
Compactness bounds of spherically symmetric static objects

Lorena A. Contreras∗

Department of Applied Mathematics, University of Waterloo,

Waterloo, Ontario, N2L 3G1, Canada

1



Abstract

We review the problem of how compact a static, spherically symmetric matter configura-

tion can be without collapsing. After introducing the necessary background from differential

geometry and general relativity, we obtain the most general metrics describing static, spher-

ically symmetric spacetimes, both in the vacuum and in the presence of matter. We then

prove Buchdahl’s limit, which bounds the mass that a perfect fluid with non-negative energy

density can hold in a stable configuration of hydrostatic equilibrium. Finally, we compile a

collection of other compactness bounds that result from adopting different sets of assump-

tions than those used in Buchdahl’s theorem. We conclude with an outlook on potential

directions for future research on this topic.
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I. INTRODUCTION

Black holes are some of the most puzzling predictions of general relativity, and the

existence of singularities is one of the many motivations to develop a quantum theory

of gravity (where we would expect those singularities to become regular). However,

even six years after the publication of the first picture of a black hole [1], deciding

whether the dark, compact objects we observe are actual black holes in the sense of

general relativity is still an open question (that keeps attracting interest [2–4]).

Currently, one of the main arguments in favour of general relativistic black holes

lies precisely in that there seem to be upper bounds for how compact a star made of

regular matter can be without collapsing, as well as for how redshifted is the light it

emits. One example of this is Chandrasekhar’s limit for the mass of white dwarf and

neutron stars [5–7].

In this review, we will focus on Buchdahl’s limit and its generalizations, which can

be understood as mass limits, much like Chandrasekhar’s, but applicable to static,

spherically symmetric systems. The problem of studying the maximum compactness

of static spherically symmetric objects remains open, as it has become increasingly

clear that the assumptions underlying Buchdahl’s limit are too restrictive. Even the

assumption of non-negative energy density (which, as we will see, all generalizations

still adopt) fails when quantum fields are considered [8]. Indeed, quantum fields can

exhibit arbitrarily negative energy densities, although they are constrained by so-called

quantum energy inequalities [9–11]. All in all, the situation calls for a systematic

investigation of what happens when Buchdahl’s assumptions are relaxed and replaced

by alternative, possibly more realistic, conditions.

While ultimately this review aims to provide an overview of the question of how

compact a configuration of static, spherically symmetric matter fields can be, we have

taken a predominantly pedagogical approach. We have provided all the necessary tools

(even if in compressed form) to study the problem and understand the results, with the

goal of making the presentation as self-contained as possible. To this end, we start in

Sec. II by reviewing essential notions of differential geometry and general relativity. In
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Sec. III, we use those tools to study the general structure of static spherically symmetric

spacetimes, both in the vacuum and in the presence of static matter. After this, in

Sec. IV we introduce and prove the seminal contribution to this problem: Buchdahl’s

limit. In Sec. V, we offer a compilation of the compactness bounds that have been

obtained since Buchdahl’s work under different sets of assumptions, including some

results regarding the formation of trapped surfaces (or rather its lack thereof) in these

setups. We conclude in Sec. VI by highlighting several directions that, in our opinion,

are worth pursuing to further advance this line of research.

Before proceeding, an observation regarding notation: at all points, we will be using

natural units G = c = 1.

II. BACKGROUND

In this section, we review the fundamental tools of differential geometry and intro-

duce the basic concepts of general relativity that will be necessary for studying bounds

on the compactness of spherically symmetric, static objects. Our presentation loosely

follows Chapters 2, 3, and 4 of Wald’s book [12].

A. Differential geometry

We start by introducing manifolds and tangent spaces, which provide the underlying

structure for all the remaining constructions. Vectors, dual vectors, and tensors, as well

as their corresponding fields are subsequently defined, along with the notation that we

will use throughout the text. Then, we move on to present the crucial concept of a

metric, and, after introducing derivative operators and Christoffel symbols, we show

how they can be made compatible with the metric. This allows us to define geodesics.

We finish the review with the definition and properties of the Riemann tensor and

its related quantities (namely, the Ricci tensor, and the curvature and Kretschmann

scalars).

An n-dimensional (smooth) manifold M is a topological space endowed with an
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open cover {Uα : α ∈ I} ⊂ M (for some set of indices I) such that:

1. For each α ∈ I, there exists a homeomorphism ψα between Uα and an open

subset Oα ⊂ Rn (where here Rn is understood to have the standard topology).

Each homeomorphism ψα is called a coordinate system.

2. For every α, β ∈ I with Uα∩Uβ ̸= ∅, the homeomorphism ψβ◦ψ−1
α : ψα(Uα∩Uβ) →

ψβ(Uα∩Uβ) is actually a smooth (C∞) diffeomorphism, in the usual sense of real

analysis. We then say that the coordinate systems are compatible with each

other and that they form an atlas.

For an atlas to define a manifold, we require it to include all coordinate systems com-

patible with it.1 The compatibility between different coordinate systems allows us to

identify the infinitesimal structure of M with the infinitesimal structure of the subsets

of Rn it is locally homeomorphic to, endowing it with a notion of differential calculus:

for instance, we say that two manifolds M and M′ are diffeomorphic if there exists a

homeomorphism f : M → M′ such that, for every pair of coordinate systems ψα and

ψ′
β, the homeomorphism ψ′

β ◦ f ◦ ψ−1
α : Oα → O′

β is in fact a smooth diffeomorphism.

To truly endow a manifold with a notion of differential calculus, it is necessary to

define a notion of infinitesimal displacements, i.e., a notion of tangent vector at a point

p ∈ M. In order to do so, we first introduce the notion of derivation. Let C∞
p be the

space of all smooth real functions defined on a neighbourhood of p. A derivation at p

is a linear map D : C∞
p → R that satisfies the Leibniz’s rule:

D(fg) = f(p)D(g) + g(p)D(f), ∀ f, g ∈ C∞
p . (1)

Now, denote with (x1, . . . , xn) the canonical coordinates of Rn, and let ψ : U → Rn be

a coordinate system with p ∈ U , so that we denote ψ = (ψ1, . . . , ψn). The vector space

of derivations at a point p is then isomorphic to the space of directional derivatives in

Rn through the following correspondence:

D(f) =
n∑
µ=1

D(ψµ) ∂µf |p, ∂µf |p :=
∂

∂xµ
(f ◦ ψ−1)

∣∣∣
ψ(p)

. (2)

1 This requirement avoids the undesirable situation where two manifolds are considered different

simply because they have different but compatible atlases.
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Because the space of directional derivatives in Rn is isomorphic to its tangent space,

we finally identify the derivations with the tangent vectors, and therefore the space

of derivations with the tangent space at p, which we denote with TpM, of which

{∂1, . . . , ∂n} is a coordinate basis. A map v that assigns a tangent vector vp ∈ TpM

to each point of the manifold p ∈ M defines a vector field, which we understand to be

smooth if and only if, for each p ∈ M, v(f) is smooth (on its domain) for all f ∈ C∞
p .

Because the coordinate fields {∂1, . . . , ∂n} can be defined by Eq. (2) in U , in such a

neighbourhood of p we can write

v =
n∑
µ=1

v(ψµ)∂µ ≡ vµ∂µ, (3)

where vµ is the µ-th coordinate component of v with respect to the coordinates

(x1, . . . , xn), and we dropped the summation sign using Einstein’s notation. Notice

that, because the coordinate fields are trivially smooth, Eq. (3) implies that v is smooth

if and only if each vµ is a smooth function. Moreover, if we had been given a different

coordinate system ψ′ : U → Rn, with associated canonical coordinates (x′1, . . . , x′n),

then the components v′ν of v with respect to the new coordinates are related to the

old ones by

v′ν =
∂x′ν

∂xµ
vµ, where

∂x′ν

∂xµ
:=

∂

∂xµ
(ψ′ν ◦ ψ−1). (4)

Given the tangent space at a point p, TpM, we can define the cotangent space,

T ∗
pM, as the space of linear maps defined from TpM to R, whose elements we call

dual vectors. A map w∗ that assigns a dual vector w∗
p ∈ T ∗

pM to each point of the

manifold p ∈ M defines a dual vector field, which we understand to be smooth if an

only if w∗(v) is smooth for every smooth vector field v. Now, from the coordinate vector

fields {∂1, . . . , ∂n} ⊂ TpM, one can define dxµ as the only dual vector field satisfying

dxµ(∂ν) = δµν (for each µ, ν ∈ {1, . . . , n}), so that

w∗ =
n∑
µ=1

w∗(∂µ)dx
µ ≡ w∗

µdx
µ, (5)

where, as before, w∗
µ denotes the µ-th coordinate component of w∗ with respect to the

coordinates (x1, . . . , xn), and we used Einstein’s convention to drop the summation
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sign, as will be standard practice in everything that follows. Again, we find w∗ to

be smooth if and only if w∗
µ are all smooth functions. Moreover, given another set of

coordinates (x′1, . . . , x′n), the components of w∗ with respect to new basis relate to the

old ones by

w′∗
ν =

∂xµ

∂x′ν
w∗
µ, where

∂xµ

∂x′ν
:=

∂

∂x′ν
(ψµ ◦ ψ′−1). (6)

From Eqs. (3) and (5), and by the definition of the dual coordinate fields, we have that

w∗(v) = w∗
µv

µ. (7)

Here we notice there is some symmetry between the role played by the vector and the

dual vector: indeed, a tangent vector vp ∈ TpM can in fact be understood as a double

dual vector v∗∗p ∈ T ∗∗
p M, through

vp ≡ v∗∗p : T ∗
pM → R, w∗

p 7→ w∗
p(vp). (8)

More generally, vector fields can be put in one-to-one correspondence with double dual

vector fields by identifying v ≡ v∗∗, where

v∗∗(w∗) := w∗(v), (9)

for all dual vector fields w∗, and in particular vµ = v(dxµ). The idea that dual vectors

are linear maps on vectors, and vectors linear maps on dual vectors generalizes naturally

to the concept of tensor.

A tensor of type (k, l) at a point p ∈ M is a multilinear map

Sp : (T
∗
pM)k × (TpM)l → R. (10)

Notice that, with this definition, vectors and dual vectors are tensors of type (1, 0) and

(0, 1), respectively. As before, a map S that assigns a tensor Sp of type (k, l) to each

point p ∈ M defines a tensor field, which we understand to be smooth if and only if

its output after applying it to smooth vector and dual vector fields is always a smooth

function. To specify explicitly the type of a tensor, we imitate the notation followed

for vectors and dual vectors, by which the former have upper indices and the latter
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have lower indices. Thus, a tensor S of type (k, l) is denoted as Sa1...akb1...bl , where we

used the “abstract index notation”, which uses Latin indices to distinguish the tensor

as an object from its components, which are coordinate-dependent and are denoted

with Greek indices. Specifically, from Eqs. (3) and (5), we denote

Sµ1...µkν1...νl = S(dxµ1 , . . . , dxµk , ∂ν1 , . . . , ∂νl), (11)

so that

S(w∗
1, . . . ,w

∗
k, v1, . . . , vl) = Sµ1...µkν1...νlw1,µ1 · · ·wk,µkv

ν1
1 · · · vνll , (12)

and under a change of coordinates transforms as

S ′λ1...λk
ρ1...ρl

=
∂x′λ1

∂xµ1
. . .

∂x′λk

∂xµk
∂xν1

∂x′ρ1
. . .

∂xνl

∂x′ρl
Sµ1...µkν1...νl . (13)

Two tensorial operations are worth mentioning: the product and the contraction. The

tensor product of two tensors S and S̃ of types (k, l) and (m, r), respectively, is another

tensor of type (k +m, l + r) denoted as S⊗ S̃, whose components are given by

(S⊗ S̃)µ1...µkλ1...λmν1...νlρ1...ρr = Sµ1...µkν1...νlS̃
λ1...λm

ρ1...ρr
, (14)

which is easily shown to hold independently of the choice of coordinates. For this

reason, in the abstract index notation we simply write the product of Sa1...akb1...bl and

S̃c1...cmd1...dr as Sa1...akb1...blS̃
c1...cm

d1...dr
. Similarly, the contraction of two indices of a

tensor Sa1...akb1...bl of type (k, l) yields a tensor of type (k− 1, l− 1) which we denote as

Sa1...c...akb1...c...bl and has components Sµ1...λ...µkν1...λ...νl (notice here the use of Einstein’s

convention, and hence that the contraction essentially amounts to taking a trace).

Finally, we also define the symmetrization

S(a1...am) =
1

m!

∑
σ

Sσ(a1)...σ(am), (15)

and antisymmetrization

S[a1...am] =
1

m!

∑
σ

(−1)sgn(σ)Sσ(a1)...σ(am), (16)

where σ runs over all the permutations of m elements, and sgn(σ) is the sign of the

permutation. Eqs. (15) and (16) apply exactly to those cases where the indices that
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are being (anti)symmetrized are upper indices, as well as when they are only a subset

of total set of indices of the tensor.

Once we have introduced all the machinery and notation surrounding manifolds and

tensors (which are the language in which general relativity is formulated), we need to

endow the manifold with a structure that allows us to measure (infinitesimal) distances.

This is provided by a metric, which is a symmetric non-degenerate tensor field of type

(0, 2), which we denote

g ≡ gab = gµνdx
µdxν . (17)

The notation ds2 is often used instead of g, representing the fact that the metric is

understood as encoding the product between two tangent vectors, and in particular

applied on the same vector yields its “squared length”. Since tangent vectors represent

infinitesimal displacements, the metric provides a notion of infinitesimal lengths, as

promised. The metric also provides a canonical way to define a correspondence between

tangent and cotangent spaces,2 and therefore between vector and dual vector fields,

through the map

va 7→ va := gabv
b. (18)

Because the metric is non-degenerate, it is invertible, and therefore the map given in

Eq. (18) is in fact an isomorphism, and its inverse is given by

va 7→ va = gabvb, (19)

where gab is the inverse of the metric, i.e, the tensor of type (2, 0) that satisfies gabgbc =

δac , where δ
a
c is the identity map, whose components are given by the Kronecker delta

δµν in all coordinate systems. The operations given by Eqs. (18) and (19) are called

“lowering” and “rising” indices, and in general they can be applied to any upper or

lower index of a tensor.

2 Given a coordinate system, the linear extension of the map that associates ∂µ and dxµ defines an

isomorphism between vectors and dual vectors. However, this map is coordinate-dependent. It is

worth remarking that, on the contrary, the correspondence we established before between vectors

and double dual vectors is indeed canonical, in the sense that it can be established without reference

to a particular coordinate system (cf. Eq. (8)).
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Endowing a manifold with a metric also induces a preferred notion of how tensor

fields change from one point to another. In order to understand this we first need to

introduce the concept of covariant derivative or connection: a (covariant) derivative

∇ is a linear operator that maps tensor fields of type (k, l) to tensor fields of type

(k, l + 1),

∇ : Sa1...akb1...bl 7→ ∇cS
a1...ak

b1...bl
, (20)

that 1) generalizes the notion of derivation, in the sense that it acts on smooth functions

just like directional derivatives, i.e.,

∇µf = ∂µf ⇝ v(f) = va∇af, (21)

for all vector fields v and smooth functions f ; and 2) satisfies the Leibniz’s rule,

∇e(S
a1...ak

b1...bl
S̃c1...cmd1...dr) = ∇e(S

a1...ak
b1...bl

)S̃c1...cmd1...dr + Sa1...akb1...bl∇e(S̃
c1...cm

d1...dr
).

(22)

Here, we also demand that our derivative be torsion-free, i.e., that

∇a∇bf = ∇b∇af, ∀f ∈ C∞(M). (23)

Given a coordinate system, one can easily check that the associated ordinary deriva-

tive ∂ is a covariant derivative. More generally, a covariant derivative can always be

(perhaps, locally) related to the ordinary derivative by

∇µv
ν = ∂µv

ν + Γνµλv
λ, (24)

where Γνµλ are the so-called Christoffel symbols, which, because we have demanded

covariant derivatives to be torsion-free, must be symmetric in their lower indices. By

Leibniz’s rule, Eq. (24) generalizes to arbitrary tensors as

∇λS
µ1...µk

ν1...νl
= ∂λS

µ1...µk
ν1...νl

+
k∑
i=1

ΓµiλρS
µ1...ρ...µk

ν1...νl
−

l∑
j=1

ΓρλνjS
µ1...µk

ν1...ρ...νl
. (25)

Given a covariant derivative, we can define the notion of parallel transport along a

curve, as the operation by which a vector can be “transported along a curve without
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changing”. Concretely, given a curve C : I ⊂ R → M parametrized by t, we define its

tangent vector as the derivation c that satisfies

c(f) =
d

dt
(f ◦ C) = cµ∂µf =

df

dt
, where cµ =

d

dt
(ψµ ◦ C) ≡ dxµ

dt
. (26)

Because the covariant derivative is understood as a generalization of derivations, we

say that a vector va is parallel-transported along C if

cb∇bv
a = 0 ⇔ cν∂νv

µ + Γµνλc
νvλ =

dvµ

dt
+ Γµνλc

νvλ = 0, ∀µ. (27)

Notice that parallel transport allows us to establish a (curve-dependent) correspon-

dence between different tangent spaces. This is the subtle reason why covariant deriva-

tives are also called connections.

In this context, the metric allows us to choose an otherwise non-unique covari-

ant derivative by demanding that parallel-transported vectors preserve their product,

which requires that ∇cgab = 0. This is the condition that characterizes the Levi-Civita

connection, for which the Christoffel symbols are given by

Γµνλ =
gµρ

2

(
∂νgλρ + ∂λgνρ − ∂ρgνλ

)
. (28)

It is worth noting that Eq. (28) includes derivatives of the metric, and therefore depends

on how the metric changes across the manifold. For an Euclidean space (i.e., Rn with

the standard inner product), these derivatives vanish, and therefore the Levi-Civita

covariant derivative coincides with the ordinary derivative.

The Levi-Civita connection allows us to define geodesics, which are a generalization

of the Euclidean notion of “straight line”. By analogy with a straight line, a curve C

is said to be a geodesic (with a affine parametrization) if its tangent vector “does not

change along it” or, in the language we have been introducing here, if it is parallel-

transported along it. Namely, C is a geodesic if an only if it satisfies the geodesic

equation,

ca∇ac
b = 0 ⇔ cµ∂µc

ν + Γνµλc
µcλ =

d2xν

dt2
+ Γνµλ

dxµ

dt

dxλ

dt
= 0, ∀ν, (29)

where ca is the tangent vector of C.
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In Euclidean spaces, because the Levi-Civita derivative coincides with the ordinary

derivative, it is straightforward to see that if a vector is parallel-transported along a

closed curve, the final result of the parallel transport coincides with the initial one.

When this property fails to be satisfied in general, we say that the manifold M with

the metric g is curved. Otherwise, we say that it is flat. To measure curvature in a

manifold, we use the Riemann (curvature) tensor, which is defined as the tensor field

R d
abc that satisfies

(∇a∇b −∇b∇a)wc = R d
abc wd, (30)

for all dual vector fields wd, which, because the connection is torsion-free, also satisfies

(∇a∇b −∇b∇a)v
c = −R c

abd v
d, (31)

and more generally

(∇c∇d−∇c∇d)S
a1...ak

b1...bl
= −

k∑
i=1

R ai
cde Sa1...e...akb1...bl +

l∑
j=1

R
e

cdbj
Sa1...akb1...e...bl . (32)

From Eq. (30), one can see that the properties of the covariant derivative impose certain

symmetries on the Riemann tensor, reducing its number of independent components.

Namely, the tensor that results from lowering its only upper index, Rabcd = gdeR
e

abc , is

antisymmetric in the first two and last two indices, i.e.,

Rabcd = −Rbacd = −Rabdc = Rbadc, (33)

it is symmetric under swap of the first two and last two indices, i.e.,

Rabcd = Rcdab, (34)

and satisfies the Bianchi identity

∇[aRbc]de = 0. (35)

There a few relevant quantities that can be defined from the Riemann tensor: con-

tracting its second and fourth indices, we obtain the Ricci tensor,

Rac := R b
abc = gbdRabcd, (36)
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which, by Eq. (34), is a symmetric tensor, Rac = Rca. The trace of the Ricci tensor is

called the Ricci scalar or curvature scalar,

R := R a
a = gacRac. (37)

Finally, the Kretschmann scalar or Kretschmann invariant, which is often useful to

detect the existence of (curvature) singularities, is given by

K := RabcdR
abcd. (38)

B. General relativity

In general relativity, space and time are described jointly in a spacetime manifold

M, which is endowed with a metric g. The metric describing a spacetime manifold

is always Lorentzian, which means that at each point p ∈ M it is always possible to

find a basis {e0, e1 . . . , en} such that gp(eµ, eν) = 0 when µ ̸= ν, gp(e0, e0) = −1, and

gp(ej, ej) = 1 for all j ∈ {1, . . . , n}. We say that the pair formed by the spacetime

manifold and the metric, (M, g), define an (1 + n)-dimensional Lorentzian manifold.

Here, we will always consider n = 3.

The Lorentzian character of the spacetime manifold implies that we can always

classify a tangent vector v into three categories, depending on the value of its “squared

length” g(v, v) = gµνv
µvν = vµv

µ: (i) timelike, if vµv
µ < 0, (ii) spacelike, if vµv

µ > 0,

and (iii) null , if vµv
µ = 0. By analogy, we say that a curve is timelike, spacelike, or

null, if its tangent vector is so at all points. Similarly, we say that a hypersurface (i.e.,

a submanifold with codimension 1) is timelike, spacelike, or null, if its normal vector

is so at all points. Notice that while a vector can always be classified as timelike,

spacelike, or null, a given curve or hypersurface need not fall in any of these categories.

Given a spacelike curve C parametrized by s with tangent vector ca, we can compute

its proper length between s = s1 and s = s2 as

ℓ =

∫ s2

s1

√
gabcacb ds =

∫ s2

s1

√
gµν

dxµ

ds

dxν

ds
ds, (39)
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where, as in Sec. IIA, in the second equality we have particularized the expression for

a given coordinate system, with respect to which dxµ/ds is the tangent vector of the

curve. Analogously, given a timelike curve γ parametrized by t with tangent vector va,

we can compute its proper time between t = t1 and t = t2 as

τ =

∫ t2

t1

√
−gabvavb dt =

∫ t2

t1

√
−gµν

dxµ

dt

dxν

dt
dt, (40)

where the minus sign inside the square root is due to the timelike character of va. The

proper time between two points of a timelike curve is understood as the time interval

that an observer following the curve would measure, i.e., the time interval measured

in the “proper reference frame” of the trajectory. One can always reparametrize a

timelike curve in terms of τ , and the tangent vector in that case is called the 4-velocity

of the curve, ua, which from Eq. (40) must satisfy uau
a = −1. Now, (massive) particles

always follow timelike curves. Specifically, if a particle is free, i.e., it is not subjected

to any forces (besides gravity), then its 4-velocity “does not change”, that is, it is

parallel-transported along the trajectory, therefore satisfying

ua∇au
b = 0. (41)

Hence, freely falling particles follow the geodesics of the spacetime metric g, with their

equations of motion given by the geodesic equation, Eq. (41), along with the constraint

uau
a = −1. It is worth remarking that the latter constraint only needs to be imposed

as an initial condition, since the quantity uau
a is preserved along a geodesic, which is

why we can talk about timelike, spacelike, and null geodesics.

Now, in general relativity, the spacetime metric is not a given fixed background. On

the contrary, it depends on the matter content of the universe, which is described in

general through the stress-energy-momentum tensor (SET), Tab, defined as [13]

T ab =
2√
−g

δSmatter

δgab
, (42)

where g is the determinant of the metric g, and

Smatter =

∫
M

Lmatter

√
−g dx (43)
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is the action of the matter fields, computed from its Lagrangian function Lmatter. Given

an observer with 4-velocity va and a spacelike vector field along its trajectory sb,

• Tabv
avb is interpreted as the energy density of the matter field as measured by

the observer, and

• Tabv
asb is interpreted as themomentum density of the matter field in the direction

of sb, as measured by the observer

If additionally, we consider a second spacelike vector field rb, then Tabs
arb is interpreted

as the stress of the matter field along the hyperplane of normal sa in the direction of

rb. It is for this reason that we refer to Tab as the “stress-energy-momentum” tensor.

Of particular interest to us will be the case of perfect fluids, which are continuously

distributed matter fields that in their proper reference frames are characterized solely

by their energy density ρ, and their (isotropic) pressure p as the only internal stress.

Hence, given the fluid’s 4-velocity field ua, its SET is given by

Tab = ρuaub + p(gab + uaub). (44)

Once the stress-energy-momentum tensor has been introduced, we are in conditions

to formulate the central pillar of general relativity, Einstein’s equation, which relates

the curvature of spacetime and the matter’s SET through

Rab −
1

2
Rgab = 8πTab, (45)

where recall that Rab and R are the Ricci tensor and the curvature scalar, respectively.

The LHS of Einstein’s equation, which only depends on the geometry, is usually denoted

Gab and we call it the Einstein tensor. From the contraction of the Bianchi identity

(Eq. (35)) we find that

∇aGab = gac∇cGab = gac∇c

(
Rab +

1

2
Rgab

)
= 0, (46)

which by Einstein’s equation implies that

∇aTab = 0. (47)
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In flat spacetimes, Eq. (47) implies the conservation of energy. In general curved

spacetimes, however, this is no longer the case, although the equation can still be

interpreted as a “local conservation of energy”, in the sense that energy is indeed

approximately conserved in sufficiently small regions.

III. STATIC SPHERICALLY SYMMETRIC SPACETIMES

In this review we are concerned with static spherically symmetric objects, and there-

fore we will always be working with static spherically symmetric spacetimes. These are

spacetimes for which there exists a set of coordinates {t, r, θ, φ} such that the metric

can be written as3

g = −f(r)dt2 + h(r)dr2 + r2dΩ2, with dΩ2 = dθ2 + sin2 θdφ2, (48)

where r is the areal radius, defined by the property that the area A of each 2-sphere

of constant r satisfies A = 4πr2, and f and h are C2 functions of r. From the metric

given in Eq. (48), we find that the Einstein tensor reads

G t
t = − h′

rh2
− 1

r2

(
1− 1

h

)
, (49)

G r
r =

f ′

rfh
− 1

r2

(
1− 1

h

)
, (50)

G θ
θ = G φ

φ =
1

2
√
fh

d

dr

(
f ′

√
fh

)
+

f ′

2rfh
− h′

2rh2
, (51)

where the primes ′ denote differentiation with respect to r.

A. Vacuum solutions: the Schwarzschild metric

The first thing we can use Eqs. (49)–(51) for is to analyze the static spherically

symmetric vacuum solutions of Einstein’s equation, i.e., the ones that result from im-

posing T b
a = 0. In that case, we have that G t

t = G r
r = G θ

θ = G φ
φ = 0. Substracting

3 See [12] for a first-principles definition of staticity and spherical symmetry, as well as for the full

derivation of how these properties allow one to write the metric as in Eq. (48).
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Eqs. (50) and (49), multiplying them by rh, and equating the result to zero we find

that
h′

h
+
f ′

f
= 0 ⇔ d

dr

(
log h+ log f

)
=

d

dr
log(hf) = 0 ⇔ fh = C̃, (52)

for some fixed constant C̃ ∈ R. Hence, h = C̃/f , and since this constant can be

reabsorbed into the definition of t (by taking
√
C̃t as the new time coordinate), we

can simply take h = 1/f . Inserting this in Eq. (49), multiplying it by r2 and equating

it to zero we find

rf ′ + f − 1 =
d

dr
(rf)− 1 = 0 ⇒ rf = r + C, (53)

for some integration constants C ∈ R. This implies that

f(r) = 1 +
C

r
⇝ h =

(
1 +

C

r

)−1

. (54)

Notice that equating Eqs. (50) and (51) to zero does not add any additional constraints,

since after imposing h = 1/f , Eq. (50) becomes Eq. (49), and equating Eq. (51) to

zero yields
f ′′

2
+
f ′

r
= 0, (55)

which is a consequence of Eq. (53). Hence, the most general metric that describes a

static spherically symmetric spacetime without matter content is given by the so-called

Schwarzschild metric,

g = −
(
1 +

C

r

)
dt2 +

(
1 +

C

r

)−1

dr2 + r2(dθ2 + sin2 dφ2), (56)

for some C ∈ R, and some appropriately chosen coordinates {t, r, θ, φ}. Notice that

for C = 0 we recover the metric of a flat spacetime, i.e., the Minkowski metric

η = −dt2 + dr2 + r2(dθ2 + sin2 dφ2) = dt2 + dx2 + dy2 + dz2. (57)

In order to conclude that the metric has the form of Eq. (56) we only assumed

that the metric could be written as in Eq. (48), and that Eqs. (49)–(51) were equal to

zero. In particular, we did not use any properties that involved the whole manifold.

Therefore, we just proved the following theorem:
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Theorem (Schwarzschild). Let (M, g) be a (1 + 3)-dimensional Lorentzian manifold,

and let V ⊂ M be a subset where there exist coordinates {t, r, θ, φ} such that, restricted

to V, the metric can be written as

g = −f(r) dt2 + h(r) dr2 + r2dΩ2, (58)

for some f, h ∈ C2. Then, if g satisfies Einstein’s equation in the vacuum, there exists

C ∈ R such that

f(r) = 1 +
C

r
and h =

(
1 +

C

r

)−1

. (59)

It is worth remarking that here we are assuming that the spacetime is static, but this

assumption can be dropped: indeed, Birkhoff’s theorem [13] shows that any spherically

symmetric spacetime must be, in fact, static, and therefore Schwarzschild’s theorem

holds for general spherically symmetric spacetimes.

Now, in the previous derivation we were not particularly careful regarding the extent

to which the coordinates {t, r, θ, φ} cover the totality of the spacetime manifold, or

whether the functions h and f vanish at some point, which would make the metric

degenerate at that point. While Schwarzschild’s theorem still stands as long as the

ability to write the metric in the form of Eq. (48) is part of the assumptions, a few

remarks are in order.

First, if the {t, r, θ, φ} coordinates are constructed placing the center of symmetry

of the spacetime at r = 0, then obviously r = 0 is not covered by the coordinates.

However, if the coordinates cover a neighbourhood of this point, and in this neigh-

bourhood the stress-energy-momentum tensor vanishes, then the theorem still applies,

and all the relevant geometric quantities at r = 0 can be computed by taking the limit

r → 0+. The Kretschmann scalar can then be computed to be (see, e.g., [14])

K =
12C2

r6
, (60)

which diverges as r → 0+ as long as C ̸= 0. Hence, either C = 0 (and the spacetime

is flat around the center of symmetry) or there is a (curvature) singularity at r = 0.

This singularity, if it exists, is a physical one, and cannot be tamed by a change of
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coordinates—since this would not change the fact that K diverges as we approach the

center of symmetry.

Second, if C < 0, then it is possible that the {t, r, θ, φ} cover the region where

r = −C. At this 2-sphere, f would vanish and h would diverge, signalling that the

coordinate system breaks. Looking at Eq. (60), however, we see that the Kretschmann

invariant does not diverge, which can be a sign that the lack of regularity of the

metric at this surface is not due to a true physical singularity, but to the choice of

coordinates. Indeed, what happens here is that the vector fields (∂t)
a and ∇ar become

collinear at this surface, and the construction of the spherical coordinates breaks. The

metric, however, can be made regular by changing the coordinate system (typically to

Eddington-Finkelstein or Kruskal-Szekeres coordinates [12]). Notice that for the region

r < −C the metric can still be described by the coordinates used for the r > −C region,

but there the t coordinate becomes spacelike and the r coordinate becomes timelike.

At the boundary, r = −C, something interesting happens: all null geodesics point

inwards. This means, in particular, that light rays cannot escape the r < −C region,

in which case we say that it is a black hole region, and r = −C is what we call a

marginally trapped surface.4 On the other hand, the region r > −C is asymptotically

flat (i.e., gab → ηab as r → ∞), and the equation of motion of a free test particle in

that region is given by (see, e.g., [12])

ṙ2

2
+
C

2r

(
L

r2
+ 1

)
=
E2 − 1

2
, (61)

where the dot ˙ denotes differentiation with respect to the proper time, and E = (1 +

C/r)ṫ and L = r2φ̇ are conserved quantities of the motion. For r → ∞, Eq. (61) can

be approximated as
ṙ2

2
+
C

2r
≈ constant, (62)

which, by comparison with the equation for conservation of energy in Newtonian grav-

ity,
ṙ2

2
− M

r
= constant, (63)

4 Trapped surfaces and physical singularities are intimately connected, inasmuch as the existence of

the former is a fundamental ingredient for the formation of the latter [15].
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motivates the identification C ≡ −2M , where M is the effective mass of the inner

regions as perceived by an asymptotic observer. With this identification, Eq. (56) can

be rewritten in the familiar form

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (64)

B. Solutions in the presence of matter

We can now study what happens in the presence of a static fluid. In this case, T b
a

does not necessarily vanish, but the restrictions that staticity and spherical symmetry

impose on the Einstein tensor must also be satisfied by the SET: namely, the only

possibly non-zero components are T t
t , T r

r , and T θ
θ = T φ

φ , and since the metric (and

therefore the Einstein tensor) only depends on r, the corresponding components of the

SET may only depend on r, as well. We denote

T t
t ≡ −ρ(r), T r

r ≡ p(r), and T θ
θ = T φ

φ ≡ q(r), (65)

which we identify with the energy density, the radial pressure, and the tangential pres-

sure of the fluid, respectively. With this notation, and from Eqs. (49)–(51), Einstein’s

equations read

8πρ =
h′

rh2
+

1

r2

(
1− 1

h

)
, (66)

8πp =
f ′

rfh
− 1

r2

(
1− 1

h

)
, (67)

8πq =
1

2
√
fh

d

dr

(
f ′

√
fh

)
+

f ′

2rfh
− h′

2rh2
. (68)

Now, if we multiply Eq. (66) by r2 we get

8πr2ρ = r
h′

h2
+

(
1− 1

h

)
=

d

dr

[
r

(
1− 1

h

)]
, (69)

which can be integrated right away yielding

h(r) =

(
1− 2m(r)

r

)−1

, with m(r) = m0 + 4π

∫ r

0

ρ(s)s2 ds, (70)
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where m(r) is the Misner-Sharp mass function [16, 17]. Even though in the analysis

of the vacuum solutions we allowed the presence of singularities at r = 0, here we

assume that the fluid is regular at the center of symmetry, and therefore so should be

the metric. This means that the Einstein tensor should not diverge as r → 0+, which

from Eq. (49) implies

1− 1

h
∼ O(r2) ⇒ m(r) ∼ O(r3) as r → 0+, (71)

enforcing m0 = 0. This, however, does not mean that we are assuming 2m(r)/r < 1

everywhere. Rather, we are assuming that the center of symmetry is regular, and that

the coordinates {t, r, θ, φ} describe the spacetime metric at least up to the smallest r

such that 2m(r)/r = 1, i.e., at least up to the first marginally trapped surface, if it

exists. If such trapped surface does not exist, then the coordinates will cover the whole

spacetime manifold. Similarly, as long as 2m(r)/r < 1 and the radial pressure of the

fluid p is well defined, by Eq. (67) it must be that f > 0. Therefore, in this domain of

r we can write

f(r) = e2Φ(r), (72)

where Φ(r) is the redshift function. Introducing this and the expression for h in terms

of m into Eq. (67) yields

Φ′ =
m+ 4πr3p

r(r − 2m)
. (73)

To obtain the last equation of the system, which specifies p′, we could use Eq. (68), but

it is much more efficient to use the local conservation of the SET, ∇µT
µ

ν = 0, which,

for the particular case ν = r yields

p′ +

(
f ′

2f
+
h′

2h
+

2

r

)
p+

f ′

2f
ρ− h′

2h
p− 2

r
q = p′ +

f ′

2f
(ρ+ p) +

2

r
(p− q) = 0. (74)

Using that f ′/2f = Φ′, and by Eq. (73), we obtain

p′ = −(ρ+ p)
m+ 4πr3p

r(r − 2m)
− 2

r
(p− q). (75)

This is the equation of hydrostatic equilibrium, which can be interpreted as the equation

that needs to be satisfied for the fluid to “sustain itself”. Notice that from this equation
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we observe that for the metric to be regular at the center of symmetry, the radial and

tangential pressures must coincide in the origin r = 0. For the particular case in which

the fluid is perfect, and therefore isotropic (cf. Eq. (44)), p = q, and therefore Eq. (75)

reduces to

p′ = −(ρ+ p)
m+ 4πr3p

r(r − 2m)
, (76)

which is known as the Tolman-Oppenheimer-Volkoff equation (TOV). All in all, we

have shown that the most general metric that describes a static spherically symmetric

spacetime with a fluid can always be written as

g = −e2Φ(r)dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2, (77)

with m given by Eq. (71) (with m0 = 0), Φ obtained from Eq. (73), and p and q so

that Eq. (75) is satisfied.

Of particular interest to us will be the case in which the fluid is contained on a region

r ≤ R for which the metric is regular, and for r > R the vacuum Einstein’s equations

are satisfied. In that case, by Schwarzschild’s theorem, the metric for r > R must be

given by Eq. (56), for some appropriately chosen C, while for r < R it will be given

by Eq. (77). Now, it is apparent from examining Einstein’s equations, Eqs. (66)–(68),

that for them to be well-defined, f must be at least piecewise C2, and h must be at

least piecewise C1. As a consequence, f ′ and h are at least continuous at the interface

r = R. By Eq. (67), this implies that p is continuous at r = R; however, while m must

also be continuous, ρ need not be, and neither does q, as can be seen from Eq. (68).

Hence, the “radius of the fluid”, R, is fixed by the condition p(R) = 0, while ρ and

q do not necessarily vanish as we take their limits r → R−. Moreover, because h is

continuous at r = R, this also fixes the value of C for the Schwarzschild metric, which

must be C = −2m(R), or, taking the more standard form Eq. (64) as a reference,

M = m(R). Hence, under these assumptions, the metric takes the following piecewise

form:

g =


−e2Φ(r)dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2, r < R

−
(
1− 2m(R)

r

)
dt2 +

(
1− 2m(R)

r

)−1

dr2 + r2dΩ2, r > R
(78)
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where one should also guarantee that, at the interface, Israel’s junction conditions are

satisfied [18]. Then, we define the compactness of the fluid as

α :=
m(R)

R
≡ M

R
, (79)

which here we implicitly assumed to satisfy α < 1/2.

IV. BUCHDAHL’S LIMIT

Despite the generality of the metric given by Eq. (78), it turns out that for a perfect

fluid, and under fairly reasonable assumptions, the compactness α is upper-bounded by

a number strictly below 1/2. This tells us that in general relativity there is a maximum

mass that a perfect fluid star of a given radius R can sustain without collapsing, and

that maximum mass actually lies strictly below its Schwarzschild mass, i.e., the mass

required to form a black hole region in r ≤ R.

Theorem (Buchdahl [19]). Under the conditions with which we constructed the met-

ric given in Eq. (78), a perfect fluid whose energy density ρ is non-negative and a

monotonically decreasing function of the areal radius r satisfies

α <
4

9
. (80)

Proof. Because we are considering a perfect fluid, p = q, and therefore we can equate

the RHS of Eqs. (67) and (68), which after introducing the expression for h in terms

of m yields
d

dr

(
1

r
√
h

d
√
f

dr

)
=
√
fh

d

dr

(
m

r3

)
. (81)

Now, because ρ is monotonically decreasing, from the definition of m (Eq. (71)) we get

that

m(r) ≥ 4πρ(r)

∫ r

0

s2 ds =
4πr3

3
ρ(r) =

r

3
m′(r), (82)

which can be rewritten as

r3
d

dr

(
m

r3

)
≤ 0 ⇒ d

dr

(
m

r3

)
≤ 0. (83)
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Hence, from Eq. (81),
d

dr

(
1

r
√
h

d
√
f

dr

)
≤ 0. (84)

Integrating this inequality between an arbitrary r < R and the surface of the fluid at

r = R, and using the continuity of h and f ′ at the interface,

1

r
√
h

d
√
f

dr
≥ 1

R

√
1− 2M

R

d

dr

√
1− 2M

r

∣∣∣∣
r=R

=
M

R3
⇒ d

√
f

dr
≥ M

R3

r√
1− 2m(r)

r

, (85)

where, as at the end of Sec. III B, we have denoted M ≡ m(R). Finally, we integrate

this inequality from r = 0 to r = R, finding

√
f(0) ≤

√
1− 2M

R
− M

R3

∫ R

0

r√
1− 2m(r)

r

dr. (86)

Finally, we note that the assumptions for the construction of the metric in Eq. (78)

include that the fluid is regular at the center of symmetry, and therefore f(0) > 0.

Moreover, Eq. (83) can also be integrated from r to the surface of the fluid, yielding

M

R3
− m

r3
≤ 0 ⇒ m(r) ≥ Mr3

R3
. (87)

Hence, Eq. (86) implies that

0 <

√
1− 2M

R
− M

R3

∫ R

0

r√
1− 2Mr2

R3

dr =
3

2

√
1− 2M

R
− 1

2
⇒ α =

M

R
<

4

9
, (88)

which is precisely the aforementioned Buchdahl’s limit.

After completing the proof of the theorem, some remarks are in order:

1. As a byproduct of the proof, we have obtained that the density profile ρ(r)

that optimizes the compactness is the constant one, where the energy density

ρ(r) = ρc is equal to the central density at all radii r < R. In this very simple

case, the TOV equation, Eq. (76), can be integrated right away to obtain the

pressure profile,

p(r) = ρc

( √
1− 2Mr2/R3 −

√
1− 2M/R

3
√

1− 2M/R−
√

1− 2Mr2/R3

)
, (89)
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from which the central pressure (i.e., the pressure at r = 0) is given by

pc = ρc

(
1−

√
1− 2M/R

3
√
1− 2M/R− 1

)
. (90)

We readily see that for α = 4/9, pc diverges. The upper-bound on the compact-

ness appears because to sustain a higher mass in the same radius would require

an infinite central pressure.

2. The bound on the compactness given by Buchdahl’s theorem is sharp under the

conditions of its statement (i.e., ρ ≥ 0 and monotonically decreasing), meaning

that for any ϵ > 0 there exists a (constant) density profile whose compactness

satisfies 4
9
− ϵ < α < 4

9
, and therefore this is the best upper-bound one can

possibly give under these assumptions.

3. Remarkably, Buchdahl’s limit can be obtained without making any assumptions

about the pressure. However, it is worth mentioning that, for barotropic flu-

ids, i.e., those for which the pressure is a function of ρ, the condition that ρ

is monotonically decreasing is equivalent to demanding p ≥ 0 and that p be a

monotonically increasing function of ρ. Indeed, these two conditions, together

with ρ ≥ 0, imply that p be a monotonically decreasing function of r, by the

TOV equation. And if p increases with ρ and decreases with r, it must be the

case that ρ decreases with r. The significance of this equivalence lies in the fact

that the conditions p ≥ 0 and dp/dρ ≥ 0 can be argued to be necessary for the

stability of the fluid [20, 21].

V. OTHER COMPACTNESS BOUNDS

While Buchdahl’s result is powerful, its assumptions can be considered too restric-

tive. Isotropy, for instance, is hardly justified, as there are numerous astrophysical

models of stars that include anisotropies (see, e.g., [22–25]). Furthermore, as pointed

out by[26], once isotropy is lifted, there is no compelling reason to demand dρ/dr ≤ 0,

since now the tangential pressure may be able to sustain an outward increase in the
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density without rendering the system unstable. The simplest example of this is a soap

bubble. More complex but still reasonable models, such as the Einstein–Vlasov system

(which describes a self-gravitating collisionless gas), also fall outside the assumptions

of Buchdahl’s theorem, and yet they do obey Buchdahl’s limit [27].

Even within the realm of perfect fluids, however, one may challenge Buchdahl’s

constraints by comparing them with the standard energy conditions (see, e.g., [11]),

which, for perfect fluids, can be written in terms of the density and the pressure as

follows:

• Null energy condition (NEC): ρ+ p ≥ 0.

• Weak energy condition (WEC): ρ ≥ 0 and ρ+ p ≥ 0.

• Dominant energy condition (DEC): ρ ≥ |p|.

• Strong energy condition (SEC): ρ+ p ≥ 0 and ρ+ 3p ≥ 0.

While the weak energy condition guarantees ρ ≥ 0, the monotonicity condition needs

to be justified from stability arguments, as it is not implied by any energy condition. As

a matter of fact, the constant density solutions that saturate Buchdahl’s limit violate

the dominant energy condition, as remarked in [28] and [29], among several others,

which may indicate that for perfect fluids Buchdahl’s assumptions are actually too lax.

For all these reasons, in the last decades there has been an effort to study upper

bounds on the compactness under different sets of assumptions, both generalizing and

constraining Buchdahl’s result. A wide variety of methods have been employed by

different authors, and it is beyond the scope of this review to revisit them. However, it

is still useful to list here all the generalizations that (to the best of our knowledge) have

been proved since Buchdahl’s pioneering paper [19]. In what follows, as for Buchdahl’s

theorem, we work under the conditions with which we constructed the metric given in

Eq. (78), namely, that f and h in Eq. (48) are at least piecewise C2 and C1, respectively,

and that f > 0 and 2m(r)/r < 1. Moreover, ρc and pc denote the energy density and

pressure at the center r = 0, as before, and ρ̄ = 3m(r)/4πr3 denotes the average

density.
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Theorem (Guven and Ó Murchadha [26]). Let ρ ≥ 0. Then,

1. If ρ′ ≤ 0 and p ≥ q, then

α ≤ 4

9
, (91)

that is, Buchdahl’s limit still holds.

2. If p ≥ 0, and

(ρ− ρ̄) + 2(q − p) ≤ β(p+ ρ̄/3), (92)

for some β ≥ 0. Then,

α ≤ (β + 2)2

4

[√
1 +

4

(β + 2)2
− 1

]
. (93)

Theorem (Ivanov [28]). Let ρ > 0, ρ′ ≤ 0, q ≥ p ≥ 0. If 2(q − p) > ρ̄− ρ and q ≤ ϵρ

for some ϵ ≥ 0, then

4
√
1− 2α(2α)3ϵ ≥

∫ 2α

0

x3ϵ√
1− x

dx. (94)

Theorem (Barraco and Hamity [30]). Let ρ ≥ 0 be a monotonically decreasing function

of r, and let q = p ≤ βρ/3, for some β ≥ 0. Then,

α ≤ 1

2

[
1−

(
1 + ξ

1 + 3ξ

)2]
, (95)

where ξ = βρc/3ρ̄. In particular, for a constant density profile with β = 3 (DEC),

α ≤ 3/8. For β → ∞, we recover Buchdahl’s limit.

The last two theorems we mention in this section have the remarkable property

that the bounds they establish are sharp (i.e., optimal), a fact that they both prove

constructively by providing sequences of solutions that asymptotically approach the

bound.

Theorem (Andréasson [31]). Let ρ ≥ 0 and p ≥ 0. If p + q ≤ Ωρ for some Ω > 0,

then

sup
r>0

2m(r)

r
≤ (1 + 2Ω)2 − 1

(1 + 2Ω)2
. (96)

In particular,

α ≤ (1 + 2Ω)2 − 1

2(1 + 2Ω)2
. (97)
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Theorem (Bondi, Karageorgis, and Stalker [32, 33]). Let ρ, p, q ≥ 0 and such that the

mass function m is everywhere finite.

(i) If p+ 2q ≤ ρ (Vlasov-Einstein), then α ≤ 4/9.

(ii) If p = q (perfect fluid), then α ≤ 6
√
2− 8.

(iii) If q = p ≤ ρ (perfect fluid with DEC), then α ≲ 0.433.

(iv) If q ≤ ρ (DEC in tangential direction), then α ≤ 1+
√
2

5
.

(v) If q, p ≤ ρ (DEC), then α ≲ 0.482.

The numerical values provided in (iii) and (v) can be computed numerically up to

arbitrary precision.

Finally, it is worth noting that configurations allowing for negative energy densi-

ties or unrestricted anisotropies can attain compactness arbitrarily close to 1/2 (the

compactness of a black hole), as investigated in [29] through specific models.

A. Formation of trapped surfaces

We preambled the exhibition of the various results presented in Sec. V by remarking

that imposing 2m/r < 1 is a common assumption for all of them. However, it is

not always the case that this needs to be assumed: indeed, there are some results

regarding conditions under which one can guarantee that the radius R of the fluid

(where p(R) = 0) is reached without the formation of any trapped surface. The first

such result, to the best of our knowledge, was proven by Baumgarte and Rendall in [34]:

Theorem (Baumgarte and Rendall [34]). Let ρ ≥ 0 be a continuous function of r.

(i) (Isotropic case) If p = q and 0 < pc <∞, then 2m(r)/r < 1 for all r ≤ R.

(ii) (Anisotropic case) If q and p are C1 functions (with q(0) = p(0) = pc > 0), and

p is bounded, then 2m(r)/r < 1 for all r ≤ R.
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This result was later generalized by Mars, Mart́ın-Prats, and Senovilla in [35]:

Theorem (Mars, Mart́ın-Prats, and Senovilla [35]). Assume that the spacetime metric

is piecewise C2 and regular at the center of symmetry, and let it satisfy Israel’s junction

conditions on (at most) a finite number of hypersurfaces, where appropriate. If ρ +

p + 2q ≥ 0, then 2m(r)/r ≤ 1 everywhere. If, furthermore, p ≥ 0, then 2m(r)/r < 1

everywhere.

It is worth remarking that the condition ρ + p + 2q ≥ 0 can be obtained as a con-

sequence of the SEC. We close this section by pointing out that the aforementioned

theorem by Bondi, Karageorgis, and Stalker, was actually proven in [33] without as-

suming 2m(r)/r < 1. By arriving at the corresponding bounds, therefore, they also

end up showing that no trapped surfaces can form in each one of those scenarios.

VI. CONCLUSION AND OUTLOOK

We have introduced from scratch all the tools needed to study the basic properties of

static spherically symmetric spacetimes, to obtain Buchdahl’s limit on the compactness

of stable perfect fluids, and to understand the subsequent generalizations of Buchdahl’s

result obtained by other authors.

Besides its value as a pedagogical introduction to this fundamental problem, this

review also provides a useful perspective of its current landscape. Several strong results

have been established since Buchdahl’s seminal work, but there is still much to be

explored. Here, we highlight four clear directions in which there is room for further

progress:

• Sharp bounds should be found (or proven) in those cases where optimality has

not yet been established.

• So far, each result concerns a set of “reasonable” conditions. However, an exhaus-

tive analysis of all the potentially “reasonable” conditions and their interactions

(i.e., when more than one is imposed simultaneously) is still missing.
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• The potential formation of trapped surfaces under different sets of assumptions

should be analyzed systematically.

• In cases where the constructions proving sharpness involve interfaces, the fulfill-

ment of Israel’s junction conditions should be explicitly verified.

We hope to address at least some of these questions in future work.
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