BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser BEGIN:VEVENT UID:647b686788419 DTSTART;TZID=America/Toronto:20201005T093000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20201005T093000 SUMMARY:PhD Defence: Computational Mechanisms of Language Understanding and \nUse in the Brain and Behaviour CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS PHD DEFENCE WILL BE GIVEN ONLINE. \n\nIVANA KAJIĆ\, PHD CANDIDATE\n_David R. Cheriton School of Computer S cience_\n\nSUPERVISOR: Professor Chris Eliasmith\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678d12d DTSTART;TZID=America/Toronto:20200923T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200923T130000 SUMMARY:Master’s Thesis Presentation: Sentiment Lexicon Induction and\nIn terpretable Multiple-instance Learning in Financial Markets CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nCHENGYAO FU\, MASTER’S CANDIDATE\n_David R. Cher iton School of Computer Science_\n\nSUPERVISORS: Professors Alan Huang and Yuying Li\n\nSentiment analysis has been widely used in the domain of fin ance.\nThere are two most common textual sentiment analysis methods in\nfi nance: \\textit{dictionary-based approach} and \\textit{machine\nlearning approach}.\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678da91 DTSTART;TZID=America/Toronto:20200923T110000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200923T110000 SUMMARY:Master’s Thesis Presentation: Affective and Human-Like Virtual\nA gents CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nNEIL BUDNARAIN\, MASTER’S CANDIDATE\n_David R. C heriton School of Computer Science_\n\nSUPERVISOR: Professor Jesse Hoey\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678e169 DTSTART;TZID=America/Toronto:20200917T160000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200917T160000 SUMMARY:PhD Seminar: Problems and Opportunities in Training Deep Learning\n Software Systems: An Analysis of Variance CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS PHD SEMINAR WILL BE GIVEN ONLINE. \n\nHUNG PHAM\, PHD CANDIDATE\n_David R. Cheriton School of Computer Scie nce_\n\nSUPERVISORS: Professors Lin Tan and Yaoliang Yu\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678e7d6 DTSTART;TZID=America/Toronto:20200909T100000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200909T100000 SUMMARY:Master’s Thesis Presentation: Disentangled Syntax and Semantics f or\nStylized Text Generation CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nYAO LU\, MASTER’S CANDIDATE\n_David R. Cheriton School of Computer Science_\n\nSUPERVISOR: Professor Olga Vechtomova\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678ee0d DTSTART;TZID=America/Toronto:20200805T123000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200805T123000 SUMMARY:Master’s Thesis Presentation: Variational Inference for Text\nGen eration: Improving the Posterior CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nVIKASH BALASUBRAMANIAN\, MASTER’S CANDIDATE\n_Da vid R. Cheriton School of Computer Science_\n\nLearning useful representat ions of data is a crucial task in machine\nlearning with wide ranging appl ications. In this thesis we explore\nimproving representations of models b ased on variational inference by\nimproving the posterior.\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678f4d0 DTSTART;TZID=America/Toronto:20200805T100000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200805T100000 SUMMARY:Master’s Thesis Presentation: Dynamic Fusion Techniques for\nEffe ctive Multimodal Deep Learning CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nGAURAV SAHU\, MASTER’S CANDIDATE\n_David R. Cher iton School of Computer Science_\n\nEffective fusion of data from multiple modalities\, such as video\,\nspeech\, and text\, is a challenging task d ue to the heterogeneous\nnature of multimodal data. In this work\, we prop ose fusion techniques\nthat aim to model context from different modalities effectively.\nInstead of defining a deterministic fusion operation\, such as\nconcatenation\, for the network\, we let the network decide how to\nc ombine given multimodal features more effectively.\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b68678fbf4 DTSTART;TZID=America/Toronto:20200804T090000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200804T090000 SUMMARY:Master’s Thesis Presentation: Data Augmentation for Text\nClassif ication Tasks CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nDANIEL TAMMING\, MASTER’S CANDIDATE\n_David R. C heriton School of Computer Science_\n\nThanks to increases in computing po wer and the growing availability of\nlarge datasets\, neural networks have achieved state of the art results\nin many natural language processing (N LP) and computer vision (CV)\ntasks. These models require a large number o f training examples that\nare balanced between classes\, but in many appli cation areas they rely\non training sets that are either small or imbalanc ed\, or both. To\naddress this\, data augmentation has become standard pra ctice in CV.\nThis research is motivated by the observation that\, relativ e to CV\,\ndata augmentation is underused and understudied in NLP.\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b6867902a4 DTSTART;TZID=America/Toronto:20200730T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200730T130000 SUMMARY:Master’s Thesis Presentation: Decay Makes Supervised Predictive\n Coding Generative CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nWEI SUN\, MASTER’S CANDIDATE\n_David R. Cheriton School of Computer Science_\n\nPredictive Coding is a hierarchical model of neural computation that\napproximates backpropagation using only local computations and local\nlearning rules. An important aspect of Predictive Coding is the\npresence of feedback connections between layers. These feed back\nconnections allow Predictive Coding networks to potentially be\ngene rative as well as discriminative. However\, Predictive Coding\nnetworks tr ained on supervised classification tasks cannot generate\naccurate input s amples close to the training inputs from the class\nvectors alone.\n DTSTAMP:20230603T162055Z END:VEVENT BEGIN:VEVENT UID:647b686790bf3 DTSTART;TZID=America/Toronto:20200526T100000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200526T100000 SUMMARY:Master’s Thesis Presentation: Analysis of Textual and Non-Textual \nSources of Sentiment in GitHub CLASS:PUBLIC DESCRIPTION:Summary \n\nPLEASE NOTE: THIS MASTER’S THESIS PRESENTATION WI LL BE GIVEN ONLINE.\n\nNALIN DE ZOYSA\, MASTER’S CANDIDATE\n_David R. C heriton School of Computer Science_\n\nGitHub is a collaborative platform that is used primarily for the\ndevelopment of software. In order to gain more insight into how teams\nwork on GitHub\, we wish to analyze the senti ment content available via\ncommunication on the platform.\n DTSTAMP:20230603T162055Z END:VEVENT END:VCALENDAR