10



colour system used. For example, gray-scale may only have 256 distinct colours whereas
RGB has 256*256*256 distinct colours.

The authors name the second component as the confidence of the patch, and in [12]
it is defined as C(p). It is a function of the relative size of the known region within the
target patch; patches with more known data are preferred. Here, the target patch is the
small region inside the missing data region that will be filled in by one patch. Pixels
in the known region have a fixed confidence of one. The confidence of pixels inside the
unknown region is calculated by the summation of all the confidences of the known pixels
inside the target patch: C(p) = 3_ ¢, C(q). It is then normalized over the total number
of pixels in the target patch. This scales the confidences to be between zero and one.

The target patch p which has the greatest priority is the first patch to be filled. The
product of the data term and the confidence term is called the priority of the patch:

P(p) = D(p)C(p).

Many algorithms are slow and benefit from a good initial guess for fast convergence.
A way to do this is a multilevel approach. It has its origins in Elliptic PDEs where a
method is called multigrid.

10 Multigrid

Before describing the method of this paper, a description of why multigrid is used to solve
PDEs is useful. There is a discretized problem whose solution has been approximated.
The exact error is unknown but it is known that the error is composed of high frequency
components and lower frequency components. It is known that the method used to
iterate towards the solution will smooth the high frequency error quickly but will not be
effective at smoothing the lower frequency errors. The high frequency error will quickly
disappear after a few iterations but the lower frequency errors require many iterations.
The idea of multigrid is to smooth the high frequency components and then interpolate
the error, now consisting of only the lower frequency components, from a fine grid to
a coarse grid. The grid swap interpolates some of the lower frequency components to
high frequency components since the number of points being used is smaller. Now the
iterative method can effectively decrease the lower frequency components of the fine grid
s high frequency error on the coarse grid. Multigrid is the framework that allows for the
iterative method to be used on different grid sizes.

The method proposed in this paper consists of an iteration that is repeated until
the image is as desired. The iteration is defined as a V-cycle because of its similarity
to a multigrid V-cycle. The description of a V-cycle in the multigrid literature begins
with a description of a two-level cycle which is extended recursively to achieve a V-cycle.
Here, a two-level cycle first approximates the missing data with some form of single-level
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The Multigrid V cycle stages applied to
initial grid of 33 X 33 size for illustration
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Figure 2: Image courtesy of Nasser M. Abbasi, UC Davis. In the context of this paper,
the residue is the now-filled image.
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completion [12] and then scales the image down by a factor of 2 in each dimension to get
a smaller interpolated image. The single-level approximation algorithm is then used on
this smaller image but altered to consider the approximated data now filling the missing
region from the larger image. The missing region in the smaller image is expanded by
a factor of 2 and copied to the original missing region of the large image. Finally the
altered single-level method is used on the larger image to get a new approximation.
Outlined above is a two level approach to solving the problem. A V-cycle is a recursive
form of this two-level method. In the two level method there is a large image and a small
image. The recursive part of the V-cycle is to call itself again with the small image as
the new large image.

11  The Proposed Algorithm

The key idea of the method presented in this paper is to fill the missing data with an
approximation and then iteratively improve the approximation.

Veycle: input(imLarge) // where imLarge is an image

if size of imlarge is bigger than is allowed by algorithm [12] then
return tmLarge;

end if

imV < AlteredCriminisi(imLarge)

imSmall < Coursen(imV)  // Scale input by a factor of 0.5

imW < Vcycle(imSmall)  // This is the recursive step

imX <« Interpolate(imW)  // Scale input by a factor of 2

imY < imLarge

imY ()  imX(Q,)

imLarge < AlteredCriminisi(imY’)

return imLarge

The next step is determining if an iterated approximation is within a defined bound of
an ideal solution. The stopping criterion for the iterations is user defined since an image
itself does not satisfy many of necessary assumptions that PDEs require. A scene in
nature does not necessarily have to be continuous at all points in the captured image.
Nor will it have enough pixels to be locally smooth. One criteria is to stop iterating if
nothing is different after an iteration, basically x4 = x; which should be included but
this method is not guaranteed to become stable because in experiments it was observed
that an image can oscillate between two images, i.e. xp19 = xp but z511 # . So the
best way to ensure the method finishing is to stop after an arbitrarily specified number
of iterations or when an iteration no longer changes the image, whichever happens first.
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The filling process

- -
s i

Figure 3: the importance of the filling order when dealing with concave target regions. (a)
A diagram showing an image and a selected target (in white). The remainder of the image is
the source. (b,c,d) Different stages in the concentric-layer filling of the target region. (d) The
onion-peel approach produces artifacts in the synthesized horizontal structure (b’, ¢’, d’) Filling
the target region by an edge-driven filling order achieves the desired artifact-free reconstruction.
(d’) the final edge-driven reconstruction, where the boundary between the two background image
regions has been reconstructed correctly. Image courtesy of [12]

Onion peel

Criminisi

A problem that was encountered in this multigrid setup was how the interpolation of the
mask region from level to level was to be handled. Gazit [20] avoided this by using levels
of the same size which meant the mask did not change between levels. However, in this
framework, the size of the mask does not half in each dimension in relation to the grid
dimensions, as the problem is moved to the coarser grid. Since the mask is unknown, the
pixels that belong to it propagate more unknown regions downwards to the coarser level.
This means that the number of levels in the V-cycle is restricted by the growth of the
mask. Should the mask cover the vast majority of a level then patch-based inpainting
will poorly fill the region, because of the lack of matching patches to choose from. This
problem is countered by restricting the number of coarser levels in the V-cycle. Multigrid
smoothing (the error is being smoothed) is not used because there is no correct solution
to achieve. The completion algorithm Criminisi() in its altered form takes the place
of the smoothing methods in a V-cycle. The completion algorithm is slightly altered in
two ways from [12]. The modifications are aimed to slightly improve one part of the
algorithm and to allow for the inclusion of the data from previous iterations.

The completion method of [12] is characterized by the order in which to fill in the
missing region and a similarity measure which determines what data will be used in the
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CD ,Source region

Figure 4: Notation diagram. Given the patch ¥,. n, is the normal to the contour {2
of the target region 2 and VI]DL is the isophote (direction and intensity) at point p. the
entire image is denoted with I. Image courtesy of [12]

patch. The authors of [12] showed that the order of completion affects how natural a
completion may be. A good comparison can be found in Figure 3.

The two alterations to the algorithm in [12] are small in nature. The authors of [12]
chose their data term by calculating the gradient of all pixels located within the target
patch and then chose the gradient with the maximum magnitude to be representative
of the central pixel. This means that multiple patches may have the same gradient
since the same maximum magnitude gradient pixel may be located within several target
patches. The modification is to multiply the gradient magnitude of the pixels by the
inverse of their distance from the center of the target patch. This means that the target
patch whose center is closest to the maximum gradient has a larger data term than
its immediate neighbours. The second alteration is to the similarity measure, which is
described first.

11.1  Similarity Measure

The completion algorithm requires that target patches are filled in with texture, in the
form of patches, from the known data of the image. This can be done in several ways
and the authors of [12] used one of the more common measures. The unknown pixels in
the target patch are replaced by pixels from a source patch. The source patch is selected
by it having the smallest deviation between itself and the target patch. The deviation is
defined as the square of the difference in colour values of the known pixels in the target
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patch and the known pixels in the source patch. This is then normalized by the number
of known pixels in the target patch. For a source patch S(p) the deviation is defined as:

‘;’Z(pk — S(pr))?

This is essentially the mean square error between the known pixels in the target patch
and the pixels of the source patch in the same relative position within the patch as the
target patch. The alteration is to have the mean square error over all the pixels in the
target patch and source patch. This is because there is already an approximation to
the solution in the missing data (But the very first approximation has no values in the
missing region). Including the approximations allow the iterations to improve the image
iteratively.

11.2 Computational Complexity

Although it may seem that using multiple images multiplies the cost of the entire
completion, the implementation presented in this paper does not increase the complexity
of the single-level completion algorithm [12]. This is because of the way in which the
smaller images in the V-cycle are created. As in multigrid for PDEs, the next grid is
smaller by a factor of two for every dimension of the domain, for images that means the
next smaller image is one quarter the size. Each level, or smaller image, also uses the
completion algorithm. Say that the completion algorithm has computational complexity
of O(mnlogn) where n is the number of pixels in the image and m is the number of
patches needed to approximate the missing data. The log(n) comes from using Fast
Fourier Transforms (FFTs) to calculate deviation between patches. Then summation of
each level gives:

mnlog(n) +mnlog(n/4)/4 + mnlog(n/16)/16 + mnlog(n/64)/64 + ...

<=mnlog(n)(1+1/44+1/16 +1/64+...)
= mnlog(n)(4/3)
Therefore, the cost of a V-cycle will only be a constant multiplied by the computational
cost of the algorithm of [12], and the algorithm presented in this paper is also O(mn log(n)).
Since stopping criteria is not guaranteed for the iterations, an arbitrary constant (k)
should be used for the number of iterations then the order of the algorithm is O(kmn log(n)).

It should also be noted that the multiple levels are restricted to ones whose size is greater
than the user defined size of a patch.

12 Results

The algorithm presented in this paper was tested on both synthetic and natural images
that were not chosen because they had the best results. They were chosen to illustrate
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what the algorithm achieved over the single-level method [12] and what problems were
encountered for both. All approximations in the V-cycle column were achieved with no
more than 4 V-cycles.

13 Conclusion

This paper introduces a new concept to textured patching in image inpainting. The
ability to repeatedly iterate an approximation while retaining the texture that is patched
in. This was done by using a framework of multilevel approaches with its origins in
solving elliptic PDEs. By using this multilevel framework in conjunction with a well
devised texture patching method, it allows global structures to affect the local area
around the missing data, instead of only using data from its local neighbours. Results
of experiments vary but they appear to always be at least as good as the single-level
method, and without incurring any additional computational complexity.

14 Future Research

There seem to be three areas where the method presented in this paper may be improved.
When interpolating from a small image to a large image perhaps a transition which takes
into account both images simultaneously would produce far less blur in the larger image
on the damped update of a V-cycle.

Another area of future research would be to change the similarity measure because
”mean-square error is a poor indicator of texture matching and also of gradient matching.
Entropy or variance may be considered as alternatives” [26]. Changing this may lead to
being able to remove the multilevel framework completely and only using the single-level
method described in [12].

Another similarity measure [26] which has been shown to work very well is the Structural
Similarity Index Measure (SSIM). It does however have a complexity cost at least
one order of magnitude greater than MSE. To get around this the SSIM could be
interspersed with MSE to reduce runtime but alternating between the two measures with
any frequency will still increase the computational complexity of the original algorithm.

It could also be argued that the method in which the data-term is calculated may be
improved by a more accurate reading of structure, because as can be seen in Figure 5 it
focuses only on large magnitude changes instead of actual structure. In Figure 5 it can
be seen that the line is a horizontal one and all the other lines are textures, but again
this is quite difficult to describe to a computer. Altering the work done in [6] may lead
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Figure 5: Here is a comparison between the Criminisi method and the method proposed
in this paper on several artificial images.
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Figure 6: In the center of the image there appears to be a large area of black extending
in an unnatural way from the wave. In the center of the image the bottom of the wave
appears to be unnaturally sharp.
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Figure 7: Experimental Results (part 2)
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Figure 9: Top-Left: original image. Top-Right: Image with Mask. Bottom-Left: Criminisi
Method. Bottom-Right: V-cycle. This image has two very distinct edges extending into the
missing region. Looking at in a linear structure sense, there does not appear to be a preference if
grass is over the top of the pole or the other way around. Noticeable artifacts have appeared in
the missing region making the whole scene appear inconsistent. The pole had begun to extend
upwards through the grass and the edge of the grass and the road was connected through the
mask.



Figure 10: Top-Left: original image. Top-Right: Image with Mask. Bottom-Left:
Criminisi Method. Bottom-Right: V-cycle. Parts inside the triangle were filled
incorrectly. The top of the triangle is slightly lopsided.



Figure 11: Top-Left: original image. Top-Right: Image with Mask. Bottom-Left:
Criminisi Method. Bottom-Right: V-cycle. Parts from the border were included in
the missing region. The approximation seems slightly smooth on close inspection.
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Figure 12: Top-Left: original image. Top-Right: Image with Mask. Bottom-Left:
Criminisi Method. Bottom-Right: V-cycle. Another eye was replicated in the Criminisi
solution above and left of her right eye. In the V-cycle solution the approximation
appears blurry
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to better results for capturing the structures.

It should be said that all areas of the algorithm may benefit from further research,
such as edge-preserving interpolation or the stopping criteria. Perhaps the use of Full
Multigrid (FMG) would be preferable to V-cycles.

Another improvement would be to calculate the isophotes using a method which averages
the directions within a moving window to provide a better estimate of the data-term
in the Criminisi algorithm. Currently I have a method which I have labeled 26. It is a
transform which allows the addition of vectors in a constructive manner when the vectors
lie along similar lines. In 26 lines become vectors in a simplistic sense. In Euclidean
space, if a vector is added to a negative version of itself, it disappears which makes sense
if it is worded as a vector minus itself. In 20-space these two concepts are different. In
20-space lines are the new vectors. An important distinction between lines and vectors
is that lines have two opposite directions, so reversing the line returns itself. So adding a
negative version of a line to itself should just yield the line back again. In this new space,
if you add a perpendicular line to itself it results in nothing. This is the basic concept
for 26-space. It is not rigorous in the sense of an actual space. It is more of an idea
of how to perform basic operations on vectors that result in a more line friendly approach.

This 26-space is well suited to multiple colour channels as well. Let us set up the
case where an image consists of 3 colour channels, so say red(R), green(G), blue(B).
They correspond to the functions f, g, and h respectively. Each pixel in the image
has a corresponding position in the domain, say (x, y) so we have the image being
flx,y),9(z,y),h(x,y). Now the setup is that we are performing a moving window
average over an entire image for the purpose of extending structures linearly into a
mask inside the image. However let us focus on just an average of a small window on
the edge of the mask. As we see the image there are three clear isophotes in each of the
colour channels. If the isophote of f and g are perpendicular and of equal magnitude
then they would cancel each other out in 20-space, which is a benefit of this algorithm
because the third function h has the isophote that decides the stalemate of the f and
g interaction. Without loss of generality, if the isophote of h is strongly correlated to f
then the isophote is 'probably’ real and should be recorded as strong. If the isophote
is not strongly correlated with the ones from either f and g then the structure is no
longer linear and too complex to naturally extend into the mask. This type of action is
strongly suited for the algorithm of Criminisi.

Another direction that this research could take is moving from still images to sequences
of images which come under the heading of video processing. Adapting this algorithm for
video can be done in a number of ways. We could treat each frame as a separate image
and run the algorithm, but this does not take advantage of the information available
in the image ahead and behind the current image. By using multiple images from
the sequence, there is more data that can be used when inpainting the mask. I have
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constructed a multigrid framework for still images which shows that this approach does
work. There needs to be a consistency between consecutive completed images so that
the linear structures extend in to the missing region is consistent across all frames. This
means more image processing techniques such as image registration and motion tracking
may have to be investigated to be employed because although there is only a short
interval in the time between frames, the scene will generally change.

A real world example of this is close-up time-lapse photography of a flower in bloom.
Usually since flowers reproduce in some way with pollen it attracts various insects onto
the petals for a short period of time. This means that there are insects appearing and
disappearing from frame to frame as the video runs. These insects are not a desirable
part of the video, if capturing the flower blooming is the purpose. Even in time-lapse
the image of the flower does not change drastically from one frame to the next, but
perhaps the insect that was captured in one frame has disappeared in the next. Using
information from frames ahead and behind the current frame will help to effectively
inpaint the mask better than using information from the surrounding area of the mask.
In just this example of time-lapse photography there are many undesirable objects such
as water droplets or shadows. Time-lapse photography is generally used to capture
scenes that humans understand better when viewed over a shorter period of time. The
idea is to capture events that are happening over a long period of time and not the
events in a short time frame. Eliminating the short time events is desirable in the world
of photography.

Another example of integrating this research into video processing would be to remove
an object that appears in multiple frames entirely from the video. Perhaps there is
something going on in the background that detracts from the visual appeal of video
and the background event needs to be removed. As long as the background event is
properly identified over the sequence of images, the mask can be inpainted properly
and the algorithm would definitely benefit from having the information from multiple
frames. This can be understood most easily when considering a motionless camera. By
just averaging all the frames you cancel out moving objects because as the objects move
they reveal the true information that was hidden behind them. By taking this approach
it may be possible to correctly restore the video to match the physical scene it was
capturing. Whereas in image processing the information behind the mask is not known
nor can it be determined exactly from the rest of the image. Video processing may
introduce another dimension into the problem but it also introduces new information
with meaningful consequences.
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