IT CAME FROM THE SWAMPLAND

Will Kinney
University at Buffalo
30 January 2020
Planck Data Release 2 (February 2015)

Planck 6-param best fit
[arXiv:1502.01589]

$\Omega_b h^2 = 0.02234089$, $\Omega_c h^2 = 0.1176152$

$\tau_{reio} = 0.07789481$, $A_s = 2.1853 \times 10^{-9}$

$n_S = 0.9707712$, $H_0 = 68.26965 \text{ km/s/Mpc}$

(Data: Planck Legacy Archive)
Planck 2015 (Residuals)

Planck 6-param best fit
[arXiv:1502.01589]

\[ \Omega_b h^2 = 0.02234089, \Omega_c h^2 = 0.1176152 \]

\[ \tau_{rei} = 0.07789481, A_s = 2.1853 \times 10^{-9} \]

\[ n_s = 0.9707712, H_0 = 68.26965 \text{ km/s/Mpc} \]

(Data: Planck Legacy Archive)
Inflation /ɪnˈfleɪʃ(ə)n/ (noun)
A period of accelerated cosmological expansion preceding the hot big bang
Inflation: Basic Predictions

- Adiabatic density perturbations ✓
- Superhorizon correlations ✓
- Gaussian statistics ✓

\[ \mathcal{L} = \frac{1}{2} g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \]

Fully consistent with data.
Cosmological expansion

Analogy: special relativity \( ds^2 = dt^2 - dx^2 \)

Cosmology: Robertson-Walker Metric

\[ ds^2 = dt^2 - a^2(t)dx^2 = a^2(\tau) \left[ d\tau^2 - dx^2 \right] \]

expanding space \hspace{1cm} conformal time

Light cone: \[ ds^2 = g_{\mu\nu}dx^\mu dx^\nu = 0 \]

\[ \Rightarrow dx = d\tau \]
You Are Here

BIG BANG
You Are Here

HORIZON

BIG BANG
Accelerated expansion (a.k.a “inflation”)

Key ingredient: negative pressure

\[ p < -\frac{1}{3}\rho \Rightarrow \frac{\ddot{a}}{a} > 0 \]

Extreme case: de Sitter space (cosmological constant)

\[ H = \frac{\dot{a}}{a} \propto \rho = \text{const.} \quad a(t) \propto e^{Ht} \]
Accelerated expansion (a.k.a “inflation”)

Key ingredient: negative pressure

\[ p < -\frac{1}{3}\rho \Rightarrow \frac{\ddot{a}}{a} > 0 \quad \text{expansion accelerates} \]

Extreme case: de Sitter space (cosmological constant)

\[ H = \frac{\dot{a}}{a} \propto \rho = \text{const.} \quad a(t) \propto e^{Ht} \]

Spacetime expands faster than cosmological horizon!
Evolution of Quantum Modes
Generation of Perturbations

Horizon $\rightarrow$

Mode freezing

$u_k/a$

$(aH/k)$
The Horizon in Inflation

\[ ds^2 = a^2(\tau)(d\tau^2 - d\vec{x}^2) \]
Mode Exit and Reentry

exit

re-entry

classical

quantum

\lambda

\tau
Shorter Wavelength Modes Exit Later
Longer Wavelength Modes Exit Earlier
We See The Last 60 E-folds
Initial Conditions: Inaccessible
Superhorizon Perturbations
Inflation: Basic Predictions
Primordial Perturbations

(Image: ESA and the Planck collaboration)
\[ r = 8 M_P^2 \left( \frac{V'}{V} \right)^2 \]

\[ n_s = 1 - 3 M_P^2 \left( \frac{V'}{V} \right)^2 + 2 M_P^2 \frac{V''}{V} \]
Convex or Concave?
Convex or Concave?
Inflation: Swampland or Landscape?

WHK, Vagnozzi, Visinelli [arXiv:1808.0624]
The String Landscape
The Weak Gravity Conjecture

Diagram illustrating a charged black hole with labeled radii $R_Q$ and $R_M$. The text "charged black hole" is written below the diagram.
The Weak Gravity Conjecture

THIS IS BAD
The Weak Gravity Conjecture
The Weak Gravity Conjecture

Any UV-complete theory must contain light charged states under all global symmetries.

$$M < Q M_P \ \forall U(1)$$

The deSitter Swampland Conjecture

\[ \Delta \phi \leq M_p \]
The de Sitter Swampland Conjecture
The de Sitter Swampland Conjecture

\[ V(\phi) \]

\[ \Delta \phi \sim \mu \leq M_p \]

\[ M_p \frac{\Delta V}{V} \sim c \geq O(1) \]
Single-Field Inflation and the Swampland

Planck 2015 TT/TE/EE+lowTEB + BK14

\( c = 0.10 \)

\( c = 0.08 \)

\( c = 0.06 \)

\( V'' > 0 \)

\( V'' < 0 \)

\( 95\% \text{ CL} \)

\( 68\% \text{ CL} \)

\( (1 - e^{\phi/\mu})^2 \)

\( \Lambda^3 \phi \)

\( m^2 \phi^2 \)

\( N = 46 \)

\( N = 60 \)

WHK, Vagnozzi, Visinelli [arXiv:1808.0624]
What about symmetry breaking?
What about symmetry breaking?
The Refined Swampland Conjecture

\[ M_P^2 \left( \frac{V'}{V} \right)^2 \geq c^2 \]

OR

\[ M_P^2 \frac{V''}{V} \leq -c' \]

Ooguri, Palti, Shiu, Vafa [arXiv:1810.05506]
The Refined Swampland Conjecture

\[ \left| \frac{V''}{V} \right| \geq M_p^2 \]

\[ \frac{V'}{V} = 0 \]

Ooguri, Palti, Shiu, Vafa [arXiv:1810.05506]
The *Refined Swampland Conjecture*

\[ \left| \frac{V''}{V} \right| \geq M_p^2 \]

\[ \frac{V'}{V} = 0 \]

\[ m^2 \sim V'' < Q \]

Ooguri, Palti, Shiu, Vafa [arXiv:1810.05506]
Single-Field Inflation and the Swampland

Planck 2015 TT/TE/EE+lowTEB + BK14

$c = 0.10$
$c = 0.08$
$c = 0.06$

$M_{Pl}^2 V'' = -0.01V$

$(1 - e^{\phi/\mu})^2$

$N = 46$
$N = 60$

$\Lambda^3\phi$

WHK, Vagnozzi, Visinelli [arXiv:1808.0624]
Trans-Planckian Censorship

Bedroya and Vafa [arXiv:1909.11063]
Trans-Planckian Censorship
Trans-Planckian Censorship
Trans-Planckian Censorship

Diagram showing the relationship between $\log(\lambda)$ and $\log(a)$ with a marked area indicating no TCC (Trans-Planckian Censorship).
Trans-Planckian Censorship
DBI Inflation: Non-Canonical Lagrangians

Lagrangian with arbitrary kinetic term:

\[ \mathcal{L} = F(X, \phi) - V(\phi) \]

\[ X \equiv \frac{1}{2} g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi \]

(Figure: Meerburg, et al., arXiv:0910.4986)
Lagrangian with arbitrary kinetic term:

\[ \mathcal{L} = F (X, \phi) - V (\phi) \quad X \equiv \frac{1}{2} g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi \]

\[ = \frac{1}{2} G^{\mu \nu} \partial_\mu \phi \partial_\nu \phi - V (\phi) \]

Acoustic metric

Light cone: \[ g^{\mu \nu} dx_\mu dx_\nu = 0 \]

Acoustic cone: \[ G^{\mu \nu} dx_\mu dx_\nu = 0 \]
Inflation from non-Canonical Lagrangians

Acoustic Horizon

Hubble Horizon

$\tau$
Generalized Trans-Planckian Censorship

Lin, WHK [arXiv:1911.03736]
So, should we take these conjectures ... seriously?
Conjecture, Smonjecture...

So, should we take these conjectures ... seriously?

Probably not.
Flat $w_{\text{CDM}}$:

$$w = -0.978 \pm 0.059$$

Flat $w_0/w_a$ CDM:

$$w_0 = -0.885 \pm 0.114$$
$$w_a = -0.387 \pm 0.430$$

So, should we take these conjectures ... seriously?

Probably not.

If string theory doesn't support de Sitter solutions, so what?

Danielsson & Van Riet, [arXiv:1804.01120]