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A B S T R A C T

This thesis details the problem of quantum circuit compilation. Start-
ing from the very definition of compile, we introduce many of the
ideas needed to understand the main problem of circuit compilation
from the very basics. We cover classical compilers and show how
the effort to build effective circuit compilers draws heavily from its
classical counterparts. Upon introducing the formalism of quantum
computation, we are able to formulate many of the problems related
to circuit compilation in a mathematical language, and detail some of
the cutting edge efforts. We end by showing how circuit compilation
is part of a much larger “quantum stack” that needs to be created to
have effective quantum computers.
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They didn’t have much trouble
teaching the ape to write poems:

first they strapped him into a chair,
then tied the pencil around his hand

(the paper had already been nailed down).
Then Dr. Bluespire leaned over his shoulder

and whispered into his ear:
You look like a god sitting there.

Why don’t you try writing something?

–— James Tate
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Part I

F R O N T E N D

To begin this document we will introduce the notion of
a compiler and show the foundational role it plays in
our modern computing infrastructure. We will cover the
main ideas from compilers that are useful for our quest
to understand quantum circuit compilers in part ii. We
will then switch gears to cover the basics of quantum
computation needed to understand the quantum part of
our story.





1
A L L T H I N G S C L A S S I C A L

In this chapter we will give a very brief overview of the components
of classical computers that will be helpful to further discussions of
quantum circuit compilation. A key component to quantum circuit
compilation is the word “compilation”, whose origins (in computing)
date to the early 1950’s when electronic digital computers were in their
early stages. Understanding the historical development of compilation
and its techniques will provide ideas and tools necessary to solve the
new task of quantum circuit compilation.

This chapter is meant to provide the reader with the basics of
some computing terminology and ideas. It is by no means a complete
introduction to compilers, nor computer architecture.

1.1 what can a computer do?

If you’re reading this, I’m sure you can imagine something your
computer is capable of. Maybe reading this document online, sending
messages/email, browsing the internet, writing documents, etc. These
are very high-level operations our computer can perform, but under
the hood much more primitive operations are taking place. It is these
primitive operations that we wish to understand, and will have many
similarities with modern-day quantum hardware.

A simplified model of computer architecture, known as the von
Neumann Architecture (fig. 1.1) shows what we now call a Central
Processing Unit (CPU) which is the workhorse of the computer.1

Input
Device(s)

Output
Device(s)

CPU Memory

Figure 1.1: von Neumann Architecture

Since the CPU is the computational component of the computer,
what can it do? Modern CPUs are built on the Instruction Set Architec-
ture (ISA), which means that the CPU has a finite set of operations (also

1 At least in this very simplified model.
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4 all things classical

known as instructions) that it can perform. Every operation the com-
puter can perform must be built up from these primitive instructions.
Some examples of these primitive operations are:

• put a value into memory;

• add two values in memory together and store the result in a new
location;

• perform the bitwise negation on a value;

• compute the square root of a value.

One can then use these primitives to build up complex functionality
that eventually implement the capabilities we know and love (and
hate) computers for.

Choosing an ISA results in the creation of a complexity class which is
a collection of problems that can be solved using a polynomial number
of primitive instructions/operations. In practice, most ISAs implement
the same complexity class, and we denote it by P. The formal definition
of P is “decision problems solvable by a deterministic Turing machine
in a polynomial amount of time”, but the picture one should have
in mind is “problems for which we have efficient algorithms”. For
more details on complexity classes, and computational complexity in
general consult [NC10, Chapter 3] for the material with an eye towards
quantum, and [AB09] for a more detailed exposition.

The ISA architecture style has seen major success, but it suffers from
the drawback of requiring the programmer to work at the very low-
level of machine instructions. To work at a higher level of abstraction,
and hence to have a higher level of productivity, computer scientists
and programmers created new languages which were easier to read,
write, and reason about. This necessitated new languages to be “trans-
lated” into the instruction set after the code was written. The software
responsible for translating these higher level ideas into a machine’s
instruction set are known as compilers.

1.2 compilers

While compilers have their origins in the aforementioned translation of
higher-level code into lower-level code, they have grown considerably
to perform many more tasks. Before we dive into all of the capabilities
of modern compilers, let’s take a step back and recall what the word
compile means.

Merriam-Webster [Mer] defines the word compile to mean

to compose out of materials from other documents.

In the context of programming language compilers, “other documents”
might mean the code itself, as well as configuration files and envi-
ronment variables. This definition is reflected in Compilers: Principles,
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techniques & tools2 [Aho+07] where the authors introduce compilers

The Dragon Book

LLVM Logo

through the process of transforming software.

[B]efore a program can be run, it first must be translated
into a form in which it can be executed by a computer.

The software systems that do this translation are called
compilers.

Hence we can view compilers as a function taking software written at
one level of abstraction and bringing it down to a lower level that a
computer’s CPU can understand.

Programming
Language Compiler

Machine
Language

Figure 1.2: Action of Compiler

The term compiler was first used in the context computers by Grace
Hopper in the early 1950’s while working on a system that could
translate symbolic mathematics into a machine language. Initially
Hopper’s new idea was met with resistance as it was thought to be
unrealistic.

I had a running compiler, and nobody would touch it
because, they carefully told me, computers could only do
arithmetic; they could not do programs. It was a selling job
to get people to try it. I think with any new idea, because
people are allergic to change, you have to get out and sell
the idea. (Grace Hopper [Hop52])

In the end, Hopper succeeded in selling the idea and compilers have
become a ubiquitous piece of modern computing infrastructure. While
Hopper’s compiler focused solely on code translation, a modern com-
piler might perform all of line reconstruction, preprocessing, lex-
ical analysis, syntax analysis, semantic analysis, conversion to an
Intermediate Representation (IR), optimization (and there are many
different types!), and finally code generation. Thankfully we will not
need to understand all of these parts in full, but rather will focus on
Intermediate Representations, optimizations, and code generation.

resources Before jumping into processes that make up a compiler,
we will first detail some of the hardware restrictions that compilers
must be aware of while performing their job. Modern digital comput-
ers are built on the transistor: a small3 device models a bit (0 or 1) as

2 Colloquially known as “The Dragon Book” because of the cover, and likely the most
famous book on (classical) compilers. This is also where the logo of the LLVM project
originates from which we will discuss in section 1.3.

3 They are today, but they were not always small!
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the absence or flow of electricity. Since transistors provide the basic
building block of the bit, the transistor count is an effective measure
of how much memory the computer has. Hence when a compiler
is performing some sort of optimizations, it must be aware of the
amount of memory it can make use of. While modern computers have
an abundance of memory, not all memory is created equally. The CPU
can talk to the computer’s long-term storage (hard drive), however it
is a slow communication that is not ideal to perform frequently and
cause bottlenecks in many computations. Instead, CPUs have their own
(smaller) internal memory which is often referred to as a collection
of registers. These registers provide fast access to variables during
computation. Hence during the compilation of a program, the com-
piler’s knowledge of the target hardware’s CPU allows the compiler to
efficiently use the on-board registers, and make informed decisions as
to when to use long-term storage.

The second resource that compilers are often made aware of is the
CPUs ability to run parallelized computations. The ability to perform
multiple instructions at the same time is often taken advantage of
in compilers via techniques like loop unrolling.4 However, not all
architectures support this mode of optimization, and even if it does,
the compiler must be careful to ensure parallelization optimizations
do not over-burden registers.

1.2.1 Compilation Phases

As in the previous section, a compiler has many different responsi-
bilities. Each responsibility is broken into a separate component so
that it can be understood on its own, and later be reused in its own
context. A schematic for this can be seen in fig. 1.3 on page 7 showing
the main steps that we will be concerned with in this document.

syntax analyzer This phase is for ensuring the code is syntac-
tically well formed (that is, that it abides by the specification of the
language). If one is writing code in a binary alphabet with characters
0 and 1, then the “program” 00011 is syntactically valid, while 1102 is
not because a 2 appears in the code. Many compilers transform the
code into a syntax tree to complete the verification.

semantic analyzer Now that the code is syntactically valid,
we can ensure it has meaning. This phase usually consists of type
checking and scope validation (ensuring the code does not access
variables outside of scope). In many compiled languages the operation

4 https://en.wikipedia.org/wiki/Loop_unrolling

https://en.wikipedia.org/wiki/Loop_unrolling
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’hello’ * 5 would pass syntax analysis, but fail semantic analysis
because a string multiplied by an integer is not a valid operation.5

Syntax
Analyzer

Semantic
Analyzer

Intermediate
Code

Generator

Code
optimizer

Code
generator

Figure 1.3: Compi-
lation
Phases

intermediate code generator The code
is now ensured to be well formed and can begin
to be transformed into something the hardware is
capable of running. Passing directly to the code
generator is possible from here, but the end prod-
uct will be slower as no optimizations will take
place. Instead, the existing code (sometimes the
syntax tree created in the previous steps is used)
will be transformed into an Intermediate Repre-
sentation (IR). This is a mid-level representation
of the code in that it is typically thought of as
somewhere between the high-level of abstraction
of the programming language, and the low-level
instruction set.

This is best seen with a simple example. Suppose
we have the following snippet to calculate the final
location of a moving object after 5 seconds.

x_final = x_initial + velocity * 5

Upon transforming this code to an IR, it takes on
a more basic form.

t1 = inttofloat(5)
t2 = velocity * t1
t3 = x_initial + t2
x_final = t3

The power here comes from the fact that the In-
termediate Representation (IR) can be language agnostic, and hence
many languages can compile into the same IR. This design allows for
the use of an optimizer for many languages.

code optimizer Once the code is in the IR, the optimizer will
attempt to “improve” it using many different methods. Improve can
mean many different things, but usually refers to runtime and memory
use. Optimizations that occur during this step are constant propaga-
tion, dead code elimination, removing unnecessary code from loops,
and loop unrolling. Optimizing the above example our code is still
“bulkier” than originally written, but compressed in comparison to the
original IR-form.

t1 = velocity * 5.0
x_final = x_initial + t1

5 It is completely valid in other languages like Python, but Python is not a compiled
language.
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Here we have skipped the call to inttofloat and instead immediately
converted the integer 5 to the float 5.0. We have also combined two
of the steps to reduce the number of temporary variables we have to
create and store in memory. As you can see the task of the optimizer is
not only to try and speed up the code, but reduce its memory usage as
well. Some of the other problems the code optimizer must tackle are
instruction selection, register allocation, and instruction scheduling all
of which have analogs we will see in chapter 4.

code generator Finally we have an optimized IR and we can
generate code for hardware. This requires us to know which hardware
it is we’d like to run our code on as each chip might have a different
ISA. This is a very difficult step as many of the sub-problems that are
required to be solved are themselves NP-complete such as register
allocation [Cha+81]. Further, generating mathematically optimal ma-
chine code has also been shown to be undecidable [Aho+07]! Hence
this step uses effective heuristics to solve the problem at hand in
tractable amounts of time. Typically this step is broken down into first
optimizing the IR for the hardware that has been chosen, followed by
the actual code generation. If this occurs the optimizer is typically
referred to as a hardware-independent optimizer, and a later stage of
optimizations is performed in a hardware-dependent optimizer. We
will see later that the distinct phases of optimization are of crucial
importance when compiling quantum circuits.

Again following the above code example, upon code generation we
may end with the following generic hardware instruction code.

LDF R2, velocity
MULF R2, R2, #5.0
LDF R1, x_initial
ADDF R1, R1, R2
STF x_final, R1

Function Meaning

LDF Load float
MULF Multiply floats
ADDF Add floats
STF Store float

Table 1.1: Machine Code
Here anything beginning with R is a register.

The phases described here are often grouped into three larger cat-
egories. The syntax and semantic analysis, as well as the generation
of an IR fall under the umbrella of “front end”, the optimizer is the
optimizer, and everything else that follows is the “back end”. The
implications of this design is that an optimizer and backend can be
paired with many different front ends as long as the front end can
generate the optimizer’s preferred IR flavor.
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C Frontend

Haskell
Frontend

Rust Frontend

Optimizer ARM Backend

X86 Backend

PowerPC
Backend

Figure 1.4: Compiler with many front and back ends

1.2.2 Optimizations

Before moving on to some examples of compilers, its important to
understand the separation of concerns in the two types of optimiza-
tions we’ve seen. The main optimizer we see in fig. 1.3 as “Code
optimizer” and again the “Optimizer” in fig. 1.4 are typically where
the majority of optimizations take place in classical compilers and are
performed on an IR. One interesting class of examples are peephole
optimizations [McK65]. These are optimizations that take advantage
of small patterns found in code that can be simplified in some way.
Some examples are seen in table 1.2. Other examples include dead

Instruction Optimized Instruction

Read value into a register, then im-
mediately store it in memory.

Do nothing

a · x + b · x (a + b) · x
x � x 0
(A|B|)| BA

Table 1.2: Peephole Optimizations

code elimination, common subexpression elimination, and inlining.
The optimizations done here—usually to the ends of faster runtime
and smaller memory use—are performed in the hopes that once the
code is compiled into machine code it will run faster. The intuitive
optimizations often remove duplication, but many other optimizations
that are not so clear take advantage of the commonalities among CPU
design to produce code that will run faster on any CPU.

With an optimized IR, and a chosen backend, or hardware, the code
can be modified to suit the instruction set, as well as other restrictions
the hardware may place on computation. For example, most CPUs
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have a small number of registers, and hence must use them wisely
throughout the computation so as to use all of them where possible,
but not slow down computation by waiting for a register to be avail-
able. Another example is instruction scheduling, where the compiler
must figure out an optimal ordering to the computation, again to
maximize the CPUs compute power while not causing bottlenecks.
There are many other examples of hardware-dependent optimizations,
but as you might imagine, many require an intimate knowledge of
the hardware’s particular design. All this transformation occurs while
maintaining the same semantic meaning of the original program.

In summary the first hardware-independent optimization should
be thought of as optimizing the implementation theoretically, and
the hardware-dependent optimization as ensuring the optimized al-
gorithm runs as fast as possible in its final implementation. Many
more examples of optimizations (both hardware-independent and
hardware-dependent) can be found in [Rod20, Chapter 8].

1.2.3 Examples

We’ve now seen what a compiler is and what we typically use it for. A
few examples are in order to help understand how compilers work in
the real world, and just how varied they can be.

clang : Short for C Language, this is a compiler frontend for the
C/C++ languages. It takes in C/C++ code and produces an
LLVM IR which we will learn about in section 1.3. It then lets
LLVM handle the rest of the compilation processing.

latex : While perhaps not very obvious, LATEX is indeed a compiler as
it takes high-level formatting code, and produces a lower level
representation of what the user wants to typeset. Usually that
comes in the form of postscript which is another programming
language that is read by printers (hardware) to produce the
requested document. Postscript can also be read by PDF readers
and browsers which then display content as the author desired
(maybe).

tensorflow : TensorFlow is a library for machine learning that
has drawn on the design principles of compilers in attempts
to speed up and ensure the accuracy of models. Indeed it has
a frontend where the user builds their model and compiles it
into an IR known as HLO IR or High Level Operations. Typical
optimizations then occur and again using the LLVM compiler
infrastructure this code can be brought to many backends such
as the browser, mobile, and specialized compute infrastructure
(such as Google’s Tensor Processing Unit (TPU)). This is all before
we talk about TensorFlow Quantum which allows for hybrid
quantum-classical machine learning models [Bro+20].
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1.3 llvm

The LLVM6 project [LA04] is one of the largest open source compiler
projects in existence and much of the compiler architecture we’ve
discussed here come from its design. The founder of the project Chris
Lattner has characterized compilers succinctly in [Lat19] as

the art of allowing humans to think at a level of abstraction
that they want to think about.

As an interesting historical note, once the ISA scheme had become
commonplace, chip designers began to implement more and more
complex instructions on CPUs so that machine code became higher
level. At the same time, compilers became more popular, especially
as their optimizations became more robust, and useful. This led to a
distinction between chip architectures known as Complex Instruction
Set Computer (CISC) and Reduced Instruction Set Computer (RISC). At
the time of writing, CISC processors are dominant in desktop comput-
ers, while RISC processors emphasize efficiency and can be found in
phones and many other portable computing hardware. Some exam-
ples include Intel’s x86 and x64 chips which are built in the CISC style,
while ARM is major designer of RISC chips (including the most recent
Apple Bionic A15 chip). Today RISCs are sometimes referred to using
the backronym “Relegate Interesting Stuff to the Compiler”.

With the growth of LLVM, developers have pushed the compiler to
extend its use to “heterogeneous hardware” [Lat+21], which already
includes new types of computing hardware like TPUs and could in
the future encompass a Quantum Processing Unit (QPU). This is ex-
citing not only because classical computer designers are beginning
to consider quantum technologies as coprocessors, but because the
monumental classical computing infrastructure can then be leveraged
to aid in the solutions to quantum problems. With the futurism, hype,
and unknowns surrounding quantum technologies, it often seems that
fundamentally new and ingenious ideas are needed to forward the
field. Projects such as the above show there are serious possibilities of
recycling, or at the very least, learning from what has come before us.

6 The project, while originally an acronym for Low Level Virtual Machine, now goes
solely by LLVM. The original name reflects the fact that the compiler targets low-
level IR code that runs on some theoretical (hence the term virtual) machine. Since
the inception virtual machines have come to mean something different, hence the
abandonment of the acronym.





2
Q UA N T U M C O M P U TAT I O N

In this chapter we will lay the groundwork for the necessary ideas
from quantum computation. We will not attempt to introduce quan-
tum computation from the ground up, but instead introduce and
emphasize the ideas needed for compiling quantum circuits. The nota-
tion used here will mostly follow [Wat18] and we recommend [NC10]
for a more thorough introduction to the material.

2.1 historical development

One of the core tenets of quantum theory is that, at this scale, na-
ture is reversible. Hence, when physicist Charles H. Bennett began
investigating reversible Turing machines [Ben73] we might say the
field of quantum computing was just getting started. Since Turing
machines are the mathematical and theoretical foundation for modern
computers, it makes sense that a reversible Turing machine might
lay the groundwork as the foundation for a computer that operators
under quantum mechanical law. More than 6 years later, Paul Benioff
extended this work to describe a fully quantum mechanical version of
a Turing machine in his paper “The computer as a physical system: A
microscopic quantum mechanical Hamiltonian model of computers as
represented by Turing machines” [Ben80].

Once the theoretical foundation had been laid by Bennett and Be-
nioff, Richard Feynman brought the idea mainstream when he pro-
posed using these new computers to simulate quantum mechanics
itself. This idea was very attractive at the time (1981) since our classi-
cal computers were not powerful enough to simulate large quantum
systems,1 and since Feynman was such a popular figure the idea fi-
nally took hold. Feynman motivated the need for a new paradigm in
computing as such.

Nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum me-
chanical, and by golly it’s a wonderful problem, because it
doesn’t look so easy. (Richard P. Feynman [Fey82])

Even with one of the most famous physicists popularizing the idea,
it took another 10 years to see the next major development which
came when David Deutsch and Richard Jozsa gave an example of a
problem that is solved exponentially faster on a quantum computer

1 In fact, they still aren’t!

13



14 quantum computation

than a classical one [DJ92]. If there was any hesitancy from the aca-
demic community at this point about the theoretical usefulness of a
quantum computer, this result showed real potential for the emerging
technology. More applications start rolling in with quantum teleporta-
tion [Ben+93] and famously Peter Shor’s polynomial time algorithm to
factor integers (and hence break many modern cryptosystems) [Sho94].

The latter caught the eye of the US Government and within the year
of Shor’s publication the National Institute of Standards and Tech-
nology (NIST) organized the first government-funded conference on
quantum computation.2 Since then ambitions have risen and techno-
logical progress has allowed for more and more qubits and quantum
computers today have even been shown to complete tasks that classical
ones cannot in any feasible amount of time. In particular a team at
China’s Hefei National Laboratory used their 66-qubit computer3 to
complete a task in 4 hours that would take state of the art programs
tens of thousands of years [Zhu+22].

In 2018 John Preskill coined the term Noisy Intermediate-Scale
Quantum (NISQ) as a characterization of quantum computers with
a relatively small number of noisy qubits (50–100) with limited con-
nectivity: i. e. machines that have dominated the past decade, and
will likely continue to for the next few years [Pre18]. The problem
presented in this document is relevant to quantum computers past the
NISQ-era, but are especially important as we attempt to squeeze every
ounce of computation out of them in the NISQ-era.

2.2 quantum computation

In this section we will go over the basics of quantum computation.
Before continuing I would like to recommend [NC10] as well as
https://quantum.country as great resources to learn the basics of
quantum computing.

2 It’s likely this is when quantum computation was put on the radar of other US
government agencies. In 2014 leaked documents showed the National Security Agency
had begun a project dubbed “Owning The Net” whose purpose was to use a quantum
computer to break internet cryptography and to “gain access to and securely return
high value target communications”. The status of the project—which also goes by the
moniker “Penetrating Hard Targets”—is unknown.

3 Affectionately named Zuchongzhi after Chinese mathematican Zu Chongzhi whose
computation of p was more accurate than any other for more than 800 years.

https://quantum.country
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2.2.1 Formalism

A quantum bit, or qubit for short, is a vector |yi in 2-dimensional
complex space C2 such that k|yik = 1. Often the following canonical
basis is chosen and referred to as the computational basis.

|0i :=

"
1
0

#

|1i :=

"
0
1

#
(2.1)

In this basis, a qubit is represented as

|yi = a |0i+ b |1i =
"

a

b

#
(2.2)

with the normalization condition that |a|2 + |b|2 = 1. In the case of
eq. (2.2) the state |yi is said to be in a superposition of state |0i and
|1i.

We often need to understand more complicated systems than just
simple qubits, and to do so we use the tensor product to build up
systems from subsystems. E. g. if |yi 2 C2 and |fi 2 C2 represent two
distinct physical qubits, we can represent the combined system as a
single vector |yi ⌦ |fi in a larger complex Euclidean space C2 ⌦ C2 ⇠=
C4. In many cases it is customary to drop the tensor product ⌦
symbol and write |yi |fi or even |y fi when the underlying complex
Euclidean spaces are understood. In the computational basis we can
expand this tensor product as

|yi ⌦ |fi = (a |0i+ b |1i)⌦ (g |0i+ d |1i) (2.3)
= ag |00i+ ad |01i+ bg |10i+ bd |11i (2.4)

where a, b, g, d 2 C.
With the objects of the theory defined, we must now understand the

dynamics, or choreography of the theory. As stated in section 2.1, we
take the theory of quantum mechanics to be reversible, and hence any
operation we perform on a qubit |yi must be undo-able. Thankfully
linear algebra has just the tool to transform complex vectors in a
reversible, and general way: unitary matrices!

Definition 2.2.1. An n ⇥ n complex matrix A is called unitary if

AA† = A† A = 1 (2.5)

where † denotes the conjugate transpose. The collection of unitary matrices
form a group known as the unitary group and is denoted U(n). This
definition can also be stated simply using set builder notation;

U(n) :=
n

A 2 Mn(C) : AA† = 1 = A† A
o

(2.6)

where Mn(C) is the set of all n ⇥ n complex matrices.
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Hence when we have a qubit |yi and perform some action on
it, the new state is modeled by |fi = U |yi where U represents
whatever action we performed. The condition shown in eq. (2.5) is
quite restrictive: where a general n ⇥ n matrix has 2n2 real degrees of
freedom, an element of U(n) only has n2.4 In fact for a general element
of U(2) we can decompose it into pieces that look much more familiar.

Example 2.2.2. Let A be an arbitrary element of U(2). Then the following
decomposition holds for a, b, g, d 2 R.

A = eia

2

4e�ib 0

0 eib

3

5
"

cos g � sin g

sin g cos g

#2

4e�id 0

0 eid

3

5 (2.7)

As we can see the middle matrix is simply a 2-dimensional rotation matrix,
and the other two are of a simple diagonal form. Lastly we have the global
phase eia.

This is a particularly important example as the idea of decomposing
unitary matrices into simpler pieces is something we will need heavily
in circuit compilation tasks. This decomposition also shows that each
unitary in U(2) has a global phase (eia in example 2.2.2), which in
quantum computation is often irrelevant as it is not experimentally
measurable. For that reason we also often work in the following group
where phases are removed.

Definition 2.2.3. Define the projective unitary group by taking the quo-
tient of the unitary group U(n) by matrices of the form a · 1 where a is a
unit length complex number. This is often written as follows, using a slight
abuse of notation.

PU(n) := U(n)/U(1) (2.8)

Representative elements of the projective unitary group are the
smallest physically realizable set of operations in quantum computa-
tion, and hence they make sense as our starting point in the formaliza-
tion process.

2.2.2 Quantum Gates

A quantum gate is a physically realizable, and unambigious mathe-
matical transformation. More formally, a quantum gate on n qubits
is an element g 2 PU(2n). In this document we will mainly discuss
quantum gates acting on 1 and 2 qubits as that is the capability of
most modern hardware we will discuss in chapter 3. Table 2.1 out-
lines some of the common gates we will encounter throughout this
document, and their associated notations both mathematically, and
diagrammatically.

4 This is to say dimR U(n) = n2.
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Name Notation Circuit Diagram Matrix

Pauli X X X
⇥

0 1
1 0

⇤

Pauli Z Z Z
⇥ 1 0

0 �1
⇤

Hadamard H H
1p
2

⇥ 1 1
1 �1

⇤

p
8 -gate5 T T

h
1 0
0 eip/4

i

Controlled Not CNOT

 1
1

0 1
1 0

�

Toffoli CCNOT

2

664

1
1

1
1

1
1

0 1
1 0

3

775

Table 2.1: Common Quantum Gates

Along with the examples in table 2.1 we have parametric gates
which we view as gates that are dependent on some number of pa-
rameters, although we will often just use one. Parametric gates are
modeled by functions g : R ! PU(2n) and in all technicality are not
gates in and of themselves, but rather a function whose images are
gates. Two important parametric gates are the X and Z rotations.

RX(q) =
h

cos(q/2) �i sin(q/2)
�i sin(q/2) cos(q/2)

i
RZ(q) =

h
e�iq/2 0

0 eiq/2

i
(2.9)

These two can also be represented more compactly as RX(q) = e�iXq/2

and similarly RZ(q) = e�iZq/2 where X and Z are the Pauli operators
as in table 2.1. Note that these two functions may seem to have period
4p, but due to the quotient structure on the image space PU(2n), all
phases are modded out to ensure RX(q) = RX(q + 2p).

Example 2.2.4. As we will later see, due to the limited connectivity of qubits
on modern hardware, the ability to move qubits around on a chip is paramount.
While some hardware can physically move qubits, many cannot. In the latter
case a strategy must be devised to perform some sort of swap operation
between qubits using quantum gates. That is a gate SWAP 2 PU(22) is
desired that acts on two qubit systems as

SWAP
�
|yi ⌦ |fi

�
= |fi ⌦ |yi . (2.10)

5 The name p
8 -gate comes from the way the gate was first introduced in the literature,

where it was written T = eip/8
h

e�ip/8 0
0 eip/8

i
.
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This operation as defined can be seen to be unitary by taking the conjugate
transpose of eq. (2.10) and taking the forming the inner product again
with eq. (2.10).

hy|⌦ hf| SWAP
†
SWAP |yi ⌦ |fi = hf|⌦ hy| |fi ⌦ |yi (2.11)

= hf|fi hy|yi (2.12)
= 1 (2.13)

Since |fi , |yi were arbitrary, we must have SWAP
†
SWAP = 1 and a similar

argument can be used to show SWAPSWAP
† = 1, and hence SWAP is a

valid unitary operation.
As for the decomposition of the SWAP gate, we have the following equiva-

lence.

=: ⌘ (2.14)

Where the first equality shows us how to perform the swap with 3 CNOT

gates, and the last equality is an equivalence of notation.
We can show this using the fact that the CNOT gate is defined to act as

CNOT[|xi ⌦ |yi] = |xi⌦ |x � yi where x, y 2 F2 and � is binary addition.
With this we can explicitly compute the action of this circuit. Here we use
the notation CNOT

a
b to mean a CNOT gate acting from qubit a (the control

qubit) to qubit b (the target qubit). Then the 3 CNOT gates in eq. (2.14) act
under the following manipulations.

|xi ⌦ |yi CNOT
1
2����! |xi ⌦ |x � yi

CNOT
2
1����! |x � (x � y)i ⌦ |x � yi = |yi ⌦ |x � yi

CNOT
1
2����! |yi ⌦ |(x � y)� yi = |yi ⌦ |xi .

Exactly as desired. The SWAP gate also has the following matrix representa-
tion in the computational basis.

SWAP =

 1
0 1
1 0

1

�
(2.15)

2.2.3 Quantum Circuits

We are now ready to put these pieces together to build larger structures.
Since it is common that a quantum computer can perform a multitude
of gates, we collect them together to form a quantum gate set.

Definition 2.2.5. A quantum gate set is a (typically finite) subset G (
PU(2n). An element of G is called a quantum gate.
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Just as we had gates and parametric gates in the previous section,
some authors also like to define another set keeping track of said para-
metric gates. A parametric quantum gate set G0 is a finite collection
of parametric gates. While we only have a finite collection of para-
metric gates, this usually means an infinite amount of quantum gates.
From these gates, we can construct a quantum circuit by applying a
sequence of elements from the gate set.

Definition 2.2.6. Let G be a quantum gate set, and let G⇤ denote the set
of finite length words over G (and the empty word which we take to mean
identity).6 A quantum circuit is an element of G⇤.

Thus if our gate set G = {a, b, c}, then the following are example
circuits: aacba, cccbbb, cbbbab, and ab.

Something to note here is that in this abstraction, all of our quantum
gates are assumed to act on all qubits. With a 2 qubit quantum chip
and the ability to perform a Pauli X gate on either qubit, our gate set
is {1 ⌦ 1, 1 ⌦ X, X ⌦ 1, X ⌦ X}.8 Sometimes this gate set is denoted
{1, X0, X1, X0X1}, but we will try to use more explicit notation here.

Circuits are often drawn as in fig. 2.1 where each horizontal “wire”
represents a qubit, and boxes and other gadgets represent quantum
gates. That said, the way our theoretical model sees this circuit is more

U0 U1

U3U0

U2

U0

Figure 2.1: Example Quantum Circuit

like that of fig. 2.2 where each gate acts on the entirety of the qubits.
In table 2.2 we see what each one of these circuits are under the hood,

A B C D E F

Figure 2.2: Abstract Quantum Circuit

6 This ⇤ operation is known as the Kleene7 star.
7 Technically the author for which this operation is named after is Stephen Cole Kleene

in which Kleene is pronounced KLAY-nee, yet most people say this operation as clean
star.

8 We don’t always think of the identity gate 1 as a gate that needs to be included, but
doing nothing to a qubit is no easy task, so it’s important to remember to treat it just
like any other gate and understand its error rates as well.
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and we can know that all of them are in the gate set for the above
circuit.

Gate Name Composition

A U0 ⌦ U0 ⌦ U0

B CNOT⌦ 1

C U1 ⌦ 1 ⌦ 1

D Controlled-U2

E 1 ⌦ SWAP

F U3

Table 2.2: Gate Compositions

We now have the machinery for circuits, and one of the important
questions we need to ask is when are two circuits the same? Surely we
can compare the circuits as strings in G⇤, but if G = {1, X}, it will
not tell us that C = 1 and C0 = XX are logically the same despite
corresponding to different physical processes. To this end we wish to
understand how the combinations of gates come together to form the
entire process. Following [Amy19] we define a map J�K : G⇤ ! PU(2n)
which takes a quantum circuit, or sequence of gates, and multiplies
them together to obtain a single unitary operator: Jg1g2 · · · gmK =
gm · gm�1 · · · g1.9 With this notation we can say two circuits C and C0

implement the same operation if JCK = JC0K.
This formalism also allows us to frame the following important

question about unitary synthesis.

Question 2.2.7. Given a quantum gate set G over n qubits, and unitary
operator U 2 PU(2n), does there exist a circuit C 2 G⇤, such that JCK = U?

If the answer is yes, we say a gate set G synthesizes U. We also
say that G synthesizes U if there is a collection SWAP operations
that can be composed before and after G that implement U. More
formally, if there is a circuit C 2 G⇤ and unitaries S0 and S1 that
are made solely of SWAP operations such that S0 · JCK · S1 = U, then
we also say G synthesizes U. This additional level of equivalence is
particularly useful in quantum circuit compilation as it comes from
simply relabeling qubits.

This question is answered, at least in part, through the Solovay-
Kitaev theorem first published in [Kit97] with further proofs/elucida-
tions in [NC10; DN05; KSV02]. The theorem, stated in our terminology
is as follows.

9 Notice here on the left we have string concatenation, and on the right matrix multipli-
cation. Also note the fact that when doing the multiplication we reverse the order.
This is an artifact of the way we draw quantum circuits from left to write, but apply
gates mathematically right to left.
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Theorem 2.2.8 (Solovay-Kitaev). Let G be a quantum gate set on n qubits
such that

• g† 2 G for all g 2 G, and

• the free group hGi is dense in PU(2n).

Then with # > 0, there is a constant c > 3, such that for any U 2 PU(2n),
there exists a circuit C 2 G⇤ of length O

�
logc � 1

#

��
that approximates U

with error less than #: that is kJCK� Uk < #.

Not only does this theoretical result provide some insight into 2.2.7,
but it’s constructive and hence provides an algorithm10 to approximate
arbitrary elements of PU(2n) using gates from PU(2m) for any m 2 [n].
This was, a very important result in the field of quantum computing
because it was the first to show that with the right gate set, one can
theoretically perform any desired unitary.

With at least a partial answer to Question 2.2.7 we can begin to
refine further questions. If the answer to 2.2.7 is positive, we can then
ask the following.

Question 2.2.9. If G synthesizes U, and if f : G⇤ ! R is a cost function,
can we find

Cmin = arg min
C2G⇤

{ f (C) : JCK = U}?

Some examples of common cost functions are given below, and
multiple can be used in the case of tie-breaking.

• f (C) = length(C) (commonly referred to as the depth of the
circuit)

• f (C) = # of uses of a particular gate in C

• f (C) = duration(C) (by this we mean the total elapsed time the
circuit takes)11

2.2.4 Universal Gate Sets

We slightly danced around the idea of universality in theorem 2.2.8,
but we will make it clear now. In order to harness the full power of
a quantum computer, it must be able to perform arbitrary unitary
operations.

Definition 2.2.10. A gate set G on n qubits is called universal if for all
U 2 PU(2n) there exists a circuit C 2 G⇤ such that JCK = U.

10 This result sometimes goes under the name “The Solovay-Kitaev Algorithm”.
11 We have not discussed this yet, but each gate g 2 C takes a nonzero amount of time,

during which the computation may be disturbed by outside forces.
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If our gate set is not universal, then we can often find ourselves
in a situation where it is more efficient to simulate a given quantum
algorithm than to actually run it. E. g. circuits composed of gates from
{CNOT, H, S} are known to be efficiently simulable [AG04] despite
not limiting factors typically thought to make quantum computation
more powerful such as entanglement.

The question of which gate sets are universal for quantum compu-
tation is important both for our theoretical understanding of quantum
computation, but also for building physical devices. Some examples
that have been shown to be universal are the following.

• CNOT plus U(2) as shown in [Bar+95]

• CNOT, Hadamard, and the p
8 -gate as shown in [Boy+00]

• Toffoli, Hadamard, and the p
8 -gate squared as shown in [Kit97]

• CNOT plus any single qubit gate that does not preserve the
computational basis and is not the Hadamard gate as shown
in [Shi03]

2.3 fault tolerance

Introduced in the context of quantum computation by Shor, the idea
of fault tolerance is to make quantum computers that can perform
meaningful computation despite decoherence and other errors [Sho96].
As it stands, even with basic quantum error correction quantum errors
can spread and quickly become unwieldy. Suppose we have a general
two-qubit state that we’d like to perform a CNOT gate on, but a bit-flip
error occurs on the first qubit before the CNOT can be applied. This
single-qubit error is then propagated to the second qubit as follows.

a |00i+ b |01i+ g |10i+ d |11i (2.16)
X⌦1��! a |10i+ b |11i+ g |00i+ d |01i (2.17)
CNOT���! a |11i+ b |10i+ g |00i+ d |01i (2.18)

Compare that with the effect of a CNOT on the general two qubit state
in eq. (2.16).

a |00i+ b |01i+ g |10i+ d |11i (2.19)
CNOT���! a |00i+ b |01i+ g |11i+ d |10i (2.20)

To solve this problem (and many others like it), fault tolerance encodes
single qubits into many to increase information redundancy. Gates
are then replaced by gadgets which implement the one and two qubit
gates on the encoded logical qubits. To prevent errors from spreading,
restrictions are placed on the number of two qubit inter-gates. Here
inter-gates refer to gates within the encoded qubits, and the restrictions
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are in place to ensure errors spread in only a limited capacity. Further
explanation and details can be found in [Got09].

2.4 mathematics

Before moving on there are a few more bits of mathematics we need
to cover. All of our discussions in this section will assume our vector
space V is some complex space Cn.

2.4.1 Operator Norms

vector induced norms : Suppose our vector space V has an
existing norm defined on it k·k : V ! R. This induces a norm on the
space of operators End V as

kAkvec := max
v2V

{kAvk : kvk = 1}. (2.21)

trace norm :

kAktr := tr
⇣p

A† A
⌘

(2.22)

frobenius norm :

kAkF :=
q

tr(A† A) =

0

@ Â
i,j2[n]

��aij
��2
1

A
1/2

= kvec(A)k (2.23)

2.4.2 Free Group

We will not attempt a rigorous definition of the free group and instead
opt for something more informal since we will not need to work with
the details. Let S be a finite set, and denote by S�1 the formal inverse
of elements in S. Then the free group of S is hSi := (S [ S�1)⇤ where
the asterisk indicates the Kleene star.

As an example take S to be { f , g, h}, and hence the formal inverses
are S�1 =

�
f�1, g�1, h�1 . Then the free group hSi contains elements

such as f g�1hhhh�1, f ghhh f , and h�1gh�1 f�1ghgg. Note that this may
appear very similar to definition 2.2.6, however we did not require our
“words” to be over the inverses as we have here; only elements of the
set itself.12

12 This is done because in practice, being able to perform a quantum gate U, does not al-
ways imply one can perform its inverse U†. In fact, theorem 2.2.8 has been generalized
without the need of unitary inverses in the approximation algorithm [BG21].
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2.4.3 Dense-ness

What does it mean for a gate set G to be dense in PU(2n)? It means
that for every U 2 PU(2n), and every # > 0, we have a sequence of
gates C = g1g2 · · · gm such that kJCK� Uk < #.

2.4.4 Fidelity

The fidelity of two density operators r and s is a measure of state-
similarity and can be calculated as follows.

F(r, s) :=
��pr

p
s
��

tr = tr
✓qp

sr
p

s

◆
. (2.24)

If r = s, then their fidelity is equal to 1, while if r and s have
orthogonal images (i. e. rs = 0), then the fidelity is equal to 0. In
all other cases the value of the fidelity lies in the range (0, 1). This
notion can be extended from quantum states to quantum gates to
obtain a similarity measure for unitary matrices [HHH99]. Given two
unitary operators U and V and a density operator r, we can compute
F(UrU†, VrV†), but the dependence on a particular state r is not
ideal for understanding how U and V differ across all states. Hence
we define the average gate fidelity between two quantum gates as

Fgate(U, V) :=
Z

F(UrU†, VrV†)dr (2.25)

where the integral is taken over all density operators which is made
possible by a Haar measure. This measure has the downside of being
“dimensionally unstable” which means Fgate(U, V) 6= Fgate(U ⌦ 1, V ⌦
1). This can be amended by using the process fidelity13 which requires
the introduction of a few other terms. Let |fi = 1p

d Âd�1
x=0 |xi |xi be

the maximally mixed state on the tensor square of some complex
Euclidean space H. The Choi representation of a quantum channel, or
Completely Positive Trace Preserving (CPTP) map F : Cn⇥n ! Cm⇥m

is defined as follows.

J(F) := (1 ⌦ F)(|fihf|) (2.26)

The process fidelity is then defined as

Fproc(U, V) := hf| (1 ⌦ V†)J(U)(1 ⌦ V) |fi (2.27)
= tr(J(U)J(V)). (2.28)

The process fidelity and average gate fidelity are linearly related [Nie02]
where d is the dimension of the system by the relation

Fgate =
d Fproc +1

d + 1
. (2.29)

13 This notion goes by mapping fidelity in [Wat18], and entanglement fidelity in [NC10].
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This definition is made more useful when we replace V by a noisy,
error-prone implementation of U. This gives us a theoretical tool to
examine the accuracy of an implementation of a desired unitary gate
that is more relevant than a more naïve measure like the distance or
trace norm.





Part II

B A C K E N D

The goal of this part is to familiarize the reader with the
realities of quantum hardware. This means understanding
their architecture, strengths, weaknesses, and some of the
many measures we have to quanitify their effectiveness.
With an understanding of the limitations of modern-day
hardware we can understand the problem of quantum
circuit compilation. We will show how the problem is both
similar and different from classical compilation and how
we can benefit from using existing classical infrastructure.





3
Q UA N T U M H A R D WA R E

The goal of this chapter is twofold. First, we introduce the most
common constraints seen in modern quantum hardware, as well as
other common tools used to measure the efficacy of a given quantum
computer. Second, we will introduce the mathematical formalism
needed in order to formulate the problems related to quantum circuit
compilation we will see in chapter 4. We will not, however, attempt
to give an introduction to the physical implementations of quantum
hardware and instead refer the reader to [NC10, Chapter 7] for a more
comprehensive introduction.

3.1 requirements

In 2000 David DiVincenzo proposed 5 requirements as being necessary
to make an effective quantum information processing device [DiV00].
His proposed requirements are summarized here.

1. A scalable physical system with well-characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial
state, such as |0i⌦n.

3. Long decoherence times, much longer than the gate operation
time.

4. A universal set of quantum gates.

5. A qubit measurement capability.

While all of these requirements are still under active research, require-
ments 2., 4. and 5. are completed for NISQ devices, while require-
ments 1. and 3. keep us in the NISQ-era. However, even if all of these
problems were solved completely, there are still many things that
can go wrong. Just because your qubits scale doesn’t mean you have
enough for a specific algorithm. Just because there is a long decoher-
ence time doesn’t mean a qubit can’t error in some other way. Just
because you have a universal gate set doesn’t mean you know how to
efficiently decompose a gate from the algorithm you are trying to run.

As you can see, these five requirements provide us with the back-
bone upon which we can build further, but do not guarantee optimal
quantum computations. It is some of these secondary questions we
wish to understand more deeply to make quantum computers more
useful once the bedrock has been established.

29
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3.2 quantum chips

Intuitively a quantum chip is a collection of qubits along with the
capability to perform operations on subsets of the qubits. This can be
formalized using a graph structure as follows.

Definition 3.2.1. A quantum connectivity graph is an undirected1 graph
H = (V, E)2 such that (v, v) 2 E for all v 2 V.

What we call the connectivity graph is sometimes referred to as
a (network) topology in other resources. We ensure the connectivity
graph has all self loops as edges are the basis for performing quantum
gates and all modern hardware has the capability of performing single
qubit gates. Once the connectivity graph has been established, we can
consider which gate-sets are allowable by ensuring only qubits which
are connected via an edge are acted on in a nontrivial manner. That
is, if two nodes are not connected via an edge, there should be no
entangling gates operating on them.

In order for an effective definition for a quantum connectivity graph
we must first define the following qubit indexing function.

Definition 3.2.2. Let G be a quantum gate set acting on n qubits. Define a
function qubits : G ! P([n]) which returns a set containing the index of
the qubits each gate acts on nontrivially.

As an example, if G = {1 ⌦ 1, 1 ⌦ X, X ⌦ 1, X ⌦ X}, then qubits(1⌦
1) = ∆, qubits(1 ⌦ X) = {1}, and qubits(X ⌦ X) = {0, 1}.

Definition 3.2.3. Let H = (V, E) be a quantum connectivity graph. A gate
set G is said to be amenable to H if

• G acts on |V| qubits, and

• qubits(g) 2 E for all gates g 2 G.

We can now combine the connectivity graph and an amenable gate
set to form the model of quantum hardware.

Definition 3.2.4. A quantum chip T = (H, G) is a quantum connectivity
graph H = (V, E) together with an amenable gate set G. The gates g 2 G
are often called native to T.

While this formalism does have the drawback of restricting our gate
sets to single and two qubit gates, this model applies to the majority of
hardware today. Multi-qubit gates can be allowed using the notion of
a hypergraph in definition 3.2.1, but doing so introduces complexity

1 There are some hardware which are better modeled by a directed graph, and we will
see an example in section 4.1, but for most cases undirected is simpler and provides
the intuition.

2 V is a finite set which we refer to as vertices, and E is a collection of pairs of vertices,
i. e. E ✓ V ⇥ V.
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without a clear advantage. This slightly simplified notion still encom-
passes universal quantum computation as three (and higher) qubit
gates are not needed as we saw in section 2.2.4.

As an example, the connectivity graph of IBM’s 7-qubit quantum
computer ibmq_jakarta shown in fig. 3.1 and the gate set is as fol-
lows [IBM].

{CNOT, 1, RZ, SX, X} (3.1)

Vertex “3” being connected to “1” means that we can apply a 2-qubit
unitary targeting both of those qubits, however the hardware does not
support 2-qubit gates between qubits “2” and “6” natively.

0 1 2

3

54 6

Figure 3.1: IBMQ Jakarta Architecture

Definition 3.2.5. Let T = (G, H) be a quantum chip with graph H =
(V, E), and C 2 G⇤ be a circuit. The quantum chip T can run C if for all
g 2 C we have qubits(g) 2 E. In this case we say that C is executable on
T.

We can now define the main problem of quantum circuit compila-
tion: that of the qubit mapping problem.3

Question 3.2.6. Let C 2 A⇤ be a circuit over quantum gate set A, and
T = (B, H) a quantum chip. Is there a T-executable circuit C0 2 B⇤ such
that JC0K = JCK?

In the case when the number of qubits required in C is greater than
the number of vertices in the connectivity graph, the answer is no.4 On
the other hand when the number of qubits required for C is fewer than
the number we have access to |V|, then the answer is yes, provided

1. B is a universal gate set, and

2. (V, E) is connected.5

3 This sometimes also goes by the name of the qubit routing problem, or qubit schedul-
ing problem although sometimes these mean slightly different things.

4 There are however specific cases when this is possible. If the algorithm only requires
n < |V| qubits to be entangled at once, there are clever scheduling tactics one can
employ to implement such an algorithm. There are also “quantum autoencoders”
which attempt to implement compressed versions of circuits on smaller numbers of
qubits [ROA17].

5 That is for any two vertices, there is a path between them.
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Just as the unitary synthesis problem (question 2.2.7) was turned into
an optimization problem by the use of cost functions (question 2.2.9),
we can ask for the optimal version of question 3.2.6.

Question 3.2.7. Let T = (B, H) be a quantum chip and C 2 B⇤ be
a T-executable circuit that implements C0 2 A⇤ (i. e. JCK = JC0K). Let
f : B⇤ ! R be a cost function. Can we find

Cmin = arg min
C2B⇤

�
f (C) : JCK = JC0K and C is T-executable

 
? (3.2)

Despite formulating the key problem we’d like to understand in this
document, there are many contributing factors that effect solutions to
this problem For that reason we need to not just understand a theo-
retical model of quantum hardware, but some of the implementation
details as well.

3.3 hardware specifications

Here we will briefly cover the most important topics discussed in
quantum circuit compilation when it comes to optimizations on NISQ-
era hardware.

parallelizability Just as many classical algorithms can be sped
up with parallelization, so too can many quantum algorithms. That
said some architectures, such as ion traps and cold atoms, do not easily
support parallelization while superconducting quantum computers
do. Since this is typically a fact compilers can exploit to speed up
computation, the non-parallelizability can sometimes means different
compilation techniques must be employed, or just skipped entirely.
This is especially important since gates are often grouped based on
non-overlapping sets of qubits.

3.3.0.1 Relaxation and Dephasing Times

As qubits are two-state systems, they are often implemented experi-
mentally using some physical system (e. g. an atom) that has a ground
state, and an excited state. Excited states often have a tendency to
“decay” into ground states, especially so when interacting with the
environment. Hence we define the relaxation time.6 T1 as the lifetime
for the state |1i decaying into |0i. This value can be experimentally
found using the following methodology.

1. Prepare the state |0i

2. Apply a Pauli X gate to obtain |1i

6 This value also goes by the following names: coherence time, amplitude damping,
longitudinal coherence time, spin lattice time, and spontaneous emission time.
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3. Wait some time t (during this time the qubit may decay into |0i)

4. Measure the qubit

Each time we measure the qubit in the ground state we record the
amount of time t we waited. This process is then modelled with an
exponential decay of the form e�t/T1 .

The second important factor we need to understand is the dephas-
ing time7 This time, instead of watching for the the bit flip from |1i to
|0i we will watch for a phase flip from |+i to |�i via the following
procedure.

1. Prepare the state |0i

2. Apply a Hadamard H gate to obtain |+i

3. Wait some time t (during this time a phase might appear on
either qubit)

4. Apply another Hadamard H

5. Measure the qubit

Again, this experiment is modeled by an exponential decay with
lifetime which we denote T2. This decoherence time is a measure of
how quickly a superposition (|+i) will decay into a classical mixture.
In both the definition of T1 and T2 step 3 requires the experimenter
to “wait”, meaning apply identity gates until time t. That said while
the waiting occurs, if other qubits are acted upon, this may change
the experimental results due to crosstalk (section 3.4). Since T1 is
a measure of how robust the qubit is against bit flips, and T2 is a
measure of how robust the qubit is against becoming probabilistic,
these two quantities are important metrics to track the progress of
quantum computers.

3.3.0.2 Quantum Volume

While transistor count has long served as an effective single number
metric for the power of classical computers, qubit count does not
have the same descriptive power due to quantum computers’ differ-
ence in connectivity, and error rates. In attempt to devise a single
number metric effective in quantifying a quantum computers capa-
bilities Cross, Bishop, Sheldon, Nation, and Gambetta introduced the
notion of quantum volume which takes into account the number
of qubits, connectivity, gate and measurement errors, and crosstalk.
While understanding the full method to measure a quantum com-
puter’s quantum volume is beyond the scope of this document, the

7 Again, this value also goes by the following names: phase coherence time, phase
damping, spin-spin relaxation time, transverse coherence time, and elastic scattering
time.
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process consists of applying randomized circuits shown in fig. 3.2
where p is a permutation of the qubits, and PU(4) denotes a ran-
dom two-qubit gate. After the gates are applied a measurement is
performed and the resulting bit-string is stored, and the process is
repeated many times. A statistical analysis is then run to compare
the computers performance with an ideal implementation of random
circuits of this form. The largest quantum volume achieved to date
is 1024 and was done by Honeywell’s System Model H1; a 10-qubit
trapped-ion computer [Sol21].

Round 1 Round 2 Round d

. . .

. . .

. . .

. . .

p

PU(4)

p

PU(4)

p

PU(4)

PU(4) PU(4) PU(4)

Figure 3.2: Quantum Volume Protocol

3.3.0.3 Gate Duration

As qubits are finnicky beasts that don’t want to retain their quantum-
ness, how quickly we can perform gates is a very important measure
and one tracked across many quantum computers. This measure
usually comes under the guise of Circuit Layer Operations per Second
(CLOPS) first introduced in [Wac+21].

3.4 errors

Errors are ubiquitous in quantum computing and for the near future
there is almost certainly no getting around them. Not only are errors
abundant, but they can vary across the chip, and they can vary in type.
The first error that is often encountered is that of gate errors. Some
examples of gate errors might be

• performing RX(q + #) when you intended to do RX(q), or

• performing H + #X when you intended to apply H.

This first type of error is sometimes mitigated experimentally if # is
either fixed, or coupled in some way to q. However it may be the
case that a more complex coupling is taking place dependent on the
surrounding state of the qubit that the gate is acting on. Since we
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represent a quantum chip as a graph, one way to quantify errors is to
attach a number to each node and edge. The node error rate represents
the computers error rate on performing a single qubit unitary, and
the edge represents the computers error rate for performing a 2-qubit
unitary.

The next type of error that can be introduced into a quantum
computation is through State Preparation and Measurement (SPAM)
errors. These—as you might have guessed—are introduced during
state preparation and measurement. Despite these being one of the
largest sources of errors on modern quantum hardware, quantum
circuit compilation cannot aid in mitigating these errors.

Finally, the last major source of noise that is seen in quantum
computers is that of crosstalk. Crosstalk corrupts information in our
system when multiple gates are performed simultaneously. This is
unfortunate as parallelizing computation drastically decreases the
runtime and keeps the total computation time below decoherence
times discussed in section 3.3.0.1. These errors arise as qubits are not
perfectly isolated from each other and hence can interact especially
when control pulses (i. e. the gate implementations) bleed into nearby
qubits.





4
C I R C U I T C O M P I L E R S

We can now return to the topic of compilers. It should now be clear
that the level of abstraction we work at when designing quantum
algorithms (i. e. quantum circuits possibly with some some classi-
cal computation mixed in) is much higher than the capabilities of
our current, and likely near-future hardware. Hence, just as we saw
in chapter 1, we are in need of a tool to translate this description down
to a lower level of abstraction that embodies the restrictions of the
hardware. As in fig. 1.3 which detailed the phases of a compiler, there
are syntax and semantic analyses that are performed to ensure circuits
are well formed, but we will not go any further into this topic here.
The most interesting, and complicated portions of circuit compilation
occur in transforming a circuit to an IR, optimizing it, and generating
machine level instructions. Naïvely this is three phases, but because
current quantum hardware is so restrictive this can often be broken
down into the following four phases.

1. Conversion of quantum algorithm to a Quantum Intermediate
Representation (QIR).

2. Optimization of the QIR.

3. Compilation of the QIR to a specific quantum chip, resulting in
an instruction set.

4. Optimization of the instruction set.

This is reflected in the following diagram.

Quantum
Algorithm

Hardware A

Hardware B

...

Quantum Compiler

Figure 4.1: Action of Quantum Compiler

This reflects the structure of a classical compiler very closely in part
because the phased approach works well, but as we will see later it
suits our needs well for hybrid quantum-classical computations that
are expected to be the dominant near-term use of quantum computers.
This approach also allows the design of components to be easily reused
just as we saw with classical compiler in fig. 1.4. A similar figure can
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be drawn for some of the many players in the quantum landscape and
can be seen in fig. 4.2.

Qiskit
Frontend

Pennylane
Frontend

TKET
Frontend

QIR Optimizer IBMQ
Backend

IONQ
Backend

Amazon
Braket

Backend

Figure 4.2: Modularity of Quantum Compiler

One of the benefits of the modular compiler structure seen in fig. 4.2
is that once the optimizer is made, backends can be written as new
hardware arrive, and a backend can be written to take the circuit to a
classical CPU. In effect what this provides is an optimized quantum
simulator.

Many proposals for a QIR are built on top of the LLVM IR because
of the success it has had in classical computing. In particular the QIR
Alliance [QIR21] has been formed in order to formalize a specifica-
tion for a QIR that will describe quantum and classical computation.
This project has already had some success as a Multi-Level Inter-
mediate Representation (MLIR) has already been made that lowers
into the LLVM IR in a way that is adherent to the QIR specification
put forth [MN21]. As we will see in section 4.2 many near-term ap-
plications of quantum computers will use quantum computers as a
coprocessor of information, rather than operating independently. Thus
having a unified IR that is capable of describing quantum and classical
computation is compulsory. This reinforces the benefits of building a
QIR on top of an existing IR.

fault tolerance As we saw in section 2.3, fault tolerance is a key
method for encoding qubits and gates to prevent the spread of errors
in a quantum circuit. This is done by restricting where entangling
gates can be applied. Thus when compiling a fault tolerant circuit, the
compiler needs to understand not only the restrictions that may be in
place due to the quantum chips connectivity, but also the entangling
gate restriction that fault tolerance places on the circuit. Not only this,
but it is hoped that we may also be able to use compilers to take
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circuits and compile them into a fault tolerant form if the quantum
chip allows for it.

Example 4.0.1 (Compiling the Toffoli Gate). Since most hardware are not
capable of 3 qubit operations we must decompose the Toffoli gate into some-
thing more manageable. This is typically done using CNOT’s, Hadamard’s
(H), and p/8 (T) gates [NC10].

=

T

T T†

H T† T T† T H

(4.1)

This is an important decomposition as the CCNOT gate appears in the
modular exponentiation problem which is a core part of Shor’s factoring
algorithm [Sho94]. Hence if there are smaller decompositions than shown
above that would be ideal as one CCNOT gate becomes 14! Barenco et al.
show a more compact decomposition of CCNOT using only 3 CNOT gates if
the phase of one of the qubits is allowed to change [Bar+95]. Let G = RY(

p
4 )

in the following circuit.

⇡

G† G† G G

(4.2)

However the question of “how many CNOT gates does it take to decompose
a CCNOT?” was answered in 2009 when it was shown that a true equality
preserving decomposition requires a minimum of 6 CNOT gates [SM09].1

4.1 compiling on a ring

In this section we will see an example that will take us through some
of the many difficulties one might face while attempting to come up
with a general purpose algorithm/method for compiling quantum
circuits. This example is drawn from [Cow+19] with modifications.

To begin, suppose we’d like to run the quantum circuit shown
in fig. 4.3. The first step we can take is to compress the diagram
into a fewer number of layers. To do this we group operations on
nonoverlapping qubits since they can be performed at the same time.2

This is vital as decoherence times (section 3.3.0.1) are so short. This
“compressed” version of the circuit is seen in fig. 4.4.

1 This result shows that a minimum of 6 CNOT gates must be used, if they are being
used. Other decompositions not using CNOT gates might still be more compact.

2 This is not always an option as some implementations of quantum hardware (e. g.
trapped ion), and hence the grouping might not be as compact.
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X

H

H

Figure 4.3: Circuit to be compiled

X

H

H

Figure 4.4: Circuit after compression

We can now apply a type of “device independent optimization”
known as “peephole optimization” just as we saw in section 1.2.2,
using the fact that CNOT2

1 · (H ⌦ H) · CNOT1
2 = H ⌦ H. This minor

optimization, and many others can be found in [Siv+20]. Hence we
can drop the two CNOT gates in the blue box to obtain the figure seen
in fig. 4.5.

q1

q2

q3

q4

X

H

H

Figure 4.5: Circuit after peephole optimization

To continue with the problem we must now choose hardware we
would like to run this circuit on. As the section title suggest, we will
be choosing a qubit network topology of a ring. The first problem
we need to tackle is placing the qubits from the circuit onto the ring.
The first slice of the circuit contains CNOTs connecting q1 $ q3 and
q2 $ q4 so placing them together to prevent additional SWAPs from
being added is the first task. There are many configurations to satisfy
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Figure 4.6: Ring Topology

this, but only one3 that satisfy the requirements that no SWAP gates
are added in the second slice as well! That mapping is

q1 ! 1 q2 ! 3 q3 ! 2 q4 ! 4. (4.3)

Hence the first two slices of the circuit can be computed without any
additional SWAP gates being added.

Executing the gates in slice 3 however will require a SWAP as qubits
q1 and q2 are no longer adjacent. To make these qubits adjacent we can
either swap qubits q1 and q3 or q2 and q3. Looking ahead to slice 5 we
see we need adjacency of q1 $ q2 and q3 $ q4. Swapping q1 and q3
would mean two additional SWAP gates before slice 5, but swapping
q2 and q3 leaves the qubits in their desired positions for slice 5. Hence
our compiled circuit in its final form:

X

H

H

Figure 4.7: Compiled Circuit

If the quantum chip has the further restriction that its network
topology is a directed graph and all the edges point clockwise, we
can no longer use the typical SWAP decomposition we are used to as
in eq. (2.14). Instead we must use

=
H H

H H

(4.4)

3 Modulo ring rotations/reflections.
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in eq. (2.14) to decompose SWAP using only CNOT gates that go in
one direction.

=
H H

H H

(4.5)

With this addition the compiled circuit begins to grow very quickly
(fig. 4.8)

H H X H H

H H H H H H H H H

H H H H H H H H H

H H

Figure 4.8: Compiled Circuit on Directed Ring

While this was a relatively simple example of some of the tasks
a circuit compiler must complete, it did not begin to touch on the
problem of gate decomposition or unitary synthesis (question 2.2.9).
In the above example all gates applied were taken to be native to the
hardware.

4.2 methods

Current research on compilation methods can be benchmarked in
many ways, and compilation techniques often arise to improve on a
given benchmark. Benchmarks are typically performed with respect
to the most prominent compiler, which at the time of writing seems to
be that of IBM’s Qiskit [ANI+21]. Just as we saw in section 1.2.1 many
of the subproblems required to be solved in classical compilation are
NP-complete, or more difficult. Unfortunately the situation seems as
bad in quantum compilation as the problem of assigning logical qubits
to physical ones is equivalent to the subgraph isomorphism problem
which is known to be NP-complete. Again finding the optimal number,
and position, of SWAP gates is equivalent to another problem known
to be at least NP-hard. Thus, as before we must look to heuristic
solutions.

The procedure we encountered in section 4.1 was loosely based
on methods proposed in [Cow+19] where first a circuit is sliced by
timesteps, an initial mapping of qubits is made to the connectivity
graph, routing gates from the original circuit onto the new architec-
ture is performed, finally ending with gate synthesis for the gates
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that the quantum chip may not support.4 In [Nan+21] considers solely
the problem of finding optimal solutions to the qubit assignment,
and routing problems. Despite this being an NP-complete problem
the authors make the simplifying assumption that the circuit is al-
ready decomposed into one and two qubit gates that are native to
the hardware. The problem is then encoded via a complex integer
programming problem, with similarly encoded cost functions such as
minimizing the total error rate, minimizing circuit depth, and mini-
mizing crosstalk. Once encoded, the optimization problem can then be
solved by one of the many integer programming libraries. The authors
report a decrease in CNOT gates and higher fidelity when run on real
hardware when compared to Qiskit’s compiler.

A slightly different approach is taken through [LDX19; Mur+19;
Niu+20] where compilers are designed specifically for NISQ-era de-
vices. In particular [Mur+19; Niu+20] use calibration data collected
from hardware to inform the compilation process. This means if a
particular qubit has a very high error rate, the compiler attempts to
route computation around it, or use it as infrequently as possible. This
allows the compiler to generate circuits optimized for the hardware at
particular times of day as calibration data changes intra-day.

Deep reinforcement learning has also made its way into quantum
circuit compilation in attempt to perform unitary synthesis [Mor+21].
This approach is well-suited for real-time quantum computation where
the additional time required to compile a circuit is unavailable and
hence a more immediate solution is required.

In the following two paragraphs we will see examples of how com-
pilers can use knowledge about a general problems circuit/solution to
improve compilation methods.

qaoa The Quantum Approximate Optimization Algorithm (QAOA)
is a combinatorial optimization algorithm that is intended to be run
on NISQ-era devices [FGG14]. Focusing in this particular problem,
a 23% reduction in gate count, and 53% reduction in circuit depth
was acheived [AAG20]. In the future we might hope to build these
problem-specific compilers into a more general purpose one that can
diagnose and understand when to use problem-specific compilers on
demand.

vqe Another hybrid quantum-classical algorithm that has seen
much attention due to its near-term applications in quantum chem-
istry is that of the Variational Quantum Eigensolver (VQE) [WHT15;
Per+14]. This algorithm is used to calculate the ground state of a
molecular Hamiltonian using a parametrized quantum circuit as a
cost function, and the classical compute nodes as an optimizer. E. g.
let q 2 Rn be a vector of numbers that our circuit U depends on, i. e.

4 Followed by peephole optimizations if they are available.
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U : Rn ! U(2m) for some number of qubits m. A compiler specific

Quantum
Node Classical Node

Compute hy|U(q)|yi

Modify parameters q ! q0

Figure 4.9: VQE Schematic

to this problem has been created, and generalized to other quantum-
classical algorithms [Kha+22] leveraging much of the existing infras-
tructure brought forth by the LLVM project discussed in section 1.3.
This allows the classical optimizations to be handled by the robust
LLVM system, while using new circuit compilation techniques that
take advantage of the fact that variational circuits have a particular
form. The structure of variational circuits has been further been taken
advantage of by pre-compiling specific blocks of gates which resulted
in 1.5–3 times improvement over existing systems [Gok+19].

crosstalk Due to crosstalk’s prevalence on nearly all hardware,
compilers have been developed to mitigate this problem by utiliz-
ing both commutation identities and physical gate timing [XZZ21;
Mur+20].

4.2.1 Verification

While retaining the semantic meaning of a circuit is one of the highest
priorities during circuit compilation, it is possible it has changed.
Thus, just as chip manufacturers use verification techniques to ensure
electronics are built to specification, circuit compilation can also benefit
from such techniques. With smaller circuits, it’s possible to ensure
the correctness of compilers by simulation, but this is not a scalable
approach to due to the inherent complexities in simulating quantum
systems. To this end various methods have been developed such as
formal proof [RPZ18], diagrammatic methods [DL13], equivalence
checking [YM10] and functional verification [Amy18]. There have also
been circuit optimizers written in formal languages like Coq [Tea22]
using the semantics of matrices to only perform optimizations it has
formally verified to be correct [Hie+21].
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4.3 quantum stack

A “full quantum stack” is a collection of tools and components re-
quired to make a fully functioning quantum computer. As we’ve seen
in this thesis, a compiler is an important, but single piece of this
stack. In this section we will give an overview of some of the many
existing tools and technologies that exist. For a more exhaustive of
productionized list of software projects, visit the following webpages.

https://wikipedia.org/wiki/quantum_programming

https://github.com/desireevl/awesome-quantum-computing

Before diving into examples of existing infrastructure, it is useful to
have a picture of what a quantum full stack may look like. There are
many possibilities (each with different amounts of complexity), but a
basic example is shown in fig. 4.10.

Quantum Algorithm

Quantum Programming Language

Quantum Compiler

Quantum Instruction Set

Control & Readout Electronics

Quantum Hardware

Figure 4.10: Quantum Stack

Starting at the top, we’ve seen the common language for specifying
quantum algorithms is typically that of a circuit diagram. This is
slightly complicated when there is quantum and classical coprocessing
required in which case quantum circuits are often used as subroutines
within classical pseudocode.

With a specification of an algorithm, one can then code this into a
computer programming language using Qiskit (IBM) [ANI+21], Penny-
lane (Xanadu) [Ber+18], Q# (Microsoft) [Qua], Cirq (Google) [Dev21]
and many others. A more detailed overview of the capabilities of
each language along with the trade-offs can be found in [LaR19].
However, one example not discussed there is OpenQASM [Cro+17;
Cro+21] which doesn’t fit as neatly into fig. 4.10. OpenQASM was first
introduced to be a language used for specifying, and then drawing

https://wikipedia.org/wiki/quantum_programming
https://github.com/desireevl/awesome-quantum-computing
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quantum circuits. It has since grown to be a low-level language that
can handle hybrid quantum-classical computation and can serve as
both a quantum programming language and quantum instruction set.

Moving on to compilers, there are many examples of research com-
pilers (like those we saw in section 4.2), but there is also the compiler
built into Qiskit along with qcor [Mcc+21] which is a C++ compiler
for hybrid quantum-classical computing built on clang (C++ com-
piler mentioned in section 1.2.3). There is also ScaffCC is a a scalable
compilation and analysis framework based on LLVM [Jav+15; Lit+20].
staq [AG20] is a compiler specifically designed to compile programs
written in OpenQASM.

Post-compilation the quantum algorithm exists in the form of
a QIR, or quantum instruction set. In 2020 Microsoft introduced a
QIR [QIR21] which has started to see some adoption among compilers,
and in [SCZ16] the authors introduced the quil language [Smi20]
which is intended to serve the single purpose of being a quantum
instruction set.

Finally the electronics and hardware play the foundational aspect
in fig. 4.10, but are not the focus of this thesis and instead recom-
mend [LaR19] which details some hardware currently available to
internet users.



5
C O N C L U S I O N

In this document we have covered the basics needed to understand
the problem of quantum circuit compilation. In doing so we have
introduced the prerequisite ideas from classical computing such as
compilers, and the basics of computer architecture insofar as to un-
derstand the necessity of compilers. With a brief introduction to both
quantum computation and the capabilities/limitation of modern-day
quantum hardware we formalized one of the main questions in circuit
compilation: that of the qubit mapping problem. We also covered
multiple secondary questions that arise in circuit compilation, along
with detailing current research to solve these problems. Finally we
introduced some of the many tools under current construction to aid
in the creation of a fully functioning quantum stack.
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