Anisotropic assembly bias
in theory, simulations and data

Andrej Obuljen
with Will Percival & Neal Dalal (PI)

Waterloo Centre for Astrophysics

arXiv:1906.11823
Outline

- Intro: Power spectrum, Redshift-space distortions & bias
- Anisotropic assembly bias (AB)
- Halo AB in simulations
- Galaxy AB in BOSS sample
- Further consequences & Summary
Overview

• We have a successful ΛCDM model describing the Universe
Overview

• We have a successful ΛCDM model describing the Universe
• Our goal is to learn more about the Universe and its components by probing larger data sets
Overview

• We have a successful ΛCDM model describing the Universe
• Our goal is to learn more about the Universe and its components by probing larger data sets
• Cosmological information contained in different observables
Overview

- We have a successful ΛCDM model describing the Universe
- Our goal is to learn more about the Universe and its components by probing larger data sets
- Cosmological information contained in different observables
- Inhomogeneities dominant source of information, mainly through 2-point statistics of fluctuations
Overview

- We have a successful ΛCDM model describing the Universe
- Our goal is to learn more about the Universe and its components by probing larger data sets
- Cosmological information contained in different observables
- Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations
- CMB measurements still dominate the constraints on cosmological parameters
Overview

• We have a successful ΛCDM model describing the Universe
• Our goal is to learn more about the Universe and its components by probing larger data sets
• Cosmological information contained in different observables
• Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations
• CMB measurements still dominate the constraints on cosmological parameters
• Large-scale Structure is 3D – expected to have more power
Overview

• We have a successful ΛCDM model describing the Universe
• Our goal is to learn more about the Universe and its components by probing larger data sets
• Cosmological information contained in different observables
• Inhomogenities dominant source of information, mainly through 2-point statistics of fluctuations
• CMB measurements still dominate the constraints on cosmological parameters
• Large-scale Structure is 3D – expected to have more power
• Galaxy redshift surveys – established and promising way further
Large-scale structure

- Overdensity field:
 \[\delta_m(x) = \frac{\rho_m(x)}{\bar{\rho}_m} - 1 \]
- Power spectrum:
 \[P_m(k_1, k_2) \propto \langle \delta_m(k_1) \delta_m(k_2) \rangle \]
- Correlation function
 \[\xi_m(r) = \langle \delta_m(x) \delta_m(x + r) \rangle \]
- Cosmological Principle:
 \[P(k) \& \xi(r) \]
Large-scale structure

- Overdensity field:
 \[\delta_m(x) = \frac{\rho_m(x)}{\bar{\rho}_m} - 1 \]

- Power spectrum:
 \[P_m(k_1, k_2) \propto \langle \delta_m(k_1)\delta_m(k_2) \rangle \]

- Correlation function
 \[\xi_m(r) = \langle \delta_m(x)\delta_m(x + r) \rangle \]

- Cosmological Principle:
 \(P(k) \) & \(\xi(r) \)

\[\text{Planck, 2018} \]
Large-scale structure

- Overdensity field:
 \[\delta_m(x) = \frac{\rho_m(x)}{\bar{\rho}_m} - 1 \]

- Power spectrum:
 \[P_m(k_1, k_2) \propto \langle \delta_m(k_1)\delta_m(k_2) \rangle \]

- Correlation function
 \[\xi_m(r) = \langle \delta_m(x)\delta_m(x+r) \rangle \]

- Cosmological Principle:
 \[P(k) \& \xi(r) \]

- However we neither observe \(x \) nor matter field

Planck, 2018
Redshift-space Distortions

- We observe objects in redshift-space:
 \[s = x + v \cdot \hat{e}_z / (aH) \]
- Continuity eq: \(\nabla \cdot \mathbf{v} \propto f \delta_m \), \(f \) growth rate
Redshift-space Distortions

- We observe objects in redshift-space:
 \[s = x + v \cdot \hat{e}_z / (aH) \]

- Continuity eq: \(\nabla \cdot v \propto f \delta_m \), \(f \) growth rate

- Linear regime (\(\mu = k_\parallel / k \)):
 \[\delta_s^m \approx (1 + f\mu^2) \delta_m \]
 \[P^s_m(k, \mu) \approx (1 + f\mu^2)^2 P_m(k) \]
Redshift-space Distortions

- We observe objects in redshift-space:
 \[s = x + v \cdot \hat{e}_z / (aH) \]
- Continuity eq: \(\nabla \cdot v \propto f \delta_m \), \(f \) growth rate
- Linear regime (\(\mu = k_\parallel / k \)):
 - \(\delta_s^m \approx (1 + f \mu^2) \delta_m \)
 - \(P_s^m(k, \mu) \approx (1 + f \mu^2)^2 P_m(k) \)
- Clustering amplified in radial direction
- RSDs cause anisotropy, sensitive to \(f \)
Galaxies, halos, voids, 21cm, Lyα forest ... all biased tracers of matter in real space

- $\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)$
Linear bias

Galaxies, halos, voids, 21cm, Lyα forest ... all biased tracers of matter in real space

- $\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k)$
- b_g scalar linear bias of e.g. galaxies
Linear bias

Galaxies, halos, voids, 21cm, Lyα forest ... all biased tracers of matter in real space

- \(\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k) \)
- \(b_g \) scalar linear bias of e.g. galaxies
- \(b_g \) depends on halo mass & redshift:
 - massive objects more biased
 - objects more biased earlier

Wechsler+, 2018
Linear bias

Galaxies, halos, voids, 21cm, Lyα forest ... all biased tracers of matter in real space

- \(\delta_g(k) = b_g \delta_m(k) \iff P_g(k) = b_g^2 P_m(k) \)
- \(b_g \) scalar linear bias of e.g. galaxies
- \(b_g \) depends on halo mass & redshift:
 - massive objects more biased
 - objects more biased earlier
- Equivalence principle \(\Rightarrow \) no velocity bias
 \[\delta^s_m \approx (1 + f\mu^2) \delta_m \implies \delta^s_g(k, \mu) = (b_g + f\mu^2)\delta_m(k) \]

Wechsler+, 2018
Galaxy power spectrum in redshift-space

- Linear theory: \(P_g^s(k, \mu) = (b_g + f \mu^2)^2 P_m(k) \)
- Use Legendre expansion into multipoles:

\[
P_{\ell}(k) = \frac{2\ell + 1}{2} \int_{-1}^{1} P_g^s(k, \mu) \mathcal{L}_{\ell}(\mu) d\mu
\]

\[
P_0(k) = \left(b_g^2 + \frac{2}{3} f b_g + \frac{1}{5} f^2 \right) P_m(k)
\]

\[
P_2(k) = \left(\frac{4}{3} b_g f + \frac{4}{7} f^2 \right) P_m(k)
\]

- Measuring \(P_0 \) & \(P_2 \) gives \(b_g \) & \(f \)
- Note quadrupole \(P_2 \propto f \)
- In real-space \(P_2 = 0 \)
Galaxy power spectrum in redshift-space

- Linear theory: $P_g^s(k, \mu) = (b_g + f \mu^2)^2 P_m(k)$
- Use Legendre expansion into multipoles:

$$P_\ell(k) = \frac{2\ell + 1}{2} \int_{-1}^{1} P_g^s(k, \mu) \mathcal{L}_\ell(\mu) \, d\mu$$

$$P_0(k) = \left(b_g^2 + \frac{2}{3} f b_g + \frac{1}{5} f^2 \right) P_m(k)$$

$$P_2(k) = \left(\frac{4}{3} b_g f + \frac{4}{7} f^2 \right) P_m(k)$$

- Measuring P_0 & P_2 gives b_g & f
- Note quadrupole $P_2 \propto f$
- In real-space $P_2 = 0$

Alam+2016
Growth rate f

One of the key parameters

- $f \equiv \frac{d \ln D(a)}{d \ln a}$
- GR prediction: $f = \Omega_m(z)^{0.55}$
- Important for:
 - Testing Gravity
 - Constraining neutrino masses
 - Testing dark energy models
 - ...
- Currently $\sim 5 - 10\%$
- Future surveys (DESI, Euclid) expected to reach $\sim 1 - 5\%$ precision

Planck, 2018
Assembly bias

Bias depends on other scalar properties, for fixed halo mass and redshift

- Formation history
- Age
- Spin
- Concentration
- Shape ...

Wechsler+, 2018
Assembly bias

Bias depends on other scalar properties, for fixed halo mass and redshift

- Formation history
- Age
- Spin
- Concentration
- Shape ...

Wechsler+, 2018

Detected in simulations, no convincing evidence in data
Non-scalar bias

- There's another term at the linear level of δ_m – traceless part of the tidal field:

$$\delta_g(k) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(k)$$

$$s_{ij}(k) = (k_i k_j/k^2 - \delta_{ij}/3)\delta_m(k)$$

- Only non-scalar properties can correlate with tidal field
- *Non-scalar* halo properties are correlated with tidal field
Non-scalar bias

- There’s another term at the linear level of δ_m – traceless part of the tidal field:

$$\delta_g(k) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(k)$$

$$s_{ij}(k) = (k_i k_j / k^2 - \delta_{ij}/3)\delta_m(k)$$

- Only non-scalar properties can correlate with tidal field

- *Non-scalar* halo properties are correlated with tidal field
How correlated are halos & tidal field?

We use 1000 Quijote N-body sims (Villaescusa-Navarro+, 2019) to measure cross-correlations

\[n_{\text{min}} = 100, \ M_h > 6.57 \times 10^{13} \ [h^{-1} \ M_\odot] \]
Non-scalar bias

• There's another term at the linear level of δ_m – traceless part of the tidal field:

$$\delta_g(k) = (b_g + f\mu^2)\delta_m(k) + b_{ij}s_{ij}(k)$$

• Azimuthal symmetry & $b_q \equiv b_{zz}$

$$\delta_g(k, \mu) = (b_g + f\mu^2)\delta_m(k) + b_{zz}(\mu^2 - 1/3)\delta_m(k)$$
$$= (b_g - b_q/3 + (f + b_q)\mu^2) \delta_m(k)$$
Anisotropic assembly bias (AB)

$$\delta_g^s = (b_g + f\mu^2)\delta_m \implies \delta_g^s = (b_g - b_q/3 + (f + b_q)\mu^2)\delta_m$$
Anisotropic assembly bias (AB)

\[\delta^s_g = (b_g + f \mu^2) \delta_m \implies \delta^s_g = (b_g - b_q/3 + (f + b_q) \mu^2) \delta_m \]

- Parameter \(b_q \) is the anisotropic assembly bias

- \(b_q = 0 \) if:
 - Selection independent of halo orientation, e.g. projected size, velocity dispersion, angular momentum
 - or observed tracer and host halo randomly misaligned
Anisotropic assembly bias (AB)

\[\delta_s^g = (b_g + f\mu^2)\delta_m \implies \delta_s^g = (b_g - b_q/3 + (f + b_q)\mu^2)\delta_m \]

- Parameter \(b_q \) is the **anisotropic assembly bias**
- Source of anisotropy in the real space power spectrum
Anisotropic assembly bias (AB)

\[\delta^s_g = (b_g + f\mu^2)\delta_m \implies \delta^s_g = (b_g - b_q/3 + (f + b_q)\mu^2)\delta_m \]

- Parameter \(b_q \) is the \textbf{anisotropic assembly bias}
- Source of anisotropy in the real space power spectrum
- Additional source of anisotropy in the redshift-space
Anisotropic assembly bias (AB)

\[\delta_{g}^{s} = (b_{g} + f\mu^{2})\delta_{m} \implies \delta_{g}^{s} = (b_{g} - b_{q}/3 + (f + b_{q})\mu^{2})\delta_{m} \]

- Parameter \(b_{q} \) is the **anisotropic assembly bias**
- Source of anisotropy in the real space power spectrum
- Additional source of anisotropy in the redshift-space
- Note \(b_{q} \) is perfectly degenerate with \(f \)!
Anisotropic assembly bias (AB)

\[\delta^s_g = (b_g + f\mu^2)\delta_m \quad \Rightarrow \quad \delta^s_g = (b_g - b_q/3 + (f + b_q)\mu^2)\delta_m \]

- Parameter \(b_q \) is the **anisotropic assembly bias**
- Source of anisotropy in the real space power spectrum
- Additional source of anisotropy in the redshift-space
- Note \(b_q \) is perfectly degenerate with \(f \)!
- \(b_q = 0 \) if:
 - Selection independent of halo orientation, e.g. projected size, velocity dispersion, angular momentum
 - or if observed tracer and host halo randomly misaligned
Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion σ_{1D} in real space

Halo
High σ_{zz}
High I_{zz}

Halo
Low σ_{zz}
Low I_{zz}

z

$s_{zz} < 0$

$s_{zz} > 0$
Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion σ_{1D} in real space

- Real-space $P_2 = f = 0$
- $P_2 \neq 0 \rightarrow b_q \neq 0$
Halo selection based on tensor properties

Selection on radial halo extent \& velocity dispersion σ_{1D} in **real space**

- Real-space $P_2 = f = 0$
- $P_2 \neq 0 \rightarrow b_q \neq 0$

\[n_{\text{min}} = 100, \quad M_h > 6.57 \times 10^{13} \, [h^{-1} M_\odot] \]

AO+2019
Halo selection based on tensor properties

Selection on radial halo extent & velocity dispersion σ_{1D} in real space

- Real-space $P_2 = f = 0$
- $P_2 \neq 0 \rightarrow b_q \neq 0$
- Halos: $\Delta b_q \approx 1 - 2$
- Redshift-space $f \approx 0.7$

$P_{\ell}^{zz}(k)$ vs k [Mpc$^{-1}$]
What about galaxies?
BOSS DR12 Galaxy sample

- Baryon Acoustic Spectroscopic Survey
- \(\sim 10^6 \) galaxy redshifts
- \(0.15 < z < 0.7 \)
- Luminous red galaxies
- Ellipticals, \(M_h \sim 10^{13} M_\odot/h \)
- \(b_g \sim 2 \)
- Galaxy samples
 - LOWZ (0.15 < \(z \) < 0.43)
 - CMASS (0.43 < \(z \) < 0.7)
- Galactic Caps
 - North (NGC)
 - South (SGC)
BOSS DR12 Galaxy sample

- Baryon Acoustic Spectroscopic Survey
- $\sim 10^6$ galaxy redshifts
- $0.15 < z < 0.7$
- Luminous red galaxies
- Ellipticals, $M_h \sim 10^{13} M_\odot/h$
- $b_g \sim 2$
- Galaxy samples
 - LOWZ ($0.15 < z < 0.43$)
 - CMASS ($0.43 < z < 0.7$)
- Galactic Caps
 - North (NGC)
 - South (SGC)

Reid+, 2016
How we look for AB?

Main idea – split on orientation (σ_*) → look for differences in anisotropy (Δb_q)
How we look for AB?

Main idea – split on orientation (σ_*) → look for differences in anisotropy (Δb_q)

- Subsamples matching $n(z)$ have matching f
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)!\)
- Mismatch \(P_2 \rightarrow\) evidence \(\Delta b_q \neq 0\)
- Need orientation dependent gal. property
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) \(\rightarrow\) evidence \(\Delta b_q \neq 0\)

- Need orientation dependent gal. property
- Galaxy Properties from Portsmouth Group
 - velocity dispersion \(\sigma_\star\) (1D)
 - stellar mass \(M_\star\)
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)!\)
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- Galaxy Properties from Portsmouth Group
 - velocity dispersion \(\sigma_\star\) (1D)
 - stellar mass \(M_\star\)
How we look for AB?

Main idea – split on orientation (σ_\star) \rightarrow look for differences in anisotropy (Δb_q)

- Subsamples matching $n(z)$ have matching f
- Subsamples can have different b_g & b_q
- Find subsamples matching P_0 & $n(z)$!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$
- Galaxy Properties from Portsmouth Group
 - velocity dispersion σ_\star (1D)
 - stellar mass M_\star
- Split on $\sigma_\star = $ split on orientation & galaxy mass ($\sigma_\star^2 \propto M_\star$)
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) \(\rightarrow\) evidence \(\Delta b_q \neq 0\)

- Galaxy Properties from Portsmouth Group
 - velocity dispersion \(\sigma_\star\) (1D)
 - stellar mass \(M_\star\)
- Split on \(\sigma_\star =\) split on orientation & galaxy bias \(b_g(M_\star)\) \(\rightarrow\) different \(P_0\) & \(P_2\)
How we look for AB?

Main idea – split on orientation (σ_*) → look for differences in anisotropy (Δb_q)

- Subsamples matching $n(z)$ have matching f
- Subsamples can have different b_g & b_q
- Find subsamples matching P_0 & $n(z)$!
- Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

- Galaxy Properties from Portsmouth Group
 - velocity dispersion σ_* (1D)
 - stellar mass M_*
- Split on σ_* = split on orientation & galaxy bias $b_g(M_*) \rightarrow$ different P_0 & P_2
- Use M_* to remove mass (b_q) dependence
How we look for AB?

Main idea – split on orientation (σ_*) → look for differences in anisotropy (Δb_q)

- Subsamples matching $n(z)$ have matching f
- Subsamples can have different b_g & b_q
- Find subsamples matching P_0 & $n(z)$!
- Mismatch P_2 → evidence $\Delta b_q \neq 0$

- Galaxy Properties from Portsmouth Group
 - velocity dispersion σ_* (1D)
 - stellar mass M_*
- Split on $\sigma_* = \text{split on orientation & galaxy bias } b_g(M_*) \rightarrow \text{different } P_0 & P_2$
- Make subsamples with either
 - high M_*, low σ_* or
 - low M_*, high σ_*
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- Galaxy Properties from Portsmouth Group
 - velocity dispersion \(\sigma_\star\) (1D)
 - stellar mass \(M_\star\)
- Split on \(\sigma_\star = \) split on orientation & galaxy bias \(b_g(M_\star)\) → different \(P_0\) & \(P_2\)
- Make subsamples with either
 - high \(M_\star\), low \(\sigma_\star\) or
 - low \(M_\star\), high \(\sigma_\star\)
How we look for AB?

Main idea – split on orientation \((\sigma_*) \) \(\rightarrow \) look for differences in anisotropy \((\Delta b_q) \)

- Subsamples matching \(n(z) \) have matching \(f \)
- Subsamples can have different \(b_g \) \& \(b_q \)
- Find subsamples matching \(P_0 \) \& \(n(z) \)!
- Mismatch \(P_2 \) \(\rightarrow \) evidence \(\Delta b_q \neq 0 \)

- How do we match \(n(z) \)?
 - Need to account for \(z \)-evolution
 - Work with percentiles
 - Compute percentiles in 30 \(z \)-bins
 - Split on percentiles in each \(z \)-bin
 - \(\implies \) matching \(n(z) \)

![Diagram showing distribution of data points with different colors indicating different redshift bins.](image-url)
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- How do we match monopoles?
How we look for AB?

Main idea – split on orientation \((\sigma_* \star) \rightarrow \text{look for differences in anisotropy } (\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- How do we match monopoles?
 - Grid of 25 \((\sigma_*, M_*\) subsamples
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- How do we match monopoles?
 - Grid of 25 \((\sigma_\star, M_\star)\) subsamples
 - Measure mean amplitude
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) \(\rightarrow\) evidence \(\Delta b_q \neq 0\)

How do we match monopoles?
- Grid of 25 \((\sigma_*, M_*)\) subsamples
- Measure mean amplitude
- Low \((\sigma_*, M_*)\) – low amplitude
- High \((\sigma_*, M_*)\) – high amplitude
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) \& \(b_q\)
- Find subsamples matching \(P_0\) \& \(n(z)\)!
- Mismatch \(P_2\) \(\rightarrow\) evidence \(\Delta b_q \neq 0\)

- How do we match monopoles?
 - Grid of 25 \((\sigma_*, M_*)\) subsamples
 - Measure mean amplitude
 - But we want matching amplitude!
How we look for AB?

Main idea – split on orientation \((\sigma_\star)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- How do we match monopoles?
 - Finally select samples with:
 - high \(M_\star\), low \(\sigma_\star\) &
 - low \(M_\star\), high \(\sigma_\star\)
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2 \rightarrow\) evidence \(\Delta b_q \neq 0\)

- How do we match monopoles?
 - Finally select samples with:
 - high \(M_*\), low \(\sigma_*\) &
 - low \(M_*\), high \(\sigma_*\)
How we look for AB?

Main idea – split on orientation ($\sigma_*\) → look for differences in anisotropy (Δb_q)

• Subsamples matching $n(z)$ have matching f
• Subsamples can have different b_g & b_q
• Find subsamples matching P_0 & $n(z)$!
• Mismatch $P_2 \rightarrow$ evidence $\Delta b_q \neq 0$

• What about quadrupoles?
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) → look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) & \(b_q\)
- Find subsamples matching \(P_0\) & \(n(z)\)!
- Mismatch \(P_2\) → evidence \(\Delta b_q \neq 0\)

- What about quadrupoles?
How we look for AB?

Main idea – split on orientation (σ_\star) \rightarrow look for differences in anisotropy (Δb_q)

- Subsamples matching $n(z)$ have matching f
- Subsamples can have different b_g & b_q
- Find subsamples matching P_0 & $n(z)$!
- Mismatch P_2 \rightarrow evidence $\Delta b_q \neq 0$

- Match P_0 & $n(z)$ \rightarrow match P_2
How we look for AB?

Main idea – split on orientation \((\sigma_*)\) \(\rightarrow\) look for differences in anisotropy \((\Delta b_q)\)

- Subsamples matching \(n(z)\) have matching \(f\)
- Subsamples can have different \(b_g\) \& \(b_q\)
- Find subsamples matching \(P_0\) \& \(n(z)!\)
- Mismatch \(P_2\) \(\rightarrow\) evidence \(\Delta b_q \neq 0\)

- Match \(P_0\) \& \(n(z)\) \(\rightarrow\) match \(P_2\)
- Mismatch \(P_2\) \(\rightarrow\) evidence \(\Delta b_q \neq 0\)
Results – CMASS NGC

$10^4 \times n(z) \, [h^3 \text{Mpc}^{-3}]$

$10^3 \, k P^X_\ell \, [h^{-2} \text{Mpc}^2]$
Results – LOWZ NGC

\[10^3 \times n(z) [h^3 \text{Mpc}^{-3}] \]

\[kP_\ell [h^{-2} \text{Mpc}^2] \]

AO+2020
Detection significance

- Use mock galaxy catalogs
- Split each mock in two random subsamples
- Cross-correlate each with full mock
- Find a_ℓ which minimizes:

$$\chi^2(a_\ell) = \Delta P_\ell^T C_{a,\ell}^{-1} \Delta P_\ell$$

where

$$\Delta P_\ell = P_{\ell}^{\text{sub},1} - a_\ell P_{\ell}^{\text{sub},2}$$
Detection significance

- Use mock galaxy catalogs
- Split each mock in two random subsamples
- Cross-correlate each with full mock
- Find a_ℓ which minimizes:

$$
\chi^2(a_\ell) = \Delta P^T_\ell C^{-1}_{a,\ell} \Delta P_\ell
$$

where

$$
\Delta P_\ell = P^{\text{sub},1}_\ell - a_\ell P^{\text{sub},2}_\ell
$$
Detection significance – CMASS NGC

- Matching monopoles – \(a_0 \approx 1 \)
 - within \(1\sigma \) at all scales
- Different quadrupoles – \(a_2 \neq 1 \)
 - many \(\sigma \)’s away!
- Both for LOWZ & CMASS NGC
- \(\Delta b_q \neq 0 \) between subsamples
Detection significance – CMASS NGC

- Matching monopoles – $a_0 \approx 1$
 - within 1σ at all scales
- Different quadrupoles – $a_2 \neq 1$
 - many σ’s away!
- Both for LOWZ & CMASS NGC
- $\Delta b_q \neq 0$ between subsamples
Detection significance – CMASS NGC

- Matching monopoles – $a_0 \approx 1$
 - within 1σ at all scales
- Different quadrupoles – $a_2 \neq 1$
 - many σ’s away!
- Both for LOWZ & CMASS NGC
- $\implies \Delta b_q \neq 0$ between subsamples
- LOWZ & CMASS independent samples
- We combine them
Combined detection significance

5σ using $k_{\text{max}} \sim 0.15 \, h\, \text{Mpc}^{-1}$

![Graph showing combined detection significance with k_{max} vs $\sigma(k_{\text{max}})$]
Discussion

- We present first strong evidence of AB

\[\Delta b^q \neq 0 \text{ at } > 5 \sigma \text{ confidence} \]

- For BOSS galaxies we find
 \[\Delta b^q \approx (a^2 - 1) \approx 0.1 - 0.2 \]

- For halos in sims we found
 \[\Delta b^q \approx 1 - 2 \]

- Misalignment of galaxies and halos decreases the signal

- We can only measure \(\Delta b^q \)

- Important considering \(f \approx 0.7 \)

- Also important for precision on future surveys are...
Discussion

- We present first strong evidence of AB
- We find evidence for $\Delta b_q \neq 0$ at $> 5\sigma$ confidence

For BOSS galaxies we find $\Delta b_q \sim (a^2 - 1) \approx 0.1 - 0.2$.

For halos in sims we found $\Delta b_q \sim 1 - 2$.

Misalignment of galaxies and halos decreases the signal.

We can only measure Δb_q.

Important considering $f \approx 0.7$.

Also important for precision on f future surveys are after...
Discussion

• We present first strong evidence of AB
• We find evidence for $\Delta b_q \neq 0$ at $> 5\sigma$ confidence
• For BOSS galaxies we find $\Delta b_q \sim (a_2 - 1) \approx 0.1 - 0.2$

• Misalignment of galaxies and halos decreases the signal
• We can only measure Δb_q
• Important considering $f \approx 0.7$
• Also important for precision on f future surveys are after...
Discussion

• We present first strong evidence of AB
• We find evidence for $\Delta b_q \neq 0$ at $>5\sigma$ confidence
• For BOSS galaxies we find $\Delta b_q \sim (a_2 - 1) \approx 0.1 - 0.2$
• For halos in sims we found $\Delta b_q \sim 1 - 2$
Discussion

• We present first strong evidence of AB
• We find evidence for $\Delta b_q \neq 0$ at $> 5\sigma$ confidence
• For BOSS galaxies we find $\Delta b_q \sim (a_2 - 1) \approx 0.1 - 0.2$
• For halos in sims we found $\Delta b_q \sim 1 - 2$
• Misalignment of galaxies and halos decreases the signal
• We present first strong evidence of AB
• We find evidence for $\Delta b_q \neq 0$ at $> 5\sigma$ confidence
• For BOSS galaxies we find $\Delta b_q \sim (a_2 - 1) \approx 0.1 - 0.2$
• For halos in sims we found $\Delta b_q \sim 1 - 2$
• Misalignment of galaxies and halos decreases the signal
• We can only measure Δb_q
Discussion

- We present first strong evidence of AB
- We find evidence for $\Delta b_q \neq 0$ at $> 5\sigma$ confidence
- For BOSS galaxies we find $\Delta b_q \sim (a_2 - 1) \approx 0.1 - 0.2$
- For halos in sims we found $\Delta b_q \sim 1 - 2$
- Misalignment of galaxies and halos decreases the signal
- We can only measure Δb_q
- Important considering $f \approx 0.7$
Discussion

- We present first strong evidence of AB
- We find evidence for $\Delta b_q \neq 0$ at $> 5\sigma$ confidence
- For BOSS galaxies we find $\Delta b_q \sim (a_2 - 1) \approx 0.1 - 0.2$
- For halos in sims we found $\Delta b_q \sim 1 - 2$
- Misalignment of galaxies and halos decreases the signal
- We can only measure Δb_q
- Important considering $f \approx 0.7$
- Also important for precision on f future surveys are after
Other splits and approaches

- We find no signal when splitting on projected physical size R_0 & M_*

- Previous works used Fundamental Plane (FP): $I_0 \sigma_a \approx R_0 \sim \text{const}$, with I_0 surface brightness

- We do FP analysis with (a, b) grid

- Kaiser model for multipoles assuming $b_q = 0$

- Results on AB very sensitive to (a, b) values — Perhaps explaining previous results...
Other splits and approaches

- We find no signal when splitting on projected physical size R_0 & M_*
 - Larger fractional scatter of R_0 compared to σ_*
Other splits and approaches

- We find no signal when splitting on projected physical size R_0 & M_*
 - Larger fractional scatter of R_0 compared to σ_*
- Previous works used Fundamental Plane (FP):
 \[
 \frac{I_0^b \sigma_*^a}{R_0} \sim \text{const.}
 \]

 with I_0 surface brightness
Other splits and approaches

• We find no signal when splitting on projected physical size R_0 & M_*
 – Larger fractional scatter of R_0 compared to σ_*

• Previous works used Fundamental Plane (FP):

$$\frac{I_0^b \sigma_*^a}{R_0} \sim \text{const.}$$

with I_0 surface brightness
 – Martens+18 marginal signal with (I_0, R_0)
Other splits and approaches

- We find no signal when splitting on projected physical size R_0 & M_*
 - Larger fractional scatter of R_0 compared to σ_*
- Previous works used Fundamental Plane (FP):
 \[\frac{I_0^b \sigma_*^a}{R_0} \sim \text{const.} \]
 with I_0 surface brightness
 - Martens+18 marginal signal with (I_0, R_0)
 - Singh+20 no signal with full FP
Other splits and approaches

• We find no signal when splitting on projected physical size R_0 & M_*
 – Larger fractional scatter of R_0 compared to σ_*

• Previous works used Fundamental Plane (FP):

\[
\frac{I_0^b \sigma_*^a}{R_0} \sim \text{const.}
\]

with I_0 surface brightness
 – Martens+18 marginal signal with (I_0, R_0)
 – Singh+20 no signal with full FP

• We do FP analysis with (a, b) grid
Other splits and approaches

- We find no signal when splitting on projected physical size R_0 & M_*
 - Larger fractional scatter of R_0 compared to σ_*
- Previous works used Fundamental Plane (FP):
 \[\frac{I_0^b \sigma_*^a}{R_0} \sim \text{const.} \]

 with I_0 surface brightness
 - Martens+18 marginal signal with (I_0, R_0)
 - Singh+20 no signal with full FP
- We do FP analysis with (a, b) grid
- Kaiser model for multipoles assuming $b_q = 0$
Other splits and approaches

• We find no signal when splitting on projected physical size R_0 & M_*
 - Larger fractional scatter of R_0 compared to σ_*
• Previous works used Fundamental Plane (FP):
 $$\frac{I_0^b \sigma_0^a}{R_0} \sim \text{const.}$$
 with I_0 surface brightness
 - Martens+18 marginal signal with (I_0, R_0)
 - Singh+20 no signal with full FP
• We do FP analysis with (a, b) grid
• Kaiser model for multipoles assuming $b_q = 0$
• Results on AB very sensitive to (a, b) values
Other splits and approaches

- We find no signal when splitting on projected physical size R_0 & M_*
 - Larger fractional scatter of R_0 compared to σ_*
- Previous works used Fundamental Plane (FP):
 \[
 \frac{I_0^b \sigma_*^a}{R_0} \sim \text{const.}
 \]
 with I_0 surface brightness
 - Martens+18 marginal signal with (I_0, R_0)
 - Singh+20 no signal with full FP
- We do FP analysis with (a, b) grid
- Kaiser model for multipoles assuming $b_q = 0$
- Results on AB very sensitive to (a, b) values
 - Perhaps explaining previous results...
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
 - ... due to HI self-absorption, provided HI aligned with halos
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
 - ... due to HI self-absorption, provided HI aligned with halos
- Groups/clusters found in redshift-space
Other consequences

• Could be an issue for RSD with 21cm Intensity Mapping
 – ... due to HI self-absorption, provided HI aligned with halos
• Groups/clusters found in redshift-space
 – ... in simulations exhibit strong AB signal in their clustering
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
 - ... due to HI self-absorption, provided HI aligned with halos
- Groups/clusters found in redshift-space
 - ... in simulations exhibit strong AB signal in their clustering
- DESI Emission Line Galaxies (ELGs) contain dust
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
 - ... due to HI self-absorption, provided HI aligned with halos
- Groups/clusters found in redshift-space
 - ... in simulations exhibit strong AB signal in their clustering
- DESI Emission Line Galaxies (ELGs) contain dust
 - Is target selection sensitive to orientation?
Other consequences

• Could be an issue for RSD with 21cm Intensity Mapping
 – … due to HI self-absorption, provided HI aligned with halos

• Groups/clusters found in redshift-space
 – … in simulations exhibit strong AB signal in their clustering

• DESI Emission Line Galaxies (ELGs) contain dust
 – Is target selection sensitive to orientation?
 – Faint galaxies near the detection threshold could be impacted by orientation selection
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
 - ... due to HI self-absorption, provided HI aligned with halos
- Groups/clusters found in redshift-space
 - ... in simulations exhibit strong AB signal in their clustering
- DESI Emission Line Galaxies (ELGs) contain dust
 - Is target selection sensitive to orientation?
 - Faint galaxies near the detection threshold could be impacted by orientation selection
 - Faint galaxies are also the most numerous!
Other consequences

- Could be an issue for RSD with 21cm Intensity Mapping
 - ... due to HI self-absorption, provided HI aligned with halos
- Groups/clusters found in redshift-space
 - ... in simulations exhibit strong AB signal in their clustering
- DESI Emission Line Galaxies (ELGs) contain dust
 - Is target selection sensitive to orientation?
 - Faint galaxies near the detection threshold could be impacted by orientation selection
 - Faint galaxies are also the most numerous!
- ...
- ...
Summary

- We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies.
Summary

- We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies.
- AB caused by correlation of the large-scale tidal fields and non-scalar halo properties (orientation, velocity dispersion and angular momenta).
- Orientation dependent selection effects of halos can produce anisotropic power spectrum, even in real-space.
- In redshift-space, AB degenerate with growth rate.
- Care must be taken when interpreting RSD measurements.
- AB measurements to improve with forthcoming surveys.
Summary

- We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies.
- AB caused by correlation of the large-scale tidal fields and non-scalar halo properties (orientation, velocity dispersion and angular momenta).
- Contrary to the isotropic (scalar) assembly bias, this effect cannot be mimicked by varying halo mass (or any other scalar).
- Orientation dependent selection effects of halos can produce anisotropic power spectrum, even in real-space.
- In redshift-space, AB degenerate with growth rate.
- Care must be taken when interpreting RSD measurements.
- AB measurements to improve with forthcoming surveys.
• We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies
• AB caused by correlation of the large-scale tidal fields and non-scalar halo properties (orientation, velocity dispersion and angular momenta)
• Contrary to the isotropic (scalar) assembly bias, this effect can not be mimicked by varying halo mass (or any other scalar)
• Orientation dependent selection effects of halos can produce anisotropic power spectrum, even in real-space
We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies.

AB caused by correlation of the large-scale tidal fields and non-scalar halo properties (orientation, velocity dispersion and angular momenta).

Contrary to the isotropic (scalar) assembly bias, this effect cannot be mimicked by varying halo mass (or any other scalar).

Orientation dependent selection effects of halos can produce anisotropic power spectrum, even in real-space.

In redshift-space, AB degenerate with growth rate.
Summary

- We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies
- AB caused by correlation of the large-scale tidal fields and non-scalar halo properties (orientation, velocity dispersion and angular momenta)
- Contrary to the isotropic (scalar) assembly bias, this effect cannot be mimicked by varying halo mass (or any other scalar)
- Orientation dependent selection effects of halos can produce anisotropic power spectrum, even in real-space
- In redshift-space, AB degenerate with growth rate
- Care must be taken when interpreting RSD measurements
Summary

• We find anisotropic assembly bias in clustering of halos from numerical simulations & in clustering of observed BOSS galaxies
• AB caused by correlation of the large-scale tidal fields and non-scalar halo properties (orientation, velocity dispersion and angular momenta)
• Contrary to the isotropic (scalar) assembly bias, this effect can not be mimicked by varying halo mass (or any other scalar)
• Orientation dependent selection effects of halos can produce anisotropic power spectrum, even in real-space
• In redshift-space, AB degenerate with growth rate
• Care must be taken when interpreting RSD measurements
• AB measurements to improve with forthcoming surveys