# INTERNAL WAVE TURNING POINTS AND TUNNELING 

## MODEL EQUATIONS

$$
\begin{aligned}
\rho_{0}\left(\vec{U}_{t}+\vec{U} \cdot \vec{\nabla} \vec{U}\right) & =-\vec{\nabla} p-\rho g \hat{k}, \\
\rho_{t}+\vec{U} \cdot \vec{\nabla} \rho & =0, \\
\vec{\nabla} \cdot \vec{U} & =0 .
\end{aligned}
$$

- 2D vertical $x-z$ plane.
- Boussinesq approximation.
- Inviscid
- Earth's rotation ignored.


## LINEARIZED EQUATION FOR THE VERTICAL VELOCITY $w$

Background State:

$$
\begin{equation*}
\rho=\bar{\rho}(z), \quad p=\bar{p}(z), \quad \vec{U}=(0,0), \tag{1}
\end{equation*}
$$

with $\bar{p}^{\prime}(z)=-\rho g$.
Add perturbation:

$$
\begin{align*}
\rho & =\bar{\rho}(z)+\epsilon \rho^{\prime}, \\
p & =\bar{p}(z)+\epsilon p^{\prime},  \tag{2}\\
\vec{U} & =\epsilon(u, w) .
\end{align*}
$$

At $O(\epsilon)$ a single equation for the vertical velocity can be derived:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \nabla^{2} w+N^{2}(z) w_{x x}=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
N^{2}(z)=-\frac{g}{\rho_{0}} \frac{d \bar{\rho}}{d z} . \tag{4}
\end{equation*}
$$

$N(z)$ is the vertically varying buoyancy frequency.

## PLANE WAVE SOLUTIONS: CONSTANT N

If $N$ is constant, solutions of the form

$$
\begin{equation*}
w=e^{i(k x+m z-\omega t)} \tag{5}
\end{equation*}
$$

exist provided

$$
\begin{equation*}
\omega^{2}=\frac{N^{2} k^{2}}{k^{2}+m^{2}}=\frac{N^{2}}{1+(m / k)^{2}} \tag{6}
\end{equation*}
$$

The wave frequency depends only on the direction of the wave vector $(k, m)$. The wave frequency is bounded by $N$.

## GROUP VELOCITY

FACT: Energy propagates with the group velocity

$$
\vec{c}_{g}=\vec{\nabla}_{k} \omega=\left(\omega_{k}, \omega_{m}\right)=\frac{\omega}{k^{2}+m^{2}} \frac{m}{k}(m,-k),(7)
$$

which is perpendicular to the wave vector $\vec{k}=$ ( $k, m$ ).

This means energy propagates along lines of constant phase.

Internal waves are an example of dispersive waves for which the group velocity depends on $\vec{k}$.

## TURNING POINTS

Recall $w$ is given by

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \nabla^{2} w+N^{2}(z) w_{x x}=0 \tag{8}
\end{equation*}
$$

This time let $N=N(z)$ and look for solutions of the form

$$
\begin{equation*}
w=e^{i(k x-\omega t)} \Psi(z) \tag{9}
\end{equation*}
$$

Substituting into the equation for $w$ gives

$$
\begin{equation*}
\Psi^{\prime \prime}+\left(\frac{N^{2}-\omega^{2}}{\omega^{2}}\right) k^{2} \Psi=0 . \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\Psi^{\prime \prime}+Q(z) \Psi=0 \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(z)=\frac{N^{2}-\omega^{2}}{\omega^{2}} k^{2} \tag{12}
\end{equation*}
$$

$Q(z)$ is positive in regions where $|\omega|<N$ and is negative in regions where $|\omega|>N$.

Recall internal plane waves only exist if $|\omega|<N$.

## ANIMATIONS

(1) Turning point. $N$ decreases linearly with height.

(2) Tunneling: $N$ decreases below $\omega$ at mid-depth and then increases to be larger than $\omega$.


