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Hysteresis is a widely occuring phenomenon. It can be
found in a wide variety of natural and constructed systems.
Generally, a system is said to exhibit hysteresis when a char-
acteristic looping behaviour of the input-output graph is dis-
played. These loops can be due to a variety of causes. Fur-
thermore, the input-output graphs of periodic inputs at differ-
ent frequencies are generally identical. Existing definitions
of hysteresis are useful in different contexts but fail to fully
characterize it. In this paper, a number of different situa-
tions exhibiting hysteresis are described and analyzed. The
applications described are: an electronic comparator, gene
regulatory network, backlash, beam in a magnetic field, a
class of smart materials and inelastic springs. The common
features of these widely varying situations are identified and
summarized in a final section that includes a new definition
for hysteresis.

1 Introduction
Hysteresis occurs in many natural and constructed sys-

tems.
The relay shown in Figures 1 is a simple example of

a system exhibiting hysteretic behaviour. The relay in the
Figure is centered at s with an offset of r. When the signal
u > s + r, the relay is at +1. As the input decreases, the
output R remains at +1 until the lower trigger point s− r is
reached. At this point the output switches to −1. When the
signal is increasing, the output remains at −1 until u = s+ r.
At this point, the output switches to +1. For inputs in the
range s−r < u< s+r the output can be +1 or−1, depending
on past history. Thus, the output may lag the input by 2r.
This lag prevents devices such as thermostats from chattering
as the temperature moves just above or below the setpoint.
Hysteretic behaviour is also apparent in many other contexts,
such as play in mechanical gears and smart materials [1–6].
Hysteresis also occurs naturally in a number of systems such
as genetic regulatory systems [2]. All these examples are
discussed in more detail later in this paper.

The first mention of hysteresis appeared in an 1885 pa-
per on magnetism [7]. Ewing wrote

In testing the changes of thermoelectric quality
which a stretched wire underwent when succes-
sively loaded and unloaded so as to suffer alternate
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application and removal of tensile stress, I found
that during increment and decrement of the load
equal values of load were associated with widely
different values of thermoelectric quality; the differ-
ence being mainly of this character, that the changes
of thermoelectric quality lagged behind the changes
of stress. This lagging is, however, a static phe-
nomenon, for it is sensibly unaffected by the speed
at which the load is changed; and again, when any
state of load is maintained constant, the thermoelec-
tric quality does not change with lapse of time...
Magnetic phenomena present many instances of a
similar action- some of which will be described be-
low. Thus, when a magnetised piece of iron is al-
ternately subjected to pull and relation of pull suffi-
ciently often to make the magnetic changes cyclic,
these lag behind the changes of stress in much the
same way as the changes of thermoelectric quality
do. I found it convenient to have a name for this
peculiar action, and accordingly called it Hysteresis
(from ν̆στερέω, to lag behind).

This paragraph highlights two key aspects of hysteresis that
are still regarded as characteristic today: “lagging” and rate-
independence.

Lagging is still generally regarded as a key component
of hysteresis. The online version of the Merriam-Webster
dictionary defines hysteresis as

retardation of an effect when the forces acting upon
a body are changed (as if from viscosity or internal
friction) ; especially : a lagging in the values of
resulting magnetization in a magnetic material (as
iron) due to a changing magnetizing force. [8]

In the simple relay shown in Figure 1, changes in the output
lag changes in input. However, the output of a linear delay
system such as y(t) = u(t−1) also lags the input. Such sys-
tems would not be described as hysteretic.

The second property mentioned by Ewing, rate inde-
pendence, means that an input/output plot only depends on
the values of the input, but not the speed at which the in-
put is changed. In a rate-independent system such as those
shown in Figures 1 and 2 the input/output plot with input
u(t) = M sin(t) is identical to that with u(t) = M sin(10t).
More formally, let a differentiable function ϕ : R+ → R+

be a time transformation if ϕ(t) is increasing and satisfies



ϕ(0) = 0 and limt→∞ ϕ(t) = ∞. For any interval I ⊂ R+, let
Map(I) indicate the set of real-valued functions defined on
I.

Definition 1. [9] An operator Γ : U⊂Map(I)→Map(I)
is rate independent if for all time transformations ϕ, and all
inputs v ∈ U,

(Γv)◦ϕ = Γ(v◦ϕ).

In [10, pg. 13] hysteresis is defined as rate independence
combined with a memory effect, or dependence of previous
values of the input.

True rate independence implies that the system is able
to transition arbitrarily quickly. For physical systems this
is an idealization. For instance, in the magnetic materials
discussed in the above quote, changes in magnetization are
controlled by a characteristic time constant. Furthermore,
thermal fluctuations means that magnetization can change
even when the input doesn’t change. Thus, rate indepen-
dence in magnetic materials is an approximation valid when
thermal effects are low and the input does not change ex-
tremely fast. Similarly, it is not possible to vary the temper-
ature of a shape memory alloy arbitrarily quickly, so from a
practical point of view, the temperature-strain curves in these
materials typically display rate independence. Rate indepen-
dence/dependence in the context of various examples is dis-
cussed later in this paper.

Definition 2. [1, 10]. An operator Γ : U ⊂ Map(I) →
Map(I) that is both causal and rate-independent is said to
be a hysteresis operator.

This definition has been quite useful in analysis of sys-
tems involving hysteresis - see for example, [12–15]. How-
ever, there are a couple of difficulties with this approach.
First, the definition is so general that it can include systems
which would not typically be regarded as hysteretic. A trivial
example is y = u; another is y(t) = u(t−1). Furthermore, as
mentioned above, many systems regarded as hysteretic have
behaviour that is rate-independent at low input rates but rate-
dependent at high input rates.

Another typical characteristic of hysteretic systems is
looping behaviour, illustrated in Figures 1 and 2. One stan-
dard text [1] writes: When speaking of hysteresis, one usually
refers to a relation between 2 scalar time-dependent quanti-
ties that cannot be expressed in terms of a single value func-
tion, but takes the form of loops. However, the loop shown
in Figure 3 is produced by a system that would not be de-
scribed as hysteretic. This linear system is clearly not rate-
independent and the curves produced by a periodic input will
converge to a line as the frequency approaches zero. In fact,
any loop in the input-output curve of a linear system with
a periodic input degenerates to a single curve as the input
frequency decreases. In [16], it is suggested that systems for
which the input-output map has non-trivial closed curves that

persist for a periodic input as the frequency of the input sig-
nal approaches zero be regarded as hysteretic. This is useful
as a test since it excludes systems (such as the linear system
in Figure 3) where the looping is a purely rate-dependent
phenomenon. However, in magnetic materials, magnetism
can approach the single-valued anhysteretic curve as the rate
of change of the applied field approaches zero [17]. Since
the response of a system to an input is affected by the his-
tory of the current input (see again the simple relay in Figure
1), hysteretic systems are often described as having mem-
ory. The state x in the familiar dynamical system description
ẋ(t) = f (x, t) encodes the memory of a system. Knowledge
of the current state, and the inputs is sufficient to determine
the output. Consider a simple integrator:

ẋ(t) = u(t)

y(t) = x(t).

The output y is the integral of the input u and the state x stores
the memory of the system, the current state of the integrator.
This linear system would not be described as hysteretic.

In this paper a number of common examples of systems
that are said to be hysteretic are examined in detail: an elec-
tronic trigger, a biological switch, smart materials, mechani-
cal play and inelastic springs. A model for a magneto-elastic
beam is also analysed and shown to display hysteretic be-
haviour. The common features of these systems are analysed
and used to formulate a definition of hysteresis. This paper
is not intended to be a review of the extensive literature on
hysteretic systems. Some previous works that do provide re-
views are [1, 4, 10, 18].

2 Schmitt Trigger
A comparator or switch changes its output from some

level y− to y+ when the input increases above a reference
level. Conversely, the output is dropped from y+ to y− as the
input drops below the reference level. A familiar example is
a household thermostat where the furnace is turned on when
the room temperature falls below the set-point, and turned
off when the temperature rises above the setpoint. The prob-
lem with a simple switch is that there is a tendency to os-
cillate about the setpoint as the input falls slightly above or
below the setpoint. Such oscillations can be caused by noise
alone. For this reason, more complicated comparators with a
response similar to that of the simple relay shown in Figure
1 are used.

A common way to implement such a device is a circuit
known as a Schmitt trigger [19]. The idea for this device
arose as part of Otto Schmitt’s doctoral work in the 1930’s
on developing an electronic device to mimic the generation
and propagation of action potentials along nerve fibres in
squid. Schmitt continued his work in biophysics and is cred-
ited with developing the word biomimetics towards the end
of his career. [20].

A Schmitt trigger is used today in many applications,
such as thermostats and reduction of chatter in circuits [3].



Experimental response of a Schmitt trigger is shown in Fig-
ure 4. It is apparent that the response of a Schmitt trigger is
similar to that of the simple relay shown in Figure 1.

Although Schmitt’s original realization [19] used vac-
uum tubes, current implementations use electronics, such as
the operational amplifier (op amp) shown in Figures 5. In
theory, an op amp multiples (amplifies) the input voltage v
by a fixed amount, say A, to produce an output voltage Av.
In practice, this amplification only occurs in a certain range
of voltage and op amps saturate beyond a certain point. The
maximum and minimum voltages are contained within fixed
limits. Elementary descriptions of the behaviour of a Schmitt
trigger, for example, that in [21] use the basic circuit diagram
Figure 5a and rely on the fact that the op amp saturates be-
yond a certain point. The analysis is separate for each oper-
ating region and depends on whether the input is increasing
or decreasing.

A better understanding of the trigger’s behaviour can be
obtained by using a more accurate model for the op amp that
includes its capacitance, as shown in Figure 5b. The stability
analysis on the differential equation that describes this circuit
predicts the behaviour of the Schmitt trigger [3]. Consider
the equivalent circuit shown in Figure 5c where the active
element f describes a finite-gain op-amp. Let E− > 0 and
E+ > 0 denote the lower and upper saturation voltages re-
spectively, A� 1 the op amp gain, and define

f (v) =


−E− v≤−E−

A
Av −E−

A < v < E+
A

E+ v≥ E+
A

(1)

so that vo = f (v). For simplicity in this analysis we will as-
sume the upper and lower saturation voltages are symmetric:
E− = E+ = E.

The input in this case is the input voltage vi, while the
output is the op amp output voltage vo. Defining

g(vi,v) = Gi(vi− v)+G f (vo− v) (2)

where vo = f (v) and Gi =
1
Ri

, G f =
1

R f
, application of Kir-

choff’s Current Law to the circuit in Figure 5c yields the dif-
ferential equation for the capacitor voltage v,

Cp
dv
dt

= g(vi,v). (3)

The capacitance Cp is very small, about 10−11F ; see for
example, [21, chap. 11], although this value can be even
smaller in some op amp configurations. Typical values of
Ri = 10kΩ, R f = 20kΩ, A = 105 and Cp = 15 pF yield a
settling time of 40µs. Because of these fast transients, in
practice only the equilibrium values of the variables are ob-
served. This is illustrated by the graphs in Figure 6. Note the
similarity to the graph of a simple relay. Thus a quasi-static

analysis of the relationship of the output voltage vo to the ca-
pacitor voltage v, with the input voltage vi regarded as fixed
is appropriate.

The equilibrium values of v for any specific input volt-
age vi are the zeros of g(vi,v). The function v→ g(vi,v) with
vi = 1 and the above parameter values is plotted in Figure
7. Note that since A is very large, the middle portion of the
graph, where g is increasing, appears vertical in comparison
to the other sections. The function g reaches a maximum
value of

Imax = Givi +
E
A

(
(A−1)G f −Gi

)
at v = E

A and a minimum value of

Imin = Givi−
E
A

(
(A−1)G f −Gi

)
at −E

A . If Imin < 0 and Imax > 0 (as shown in Figure 7 ) then
g(vi, ·) has 3 real roots and there are 3 equilibrium points.
Defining v̄ = G f

Gi
E, α = Gi

G f +Gi
, these equilibrium points are

α(vi− v̄),
Givi

G f +Gi−G f A
, α(vi + v̄).

If either Imin = 0 or Imax = 0 then there are 2 equilibrium
points. If the input voltage vi is such that Imin > 0 or Imax < 0
then g(vi, ·) has only one real zero and so there is only 1
equilibrium point.

The stability of the equilibria can be analysed by exam-
ining ∂g

∂v . For |v| ≥ E
A ,

∂g
∂v

=−G f −Gi < 0

and the corresponding equilibrium is stable. On the other
hand for |v|< E

A ,

∂g
∂v

= (A−1)G f −Gi > 0

since A >> 1. Thus, equilibria that occur in the linear region
of operation of the op amp are unstable, and are not observed
due to noise in the system. Equilibria in the saturation region
of the op amp are stable.

To understand further the behaviour of the system as the
input voltage varies, define

Evi(v) =


1
2 (v+αv̄)2−αviv v≤−E

A ,
1
2 (αv̄− E

A )(αv̄− v2
E
A
)−αviv |v|< E

A ,
1
2 (v−αv̄)2−αviv v≥ E

A .

(4)



This function has minima at the stable equilibrium points ve
of the system. If it is shifted by a constant for each input
voltage vi so that Evi(ve) = 0, it is a Lyapunov function for
the system. (See [22, e.g.] for a definition and discussion
of Lyapunov functions.) This function is plotted for varying
values of vi in Figures 9. Suppose the system starts with a
low input voltage vi so that there are 3 equilibrium points
and the voltage v < −E

A is at the smallest equilibrium point:
v = α(vi− v̄).The op amp is in negative saturation, with vo =
−E, as shown on Figure 8 for the case E = 4. For low values
of vi, the Figures 9a and 9b are appropriate. As vi increases,
the smallest zero of g increases, and v increases slowly. The
output voltage remains at−E =−4. The 2 lower zeros move
closer together until there are only 2 zeros of g. This occurs
when the input voltage is equal to

vcrit = v̄− E
αA

.

Since A >> 1, vcrit ≈ v̄. (The parameter values used here
lead to vcrit ≈ 2.) At this point the only stable equilibrium
point is the largest zero of g and the output value increases
rapidly to the new equilibrium point. This is shown in Figure
9d. The op amp will be in positive saturation with vo =E, the
upper value on Figure 8. Since in practice the input voltage
changes much slower than the settling time of the system,
this change appears instantaneous. For large values of the in-
put, there is only one stable equilibrium point and v increases
linearly with further increases in the input. Since the op amp
is saturated, there is no change in vo. A similar process hap-
pens when vi decreases, but now v is maintained at the upper
equilibrium point until this point coalesces with the middle
unstable equilibrium point; that is at vi = −v̄i. This process
is illustrated by Figures 9e-h. When v moves to the lower
equilibrium point, the output v becomes −E, the lower value
on Figure 8.

This analysis of the differential equation (3 ) modelling
the Schmitt trigger shows that the fact that two different out-
put voltages are possible for a given input voltage is due to
the presence of two stable equilibrium points of the capacitor
voltage. The transition between different equilibrium values
appears to be immediate due to the fast transients in this sys-
tem. The combination of these properties lead to the relay-
like behaviour that makes this device useful.

3 Cell Signaling
There exist biological “switches”, which analogously,

to an electronic switch such as the Schmitt trigger, have
a steady-state value that is changed by an external signal.
Moreover, this new value is maintained even when the signal
is removed. Thus, the switch can be said to have a memory
of the previous input value.

One of the simplest examples of a such a switch consists
of a pair of two genes which repress each other by expressing
protein transcription factors. These switches occur in genetic

regulatory systems. A general model for such a network is

ẋ1(t) = F(x2)−µ1x1,

ẋ2(t) = G(x1)−µ2x2

where x1,x2 indicate two repressor proteins, F and G are
functions to be determined and µ1, µ2 are positive constants.
In [23] it is shown that F and G must have multiple equi-
librium points in order for the system to display switching
behaviour. A common family of models for a two-repressor
system that does lead to a system that has multiple equilib-
rium points and thus displays “memory” is

ẋ1(t) =
α1

1+ xβ1
2

− x1, (5)

ẋ2(t) =
α2

1+ xβ2
1

− x2 (6)

where αi,βi are positive constants. Equilibrium points are
solutions to the system of equations

x1 =
α1

1+ xβ1
2

,

x2 =
α2

1+ xβ2
1

.

Substituting the first equation into the second, and regarding
the repressor protein x2 as the output y of this system, equi-
librium values of y correspond to fixed points of

F(y) =
α2(1+ yβ1)β2

(1+ yβ1)β2 +α1β2
.

For certain values of the parameters, the equation y = F(y)
has 3 roots and hence the system has three equilibrium
points. In [2] the above model is used to describe a genetic
toggle switch. Parameter values of α1 = 156.25, β1 = 2.5,
α2 = 15.6, β2 = 1 are used. These values yield three equi-
librium points. Analysis of the linearization of (5,6) about
each equilibrium point shows directly that two of these equi-
librium points are stable while the third (the middle value of
x2 or y) is unstable.

If the concentration of one of the repressors is perturbed
from one stable equilibrium point, the system will return to
this point if the perturbation is not large. A larger perturba-
tion could move the system into a region around the other
stable equilibrium point. The system will then settle at this
new equilibrium point.

Equations (5,6) can be rewritten as the feedback system

ẋ1(t) =
α1

1+uβ1
− x1,

ẋ2(t) =
α2

1+ xβ2
1

− x2,

y = x2,



with the connection u = y. The first two equations are a
monotone system [24,25]. In [25] the stable equilibria of this
system are found using [25, Thm. 3]. This approach can be
useful for high-dimensional systems. It is argued in [26] that
bistability, along with hysteretic behaviour, is often found in
biological systems with feedback-connected monotone sys-
tems.

In this system, the active form of the protein x1 is
repressed by isopropyl-β-D-thiogalactopyranoside (IPTG),
and this leads to an increase in x2 (y). Letting u indicate
the level of IPTG, the model is modified [2] so that instead
of x1 in (6) is replaced by

x1

(1+u/K)η
(7)

where K,η are positive constants. (Values of K = 2.9618×
10−5 and η = 2.0015 are used in [2].) Figure 10 shows
the equilibrium values of y = x2 against u. For the range
−10−6 < u < 4×10−5 there are 3 equilibrium values. Anal-
ysis shows that the middle one is unstable, while the others
are stable.

In practice, the level of IPTG is changed over a num-
ber of hours. Figure 11 shows a plot of y against u as u
increases. Little change is seen in y until u reaches a critical
value of 40µM. At that point, the level of y jumps sharply to
the second equilibrium value, as shown in Figure 11. Since
the dynamics of the system are very fast compared to the rate
at which IPTG can be changed, this transition appears instan-
taneous. The upper value of y is maintained when the control
u is subsequently decreased. The predictions of this model
are shown in [2] to closely match experimental data. How-
ever, due to natural fluctuations, as well as stochastic effects
in the system, the experimental transition is less abrupt than
shown here.

The opposite switch, that of lowering y, in theory can be
accomplished by lowering u to the point that the upper equi-
librium point disappears. However, as illustrated in Figure 10
the drop to a single equilibrium value occurs for negative val-
ues of u. Since u, the amount of IPTG, must be non-negative
this is not possible in practice. The “off” switch, or lowering
of y, is accomplished in this system by temperature modu-
lation. The activity of the protein y is temperature sensitive.
An increase in temperature shifts y to an inactive state. To
model this, (5,6) needs to be modified to include a depen-
dence on temperature. A model for this not given in [2].
However, experimental data is provided that shows that y
drops as temperature is increased and that this lower level is
maintained when the temperature is subsequently lowered.

Thus, bistability is the mechanism behind the memory,
or hysteresis, in this 2-repressor genetic switch. Bistability is
responsible for switching and hysteretic behaviour in a num-
ber of other biochemical systems; see for instance, examples
in [23, 26, 27].

4 Beam in a Magnetic Field
Consider a flexible beam or other structure operating

within a magnetic field. Examples include transformers, disc
drives and magnetically levitated vehicles. If the structure
is composed of a ferromagnetic material, the presence of the
magnetic field affects its deformation. Although the structure
itself does not become magnetized to a significant extent, the
magnetic field exerts a force on the structure. Consider the
situation, shown in Figure 12, where there are two different
magnetic sources. A nonlinear partial differential equation
for the beam deflection w(t) in the configuration shown in
Figure 12 was developed in [5].

Since the first mode is dominant, it is relevant to exam-
ine only the first mode. This leads to an ordinary differential
equation for the coefficient a(t) of the first mode:

ä(t)+δȧ(t)−αa(t)+βa(t)3 +ηa(t)5 = f (t)

where f (t) is a forcing term. The effective stiffness of the
beam, α, includes both elastic and magnetic terms. The co-
efficients β and η depend on the local magnetic field. In gen-
eral, the highest order term ηa(t)5 does not affect the qualita-
tive behaviour and is neglected in the analysis [5]. Convert-
ing to dimensionless variables using the characteristic length√

α

β
and time 1√

2α
, yields the normalized equation

Ä(τ)+dȦ(τ)− 1
2

A(τ)
(
1−A(τ)2)= u(τ) (8)

where d = δ√
2α

and u(τ) is the forcing term in the new vari-
ables. Considering only the first mode of a complex system
may seem to be a gross over-simplification. However, exper-
imental results support the qualitative analysis [5, 28]. More
generally, this equation describes the motion of a unit mass
subject to the non-convex potential

V (x) =
x4

8
− x2

4

as well as viscous damping and an external force u.
Equation (8) is a type of Duffing oscillator [29, pg. 82-

91, e.g.]. It is often studied as a relatively simple illustration
of a chaotic system [5, 28, 30, 31]. However, we are inter-
ested here in how the stability of the system changes as the
magnetic field u varies.

Writing the equation (8) in standard first-order form
with x = [A, Ȧ] yields

ẋ1(τ) = x2(τ)
ẋ2(τ) = −dx2(τ)+

1
2 x1(τ)

(
1− x1(τ)

2
)
+u(τ).

(9)

For constant inputs u(τ) = M, the system has equilibrium
points given by (xe,0) where xe solves

1
2

x
(
1− x2)+M = 0.



The unforced system, M = 0, has 3 equilibrium points, (1,0)
and (−1,0) and (0,0). Analysis of the Jacobian shows that
(1,0) and (−1,0) are stable while (0,0) is unstable. For
|M| < 1

3
√

3
≈ 0.2, there are 3 real roots of this equation, and

hence 3 equilibria. The middle equilibrium point is unstable
while the outer two are stable. However, for larger inputs
|M| > 1

3
√

3
these reduce to one equilibrium point. This is

illustrated in Figure 13 .
Suppose the system starts with a small value of u, so

the system is at the lowest equilibrium. As u is increased,
this equilibrium value increases slowly. When u increases
above 0.2, this equilibrium disappears and the system moves
to the new equilibrium. This change is almost instantaneous
compared to the rate of change of u. When u is decreased,
the system remains at this larger equilibrium point until u is
decreased below −0.2, at which point this equilibrium point
disappears and the system moves rapidly to the new equilib-
rium. For−0.2 < u < 0.2 there are several equilibria and the
state of the system can be at either of the stable equilibrium
points.

For an input with magnitude in [0, .25], the characteris-
tic frequency of the system linearized around a stable equi-
librium point is between 1 and 1.27. Thus, for input fre-
quencies ω << 1 we expect the system to display rate inde-
pendent behaviour. This is illustrated in Figure 14a, which
shows input/output diagrams of the system under periodic
inputs u(t) = 0.25sin(ωτ) where ω < 10−4. In Figure 14b
the response of the system to periodic inputs with larger fre-
quencies is shown. Although the same looping behaviour is
observed as the system moves between different equilibrium
points, the input-output diagrams are rate-dependent. This is
expected, since at frequencies closer to 1, the rate of change
of input becomes comparable to the system dynamics.

The curves shown in Figures 14 are very similar in
appearance to those of the hysteretic systems examined in
previous sections. The looping behaviour characteristic of
hysteretic systems is apparent. As for the other examples,
the current state, or history, of the system affects the out-
put. At low input rates, the system moves to a new equilib-
rium almost instantaneously compared to the rate of change
of the input. Thus, at slow rates, the curves appear rate-
independent. However, at faster rates, approaching the fun-
damental frequency of the system, rate-dependence becomes
apparent.

5 Backlash
One of the simplest examples of a system exhibiting

hysteresis is backlash, sometimes called play [1, 10]. It oc-
curs in many mechanical systems. For instance, it describes
slippage in gears that do not perfectly mesh such as those
shown in Figure 15.

A graphical description of the behaviour of a play op-
erator is shown in Figure 16. The rod with position w(t) is
moved by a cart of width 2r with centre position u(t). As
long as the rod remains within the interior of the cart, the rod
does not move. Once one end of the cart reaches w(t) = u(t),

the rod will move with the cart. For any piecewise monotone
input function u(t) let 0 = t0 < t1 < t2 < .. . < tN = tE be the
partition of [0, tE ] such that the function u is monotone on
each of the subintervals [ti, ti+1]. On an interval where u(t)
is increasing (u(τ1)> u(τ2) if τ1 > τ2), the behaviour of the
play operator can be written formally as

w(t) = w(ti), w(t)> u(t)− r
= u(t)− r, w(t)≤ u(t)− r. (10)

If u(t) is decreasing on an interval,

w(t) = w(ti), w(t)< u(t)+ r
= u(t)+ r, w(t)≥ u(t)+ r. (11)

Alternatively, the play operator can be described by [1,
pg. 24-25]

w(0) = fr(u(0),0),
w(t) = fr(u(t),w(ti)), ti ≤ t ≤ ti+1, 0≤ i≤ N−1, (12)

where

fr(u,w) = max
{

u− r,min{u+ r,w}
}
.

This model is quite different from those discussed in the
previous sections in a number of respects. First, the mod-
els discussed earlier displayed rate-independent behaviour
for input rates significantly faster than the system dynamics.
However, this model has no dynamics and is actually rate-
independent. Since it is also causal, it defines a hysteresis
operator.

Furthermore, since this model has no dynamics, any so-
lution w is an equilibrium solution. In other words, any point
w with |u−w| ≤ r is an equilibrium point. Thus, there is
a continuum of equilibrium points. The models described
above have a discrete number of equilibrium points. Since
the model is static, any equilibrium point can be regarded as
stable.

By introducing an internal variable v(t) for the cart po-
sition, the operator can be approximately described by a dif-
ferential equation. Let a > 0 be a constant, large compared
to the rate of change of the input u(t) and define

v̇(t) = a
(
u(t)− v(t)

)
ẇ(t) = g

(
u(t),v(t),w(t)

) (13)

where

g(u,v,w) =

a(u− v) , u− v > 0 and w− v≤−r,
a(u− v) , u− v < 0 and w− v≥ r,
0, otherwise.

 .



This model can be thought of incorporating some dy-
namics for the movement of the cart so that it does not in-
stantaneously move to a new position v in response to the
control u. The state variable v is in equilibrium whenever
v = u. The other state variable, w, is also the output. It is in
equilibrium whenever v = u or |v−w| ≤ r. The equilibrium
value of w depends on v. Provided that a is chosen very large
compared to how quickly u is varied, the system will only be
observed in equilibrium.

Numerical integration of this equation for several peri-
odic inputs of varying frequency are shown in Figure 17. The
output is identical to that of the static model. Thus, for the
given range of frequencies, this dynamical system displays
the rate-independent looping behaviour characteristic of hys-
teretic systems. Although the differential equation (13) pro-
vides insight into the nature of the system, and may be useful
for calculations requiring a differential equation model, it is
slower to solve than the static model (12).

6 Smart materials
Smart materials, such as piezo-electrics, shape memory

alloys and magnetostrictives, are becoming widely used in a
number of industrial and medical applications. A more accu-
rate term for these materials would perhaps be transductive
actuators, since they all transform one form of energy into
another. Piezo-electric materials transform electrical energy
into mechanical energy. Shape memory alloys transform
thermal energy into mechanical and can replace mechanical
motors in some applications. Magnetostrictives transform
magnetic into mechanical energy, in response to an applied
magnetic field. This transductive quality means that smart-
material-based actuators are generally lighter and more reli-
able than traditional actuators with comparable power.

Although these materials involve quite different pro-
cesses, they are all display typical hysteretic behaviour. The
reason for this is the existence of a non-convex energy po-
tential. Consider, as an example, a magnetostrictive material
such as Terfenol-D. The material is considered to be com-
posed of magnetic dipoles. The following simplified expla-
nation is quite brief; for details see [6].

Letting M indicate the magnetization for the dipole, ε

total strain, MR, η, γ1 and Y physical constants, and defining

f (M) =


µ0η

2 (M+MR)
2, M ≤−MI ,

µ0η

2 (M−MR)
2, M ≥MI ,

µ0η

2 (MR−MI)(MR− M2

MI
), |M|< MI ,

,

the Helmholtz free energy of each dipole can be described
by [6]

ψ(M,ε) =
1
2

Y ε
2−Y γ1εM2 + f (M). (14)

In the absence of strain ε, ψ has local minima at ±MR. The
parameter MI is the inflection point where the second deriva-
tive of ψ changes sign.

Letting Ho indicate the magnetic field, the Gibbs energy
for each dipole is

G(Ho,M,σ,ε) = ψ(M,ε)−µ0H0M. (15)

Figure 19 shows the Gibbs energy versus magnetization at
different values of the magnetic field. The equilibrium mag-
netization M of each dipole occurs at a minimum of the
Gibb’s energy and so the magnetization M for the dipole can
be obtained using the condition

(
∂G(Ho,M,σ,ε)

∂M

)
Ho,σ,ε

= 0. (16)

Thermodynamic equilibrium is obtained faster than the rate
at which the magnetic field is changed. The system is ob-
served only at equilibrium. As seen in Figure 19(a), if
Ho = 0, two minima of G exist:

M∗− =
Ho

η
−MR, (17)

M∗+ =
Ho

η
+MR. (18)

For a small positive Ho as shown in Figure 19(b), still two
minima exist, but if Ho is further increased, so that Ho > Hc
where

Hc = η(MR−MI),

the left-hand minimum M∗− disappears as shown in Figure
19(c). Similarly, for Ho < −Hc, the right-hand minimum
does not exist. The critical magnetic field Hc is called the
coercive field.

Suppose the system is initially at a magnetization level
M∗− with Ho = 0. As Ho is increased, the magnetization is
given by (17) until H = Hc. At this point the magnetization
is still given by (17), but as H is increased further, eventu-
ally this equilibrium point disappears and there is only the
equilibrium point M∗+ (18). At this time, dipole magnetiza-
tion moves rapidly to the right-hand equilibrium, M∗+. This
transition is shown with an arrow in Figure 19(c). If the field
H is subsequently decreased the magnetization is given by
the right-hand equilibrium M∗+ until H < −Hc. At this field
level, the right-hand minimum M∗+ disappears and the mag-
netization moves rapidly to the left-hand equilibrium M∗−.

The above model can be improved in a number of re-
spects; for instance by modifying the Gibb’s energy to in-
clude a more accurate description of the effect of magne-
tostriction [33, 34].

The macroscopic behaviour of a material is more diffi-
cult to describe. Suppose we consider the material to be a
sum of dipoles. The parameter MR, known as the remanence
magnetization, is the same for all dipoles. However, the in-
flection point MI varies. Also, since the local field Ho at each



dipole is affected by imperfections and non-homogeneties, it
is not equal to the applied magnetic field H. Assume that the
interaction field HI = H−Ho between the external and local
magnetic fields is constant over time for each dipole. The
parameters HI and MI (as well as the history of H) determine
the magnetization at each dipole. However, it is convenient
to use Hc instead of MI so that the 2 parameters are HI and
Hc.

The Gibb’s energy is minimized for each dipole. The
memory of the system is the state of each individual dipole,
that is, whether it is in the left or right equilibrium. Let
M∗(HI ,Hc;H) indicate the magnetization, M∗+ or M∗−, asso-
ciated with dipoles with interaction field HI , coercive field
Hc and input history H. The variable H indicates that mag-
netization depends on the applied magnetic field. Assuming
a distribution of ν1 for the interaction field HI and ν2 for the
coercive field Hc yields an overall magnetization

M =
∫

∞

0

∫
∞

−∞

M∗(HI ,Hc;H)ν1(HI)ν2(Hc)dHIdHc. (19)

Since different dipoles have different transition points, this
model leads to a smooth transition in the value of M as the
applied field H is changed. This aspect of the model is sup-
ported by experimental results. Unlike a simple relay (Figure
1) or Schmitt trigger (Figure 4), the input/output diagrams
of smart materials (see Figures 2 and 18) do not possess a
sharp transition. As for magnetostrictives, the hysteretic be-
haviour in shape memory alloys and piezo-electrics can be
explained by the fact that the equilibrium state minimizes
a non-convex energy potential, yielding a model similar in
structure to (19).

The above model is a special type of Preisach model [1],
a popular class of models for smart materials. In a Preisach
model, the model is considered to be composed of an infinite
set of simple relays such as that in Figure 1. The centre s
and width r of the relays varies, and a weight function µ(r,s)
incorporates the relative weighting of each relay R(r,s;H).
This leads to a model of the form

M =
∫

∞

0

∫
∞

−∞

R(r,s;H)µ(r,s)dsdr (20)

where R =±1 is the output of a simple relay (Figure 1) cen-
tred at s with width r and history H. By connecting r with
Hc and s with HI , there are clear similarities between (19)
and (20). A comparision in the context of Terfonel-D can be
found in [32].

In the model (20) (or (19)) relays (or dipoles) in the +1
state are separated from the relays at−1 by a boundary curve
ψ(t,r) in the r− s plane. The operator (20) can be rewritten

M = 2
∫

∞

0

∫
ψ(t,r)

0
µ(r,s)dsdr+w0 (21)

where

w0 =
∫

∞

0

∫ 0

−∞

µ(r,s)dsdr−
∫

∞

0

∫
∞

0
µ(r,s)dsdr.

It has been shown that the Preisch model (21) with the
boundary ψ(t,r) as the state is a dynamical system [35]. Al-
though there is no dynamics in this model, the state tran-
sition operator associated with the state ψ(t,r) satisfies the
required axioms including causality and the semigroup prop-
erty. However, unlike typical dynamical systems, this system
is always in equilibrium. Time-dependence only appears im-
plicitly in the input variable H(t). For all constant inputs H,
any solution is an equilibrium solution.

Alternatively, the boundary function can be written
ψ(t,r) = Fr[H](t) where F is the play operator with width
r [1]. Thus, the system can be written as an infinite-
dimensional system where the state is the state of the family
of play operators obtained as width r varies.

Since the models (19) and (21) are static, it is straight-
forward to show that they are rate-independent. Like the
play operator, these models are hysteresis operators. The fact
that there are no dynamics and that all solutions are equilib-
rium solutions reflects the assumption that magnetization is
always at its equilibrium value. Since thermodynamic equi-
librium is reached much faster than the field can be varied,
this assumption is accurate under certain conditions. Effi-
cient methods using the static operator (19) or (21) are used
in simulations.

Rate dependence can often be observed in smart mate-
rials. For instance, in magnetic materials, thermal activation
can lead to a dipole “jumping” from one equilibrium point
to another. Unless thermal effects are small and the cor-
responding time constant small compared to the input fre-
quency, this needs to be considered. This is the basis of the
homogenized energy model [6] and also the model in [17].
See also [36] for a similar approach to modelling of shape
memory alloys. Equation (19) is the limiting case of this
model where these effects are neglected. Furthermore, other
effects such as heating dynamics and mechanical dynamics
interact with the thermodynamics described above. For ex-
ample, heating of shape memory alloys is generally accom-
plished through applying a current. Heating of the material
leads to phase transition and an associated change in strain.
The rate at which the material is heated affects the resulting
phase change. In magnetostrictive materials, a quickly vary-
ing current causes a moving magnetic field and can lead to an
induction of the current source into a surrounding conductor
around the magnetostrictive solid. This affects the magnetic
field seen by the material and leads to observation of rate
dependence. Including a model for the dynamics of this pro-
cess, along with a static model for the hysteresis addresses
this effect; see for example, [37].

Another approach to modelling the behaviour of smart
materials is to derive the dynamical equations using thermo-
dynamic principles. One example of this is the Falk par-
tial differential equation model for shape memory alloys [1].



There is little experimental verification available for this
model. However, it does agree qualitatively with experimen-
tal data [38], producing plots that display loops and rate in-
dependence for standard inputs with low frequencies.

7 Inelastic springs
In the classic Hooke’s law, the force of a deformed

spring is linearly proportional to the displacement: F =−kx.
However, many materials do not display this linear elastic
behaviour. The Bouc-Wen model [39] has been used to de-
scribe inelastic behaviour [40] in a number of applications,
including caissons [41], bridge pilings [42] and magnetorhe-
ological dampers [43]. A version of the Bouc-Wen model,
the Dahl model, has been used to describe friction in several
contexts [44, 45].

The Bouc-Wen model, with input x and output Φ, is

ż(t) = D−1
(
Aẋ(t)−β|ẋ(t)||z|n−1z− γẋ(t)|z(t)|n

)
,

Φ(x,z) = αkx(t)+(1−α)Dkz(t),
z(0) = z0.

(22)
The variable z is an internal state that represents the “mem-
ory” of the spring. The real parameters D > 0, A, γ, β, k > 0
and 0≤ α < 1 and n≥ 1 are chosen to fit experimental data.
If A > 0 and −β < γ ≤ β then the output Φ is bounded for
bounded x [39]. As mentioned above, the Bouc-Wen model
is frequently used as a model for a nonlinear spring or fric-
tion and is thus often found combined with a second-order
system that represents the structure or system involved; for
instance,

mẍ(t)+dẋ(t)+Φ(x,z) = f (t)

where m indicates mass, d damping, and f (t) represents any
external forces.

To determine equilibrium points for the Bouc-Wen
model, consider a constant input (ẋ(t) = 0). Then ż(t) = 0
for any value of z and there is a continuum of equilibrium
points. This is similar to the situation for the play, Preisach
and homogenized energy models discussed in sections 5 and
6.

The input-output behaviour of a Bouc-Wen model is il-
lustrated in Figures 20. The looping behaviour typical of
hysteretic systems is apparent in Figure 20b. The system
also appears to be rate-independent, at least at the frequen-
cies used in the simulations.

To determine whether the differential equations (22) de-
scribe a rate-independent system, we use Definition 1. Let
τ and t be two time-scales related by a time transformation
τ = ϕ(t). Recall that for any time transformation, ϕ̇(t) > 0.
Let the state and output of (22) with input x(t) be z(t) and
Φ(t) respectively and similarly, let the state and output with
input x(ϕ(t)) be zϕ(t) and Φϕ(t). We need to show that

Φϕ(t) = Φ(ϕ(t)). For simplicity, we let D = 1 in (22).

żϕ(t) = A dx
dτ

ϕ̇(t)−β| dx
dτ
|ϕ̇(t)|zφ(t)|n−1zϕ(t)− γ

dx
dτ

ϕ̇(t)|zϕ(t)|n,
=
(
A dx

dτ
−β| dx

dτ
||zϕ(t)|n−1zϕ(t)− γ

dx
dτ
|zϕ(t)|n

)
ϕ̇(t)

= dz
dτ

ϕ̇(t),
zφ(0) = z0.

It follows that

zϕ(t) = z(ϕ(t)),

and so

Φϕ(t) = αkx(ϕ(t))+(1−α)kz(ϕ(t)),
= Φ(ϕ(t)).

Thus, the Bouc-Wen model (22) describes a rate-independent
operator x→Φ. Since it is clearly causal, it describes a hys-
teresis operator. Although the Bouc-Wen model is useful for
modelling some types of friction, other situations are better
described by different models [46–50, e.g.].

8 Conclusions
A number of examples from different contexts that dis-

play typical hysteretic behaviour have been discussed in this
paper. The examples come from quite different physical
applications, but they all display the loops typical of hys-
teretic behaviour in their input-output graphs. The models
discussed here can be put into two groups.

The first group of models are the differential equations
used to model the Schmitt trigger, cellular signaling and a
beam in a magnetic field. These systems all possess, for a
range of constant inputs, several stable equilibrium points.
Also, the rate at which the system moves to equilibrium is
generally considerably faster than the rate at which the in-
put is changed. Such systems will initially be in one equi-
librium, and will tend to stay at that equilibrium point as
the input is varied. Varying the input to the point that this
equilibrium point disappears causes the system to move to
the second equilibrium point. When this move to the new
equilibrium happens much faster than the time scale of the
system, this change appears instantaneous and the system is
only observed in equilibrium. If the system is only observed
in equilibrium changes in the input rate do not affect the out-
put and such a system can be said to be rate-independent.
If the input rate is increased to become comparable with the
system time scale, or if there are other effects on the sys-
tem, such as thermal dynamics, then rate dependence will be
observed.

The second group of models is truly rate-independent.
This includes the play operator, the Preisach model for smart
materials and the Bouc-Wen model for inelastic springs.
These models rely on a equilibrium description of the sys-
tem and have input-output maps that are independent of the



input rate. The validity of these models in describing the ac-
tual physical situation relies on the underlying assumption
that the internal dynamics in the system are much faster than
the rate at which inputs are varied, and also that other tran-
sient effects, such as thermal activation, can be neglected.
Since the model is an equilibrium description, any solution
of the equations with a constant input is an equilibrium so-
lution. These models possess a continuum of equilibrium
points. The assumption that the system is always in equilib-
rium is a simplification of the dynamics. However, in many
situations, this simplication is reasonable and allows for effi-
cient simulations.

This analysis gives a reason for why hysteretic systems
can be difficult to control. Controllers for nonlinear systems
are often designed using a linearization of the system about
an equilibrium point. This approach is useful in applications
where the system operates near an equilibrium point. How-
ever, under normal conditions, where hysteresis is apparent,
hysteretic systems are operated around different equilibrium
points. Controllers based on a linearization around a partic-
ular operating point will not generally be effective.

It should be clear now that hysteresis is a phenomenon
displayed by forced dynamical systems that have several
equilibrium points; along with a time scale for the dynam-
ics that is considerably faster than the time scale on which
inputs vary. There may be other dynamic effects that lead to
a hysteretic system displaying rate dependence under normal
operation; see for instance the discussion of smart materials
in section 6. However, the essential feature of movement to
equilibrium on a time-scale faster than that of the input rate
remains. This suggests the following definition.

Definition 3. A hysteretic system is one which has (1) mul-
tiple stable equilibrium points and (2) dynamics that are con-
siderably faster than the time scale at which inputs are var-
ied.

Thus, hysteresis can be regarded as a property of a dy-
namical system and its operation, rather than a particular
class of systems. An understanding of hysteretic systems can
be obtained by an analysis of the multistability displayed by
them.
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Fig. 1. Simple relay centred on s with width 2r. The output is unam-
biguous for u > s+ r or u < s− r. However, for s− r < u < s+ r,
the output depends on whether the input is increasing or decreasing.
(a) u(ti)> s+ r, output +1 (b) s− r < u(ti)< s+ r, output±1.
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Fig. 2. Temperature-strain curve in a shape memory alloy. The
curve depends on the temperature history, but not the rate at which
temperature is changed. c©1998, IEEE. Reprinted, with permission,
from [11].

−1 −0.5 0 0.5 1
−0.5

0

0.5

u

y

Fig. 3. Loop in the input-output graph of ÿ(t) + 4y(t) = u(t),
u(t) = sin(t), t = 0..8
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Fig. 4. Experimentally measured voltage for Schmitt trigger. The
graphs are similiar to those of a simple relay (Figure 1). (a) input
frequency 10 kHz (b) input frequency close to DC. c©1991, Wiley.
Reprinted, with permission, from [3].



Ri

Rf

+ +

+

-
-

-

-

vi vo

(a)

Ri

Rf

+ +

-
-

-

vi vo

Cp

(b)

Ri

Rf

+

-

vi vo

Cp+

-

v
+

-
f(v)

(c)

Fig. 5. Schmitt trigger circuit diagrams. (a) standard circuit diagram
(b) circuit diagram with input capacitance (c) equivalent circuit to (b)
Inclusion of the input capacitance (shown in (b) and (c)) leads to a
differential equation model that correctly predicts the response of the
circuit. c©1991, Wiley. Used, with permission, from [3].
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Fig. 6. Simulation of differential equation (3) for Schmitt trigger with
the same capacitor initial condition v(0) =−1 and different periodic
inputs. The response is similar to that of a simple relay and is inde-
pendent of the frequency of the input. (a) Input vi(t) = sin(t) for 7s
(b) Input vi(t) = sin(10t) for .7s . (Parameter values Ri = 10kΩ,
R f = 20kΩ, A = 105, E = 4V , Cp = 15 pF . )
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Fig. 7. g(vi,v) (see (2)) as a function of v with input voltage vi = 1.
At this input voltage there are 3 zeros of g and hence the trigger has
3 equilibrium points. The middle zero (�) is an unstable equilibrium
while the other two zeros (◦) are stable equilibria. For larger values
of vi the graph is higher and for vi > 2 there is only 1 zero of g and
hence only 1 equilibrium point. Similarly, for smaller values of vi the
graph is lower and if vi <−2 there is only 1 equilibrium point. (Same
parameter values as in Figure 6. )
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Fig. 8. Output voltage vo as a function of input voltage vi for the
Schmitt trigger. (See (1, 2).) For −2 < vi < 2 there are 2 possible
outputs due to two stable equilibrium values of the capacitor voltage.
(Same parameter values as in Figure 6. )
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Fig. 9. Lyapunov function (4) for Schmitt trigger (3) with different
input voltages vi as vi increases from −2vcrit to vcrit and then de-
creases to 0. The arrow indicates the equilibrium capacitor voltage
v. It remains at an equilibrium point until vi changes enough that the
Lyapunov function no longer has a minimum at that point. (a) Input
voltage vi = −2vcrit . There is one equilibrium voltage. (b) Input
voltage increases to vi = 0. There are now 2 minima; v remains
at the left-hand minimum. (c) Input voltage increases to vi = vcrit .
The left-hand minimum disappears; v moves to the only minimum.
(d) Input voltage decreases to vi = 0. There are again two minima
of the Lyapunov function; v remains at the current minimum. (Same
parameter values as in Figure 6. )



Fig. 10. Equilibrium value of output y (concentration of protein x2
) at different values of the input IPTG (u). There are 3 equilibrium
values if−10−6 < u< 4×10−5. The middle one is unstable, while
the other two equilibria are stable. (See (5,6,7). Parameter values of
α1 = 156.25, β1 = 2.5, α2 = 15.6, β2 = 1, K = 2.9618×10−5

and η = 2.0015 from [2] .)
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Fig. 11. Output y (concentration of x2 ) as u is slowly increased.
Note sharp transition to new equilibrium point. (See (5,6,7). Same
parameter values as in Figure 10. )
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Fig. 12. Beam in a magnetic field with two magnetic sources

Fig. 13. The equilibrium points of beam (9) in a two-source mag-
netic field M are the roots of 1

2 x(1− x2) +M = 0. For |M| <
1

3
√

3
≈ 0.2 there are 3 solutions of f (x) = M while for larger val-

ues of M there is only one solution. Hence for small amplitudes
of the magnetization there are 3 equilibrium points while for larger
amplitudes there is only 1 equilibrium point. When there are 3 equi-
librium points, the middle point is unstable while the outer points are
stable.
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Fig. 14. Input-output diagram for magneto-elastic beam (9) with in-
put 1

4 sin(ωτ), with different frequencies ω. Looping behaviour as
the state moves between different equilibrium points is evident. (a)
ω = 10−5 (· · ·), 5×10−5 (−−), 10−4 (−) . The three curves are
indistinguishable, indicating that the system is rate-independent at
low frequencies of the input. (b) ω = 5×10−4 (· · ·), 10−3 (−−),
10−2 (−) . At these higher frequencies, rate dependence is appar-
ent.

Fig. 15. Gears, showing mechanical play
(http://www.sfu.ca/adm/gear.html, used by permission, Robert
Johnstone, SFU). Since the gears are not perfectly meshed, when
one gear turns there is a period of time when the driven gear is
stationary before it engages and is turned by the first gear.
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Fig. 16. Backlash, or linear play. The rod with position w(t) is
moved by a cart of width 2r with centre position u(t). As long as
the rod remains within the interior of the cart, the rod does not move.
Once one end of the cart reaches the rod, the rod will move with the
cart.
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Fig. 17. Play operator with play r = 2. (a) input-output diagram,
static model (12) and dynamic model (13). (a = 1000 for dynamic
model) The graphs of the dynamic and static models are indistin-
guishable. (b) input u (· · ·) and output w (−) Note that w remains
constant after a change in sign of u̇ until the difference |w−u|= 2.
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Fig. 18. Magnetization versus magnetic field for a magnetostrictive
actuator [32, used with permission]. The outer, or major, loop is ob-
tained by increasing the input magnetic field to its maximum value
and then subsequently decreasing it. The inner loops are obtained
by increasing the input to an intermediate value and then decreasing.
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Fig. 19. Qualitative behaviour of Gibb’s energy for a magnetic dipole
as H is varied. (a) Gibbs energy when H0 = 0. There are two equi-
librium points, M∗− and M∗+. In this diagram, the dipole is at M∗−.
(b) Gibbs energy after increasing H0 where there are still two equi-
librium points. The dipole remains at M∗−. (c) If H0 is further in-
creased, eventually only one minimum exists. The dipole moves to
the remaining minimum, M∗+.
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Fig. 20. Response of Bouc-Wen model (22). (a) Input x(t) with
varying frequency (b) output Φ(t) for input shown in (a) . Only the
scale, not the shape of the curve, changes as the input frequency
changes. (c) Φ(t) versus input x(t) shown in (a) . The curve
forms a single loop, reflecting rate independence of the model. (Pa-
rameter values are those used in identification of a magnetorheo-
logical damper in [43]: D = 1, n = 1, A = 120, γ = 300cm−3,
β = 300cm−1, α = 0.001, k = 27.3Ns/cm. )
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