
The Dubreil-Jacotin-Long (DJL) equation is a scalar equation 
that is equivalent to the steady, stratified Euler equations of 
motion for an incompressible fluid. This study examines 
solutions to this equation for waves trapped over topography 
with a pycnocline stratification. Solutions are derived for flows 
with a shear background current and for different topographic 
profiles with and without the Boussinesq approximation. It is 
found that multiple states can occur for certain background 
currents and topographic profiles.  An examination of the 
effects of making the Boussinesq approximation is carried out. 
Large trapped waves with amplitudes up to four times the 
topographic height are discovered for background speeds near 
a critical minimum speed.  As the background speed increases 
the waves become smaller until the wave amplitude is close to 
the topographic height. Solutions under the Boussinesq 
approximation experience a very sharp transition from large to 
small amplitude waves when compared to their non-
Boussinesq counterparts. Finally, asymmetric states across the 
topographic crest are considered.   
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Freely propagating internal waves of elevation and 
depression exhibit a symmetry property when the 
profile NB2(z) is reflected about the mid-depth.  
Trapped internal waves over topography do not exhibit 
such a symmetry property as demonstrated in the 
figure to the left where we have plotted density 
contours for several background stratifications and 
topography shapes.   Over depression topography, very 
large trapped waves of depression can develop if the 
pycnocline is centered above the mid-depth.  Over 
elevation topography large trapped waves exist if the 
pycnocline is centered below the mid-depth.  However, 
the large trapped waves of elevation are not nearly as 
large as the corresponding waves of depression.  The 
largest trapped waves occur when the background 
current U0  is close to a minimal speed called the 
conjugate flow speed cj.

Multiple states can exist for steady flows with a shear 
background current. These solutions are produced 
numerically using an iterative solver which modifies the 
shear strength ∆u slightly between successive solutions.  
On the left, the blue curve displays the maximum 
isopycnal displacement when ∆u is increased from 0.18cj  
to 0.82cj in the iterative solver.   The green curve displays 
the maximum isopycnal displacement when ∆u is 
decreased from 0.82cj to 0.18cj.  Multiple solutions exist 
for a wide range of ∆u , in this case 0.31 < ∆u/cj < 0.62.  
The region of hysteresis changes with the strength of the 
background current U0.

Other examples of hysteresis have been observed in 
cases with a constant background current and very 
narrow topography.  

With a shear background current, under the Boussinesq 
approximation the DJL equation is written as:

Solutions to this equation are found using a background current: 
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Differences between Boussinesq and non-Boussinesq 
waves are apparent for moderate values of U0/cj as 
demonstrated in the figure to the left. Here we plot 
the maximum isopycnal displacement for several values 
of U0 and  ∆ƿ under both non-Boussinesq (blue) and 
Boussinesq (green) conditions.   In each case the 
density stratification is given by 

where ∆ƿ = 0.05, 0.1, 0.15, or 0.2 from top left to 
bottom right.  Both Boussinesq and non-Boussinesq 
curves exhibit a similar trend: the wave amplitude 
decreases as U0 increases.  However, the non-
Boussinesq waves experience a more gradual transition 
to small amplitude. The Boussinesq approximation can 
significantly underestimate the wave amplitude for 
moderate U0/cj, even for small values of ∆ƿ.

Asymmetric states have been computed under slightly 
subcritical flow conditions, U0/cj < 1, where cj is the 
conjugate flow speed.  A large wave that is asymmetric 
about the topographic crest is produced as displayed in 
the density contours to the left.  These types of waves 
have also been discovered through weakly nonlinear 
theory and fully nonlinear, time-dependent numerical 
simulations.  
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(2)

This equation is used to compare Boussinesq and non-
Boussinesq results on the right.  

where the squared buoyancy frequency NNB2(z) is related to 
the density          by:
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A different form of the DJL equation can be derived when the 
Boussinesq approximation is relaxed:  

⇢̄(z)

⇢̄(z) = ⇢0

✓
1��⇢ tanh

✓
z � z0
d0

◆◆

Finally, asymmetric states can be achieved by altering the boundary  
conditions to:

Solutions to equation (1) with these boundary conditions and 
slightly subcritical flow conditions are asymmetric about the 
topographic crest.
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The DJL equation can be expressed in terms of the isopycnal 
displacement ƞ, which is the distance between an isopycnal and 
its far upstream height. Under the Boussinesq approximation 
with a constant background current U0 and bottom topography 
h(x) this equation with boundary conditions is given by:

The squared buoyancy frequency NB2(z) is related to the 
density          by :

This equation is used to study the trapped waves of elevation 
and depression discussed on the right.  
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