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What is Control Theory?

Control theory is the introduction of an input into a dynamical sys-
tem to steer the system to a desired objective. For example, a control
objective can be steering the dynamics of a system from an unstable
state to a stable state. Questions such as the choice, implementation,
and robustness of the control arise. Control theory is a multidis-
ciplinary research field with reaches in engineering systems, com-
puter science, biological sciences and even economic models.

Stabilization of Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (KS) equation is a nonlinear PDE which models reaction-diffusion
systems and is related to various phenomena where turbulence and chaos appear. For instance,
it models a thin liquid film falling down a vertical plane which may occur in both natural and
industrial processes. For certain parameter values that depend on the physical model, such as
density, viscosity or surface tension, this equation is unstable. It turns out that stabilizing the
linearized KS equation implies local exponential stability of the nonlinear controlled system. This
is used to develop a strategy for bounded controller design using a lumped approximation via
input or output feedback control. These results indicate the system is stabilized and that spillover
is avoided. In other words, a finite-dimensional controller stabilizes the full infinite-dimensional
state. Furthermore, the KS equation can be stabilized so that the system is steered from one state
to another.

Simulations of the KS equation

Control steers the system from one state to another

Challenges in Controlling
Infinite-Dimensional Systems

Many systems of practical importance can only be described by
infinite-dimensional systems. For example, vibrations and sound
waves exhibit both time and space dependence and are, hence,
modelled by partial differential equations (PDEs). This means that
the state variables evolve on infinite-dimensional spaces. Conse-
quently, analysis and simulation of these systems is often challeng-
ing. Research projects on the control of PDEs currently conducted
at the University of Waterloo are presented.

Modelling and Control of Piezo-electric Beams

Piezoelectric beam

Electrodes (covered with foil)

Models for piezoelectric beams and structures with piezoelectric patches generally ignore mag-
netic effects because the magnetic energy has a relatively small effect on the overall dynamics.
Hamilton’s principle can be used to derive a model for a piezoelectric beam that includes mag-
netic effects. It turns out that magnetic effects have a strong effect on the stabilizability of the
control system. Including magnetic effects leads to a model where (1) if voltage control is used,
for almost all system parameters the beam is not exponentially stabilizable (2) if current control is
used, the beam is never exponentially stabilizable. In both cases, strong stability can be achieved.
This is quite different from the model without magnetic effects which can be exponentially stabi-
lized with either current or voltage control.

Characterizing and Controlling Hysteresis

Hysteresis is a phenomenon that occurs in many processes. Examples include magnetization,
smart materials, freezing and thawing processes and predator-prey relationships. A common
theme in defining hysteresis is that of a looping behaviour displayed in the input-output map;
however, the existence of a loop is not sufficient to identify hysteretic systems. Two definitions
of hysteresis are considered: (1) systems that exhibit hysteresis have multiple stable equilibrium
points and dynamics that are faster than the rate at which inputs are varied, (2) a system exhibits
hysteresis if a nontrivial closed curve in the input-output map persists for a periodic input as the
frequency component of the input signal approaches zero.

The Landau-Lifshitz equation is a nonlinear PDE that describes magnetization within ferro-
magnetic nanostructures. Magnetization governed by the Landau-Lifshitz equation exhibits
hysteresis, which is demonstrated by the existence of persistent looping behaviour in the
input-output maps as the frequency of the periodic input approaches zero.
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A control that moves system dynamics from one stable equilibrium point to another stable
equilibrium point essentially means the control of hysteresis. Such a controller design was
applied to the Landau-Lifshitz equation, Hysteresis is absent in the controlled Landau-Lifshitz
equation as looping behaviour is not observed in the input-output map.

Estimation of Charge in Lithium-lon Car Batteries
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Determining the remaining charge in batteries is important for improving the safe time between
charging. This cannot be measured directly and must be estimated. This is a difficult problem
because the dynamics are governed by coupled nonlinear PDEs and hysteresis is a factor. An
accurate but simple method that can be implemented in the processor available on an automobile
is being sought.

The battery diagram is taken from

http:/ /www.koldban.com/v/vspfiles/assets/images/images/kapower/Bat_Lo_Chg_Lg.gif
http:/ /epg.eng.ox.ac.uk/content/electric-vehicles-using-physics-based-battery-models-
improved-estimation-state-charge

Optimal Actuator Location

The system impulse response
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An actuator is a physical device which controls a given dynamical system. There is often freedom
in choosing the location of actuators in systems governed by PDEs. The experimental data shown
above for control of beam vibrations illustrates the fact the performance is strongly affected by
actuator location. The actuator locations should be selected in order to optimize the performance
criterion of interest. There are a number of theoretical and computational questions.

From a computational point of view, these optimization problems are generally nonconvex and
the models for these systems often have a large number of degrees of freedom. Consequently,
existing optimization schemes for optimal actuator placement may be inaccurate or computa-
tionally impractical. A subgradient-based optimization scheme for a linear quadratic cost, a
popular design objective, was designed which leads to the global solution of the problem of
finding optimal actuator locations. The optimization algorithm was applied to optimize the
placement of piezoelectric actuators in vibration control of flexible structures. It is considerably
faster and more accurate than the popular genetic algorithm. Experiments verified the efficacy of
optimal actuator placement.

In many situations the control needs to attenuate the effect of disturbances. Both the controller
and the actuator locations are chosen to minimize the effect of disturbances on the output of a
full-information plant. For example, consider a beam of unit length fixed at both ends (depicted
below) for which control of disturbances, such as vibrations, is desired. The actuator is repre-
sented by the grey block.

Where should the actuator(s) be placed in order to best reduce these disturbances? Often, the
optimal location to place actuators do not agree with the intuitive location. For instance, if there
are 2 locations of concentrated disturbances spread unsymmetrically (at 0.4 and 0.9) on a Kelvin-
Voigt damped beam, an intuitive approach to solve the placement problem of 2 actuators is to
collocate the actuators at the same location as the disturbances. However, our results demonstrate
that the appropriate optimal locations are at 0.23 and 0.58. The error in the cost function when
the actuators are placed at the disturbance locations is 15% with respect to the optimal location.
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Current work is concerned with sensor location. The general problem is to determine the best
locations for estimation despite noise and imperfect information. Since estimator design is math-
ematically dual to controller design, some of the results for actuator location can be used. A
current project is to determine the best location to place a sensor that estimates the temperature
of a large lake.

Future Research Opportunities

Opportunities for research in the analysis and control of infinite-dimensional systems (espe-
cially that of PDEs) are available. Please contact Professor Kirsten Morris for inquires (kmor-
ris@uwaterloo.ca).
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