Cosmology with One-Point Stats

Cora Uhlemann
Waterloo Remote Astro Seminar, Nov 2020
Good Old Days

CMB: one snapshot linear, almost Gaussian captured by 2-point statistics
Good Old Days -> Future

CMB: one snapshot
linear, almost Gaussian

LSS: motion picture
nonlinear, non-Gaussian

Euclid
TRADITIONAL STATISTICS

Gaussian: 2-pt correlation

$$\xi(r) = \langle \delta(x)\delta(x + r) \rangle$$

nonlinear \rightarrow non-Gaussian

Higher N-pt correlations

$N \geq 3$ hard to measure
EFFICIENT STATISTICS

My approach: 1-point PDF
recapture lost information
measure counts in cells
& plot histogram
if we only could observe dark matter
Counts-in-Cells Idea

Recapture lost information
smooth & plot histogram

$\rho(\rho)@z = 0.7, R_{\text{same}}\variance^2 = h^2 (x_i)$

Counts-in-Cells Idea
Counts-in-Cells Idea

matter density in symmetric cells

symmetry statistics \leftrightarrow dynamics
Large-deviation statistics

large deviations exponentially unlikely

\[\mathcal{P}_{r}^{\text{ini}}(\delta_L) \sim \exp \left[-\frac{\delta_L^2}{2\sigma_L^2(r)} \right] \]
Counts-in-Cells Theory

Large-deviation statistics

most likely path dominates

\[P_{R,z}(\rho) \sim \exp \left[-\frac{\delta_L(\rho)^2}{2\sigma_L^2(z, r(R, \rho))} \frac{\sigma_L^2}{\sigma_{NL}^2} \right] \]

Bernardeau 94
CU++ 16

spherical collapse

linear variance & growth

nonlinear variance
Spherical Collapse

mass conservation

\[r = \rho^{1/3} R \]

large density \(\delta_L \) \(r \) \(\rho \) \(R \)

small density \(\delta_L \) \(r \) \(\rho \) \(R \)

fixed final radius \(R \) mixes scales!
Spherical Collapse

density mapping \[\delta_L(\rho) \approx \frac{21}{13} \left(1 - \rho^{-\frac{13}{21}}\right) \]

\sim \text{cosmology independent}
accurate PDF from first principles, not lognormal

\(P(\rho) \), \(R=10 \text{ Mpc}/h \)

sims: Quijote
Counts-in-Cells Cosmo

matter content σ_8 & Ω_m: width & tilt

$\mathcal{P}_R(\rho)$

$\Omega_m = 0.26$: $w_0 = -1$

$\Omega_m = 0.21$: $w_0 = -1$

$\Omega_m = 0.31$: $w_0 = -1$

+ change of growth $D(z)$

sims: J. Shin
Counts-in-Cells Cosmo

dark energy w: growth

$\mathcal{P}_R(\rho)$

- $\Omega_m=0.26: w_0=-1$
- $\Omega_m=0.26: w_0=-1.5$
- $\Omega_m=0.26: w_0=-0.5$

more expansion

less expansion

Sims: J. Shin

Codis ++ (incl CU) 16
massive neutrinos M_ν: partial clustering

fixed σ_8

\[\log_{10} \mathcal{P}(\ln \rho), \, R=10 \, \text{Mpc}/h \]

also here!

sims: Quijote
Fisher for Complements

Quijote simulations

F. Villaescusa-Navarro ++ (incl **CU**) 19

15,000x fiducial cosmo

500x derivative cosmo

$\sigma_8, \Omega_m, \Omega_b, h, n_s, M_\nu, (w_0)$

>1 million PDFs
Fisher for Complements

Fisher matrix

$$F_{ij} = \sum_{\alpha, \beta} \left[\frac{\partial S_\alpha}{\partial \theta_i} C_{\alpha \beta}^{-1} \frac{\partial S_\beta}{\partial \theta_j} \right]$$

fiducial covariance

summary stats: PDF bins

derivatives w.r.t. cosmo

marginalised errors \(\delta \theta_i \geq \sqrt{(F^{-1})_{ii}} \)
width: clustering amplitude \(\sigma_8 \)

\[
\mathcal{P}_{\sigma_8^+}(\ln \rho) - \mathcal{P}_{\sigma_8^-}(\ln \rho), z=0
\]
Fisher for Complements

tilt: matter density Ω_m & initial n_s

$P_+(\ln \rho) - P_-(\ln \rho)$

$\Delta \Omega_m$, Δn_s, Δh, $\Delta \Omega_b$

- Full pred.
- σ_{NL} only
Fisher for Complements

environment-dependence: M_v

$$\mathcal{P}_{M_v}(\ln \rho) - \mathcal{P}_{\text{fidZA}}(\ln \rho)$$

$z=0, R=10 \text{ Mpc}/h$

$$z=0, R=20 \text{ Mpc}/h$$

$$(\ln \rho - <\ln \rho>_{\text{fidZA}})/\sigma_{\ln \rho, \text{fidZA}}$$
Fisher for Complements

Covariance: PDF bin correlation

determined by density-dependent clustering

Correlation matrix of density PDF bins

- **diagonal**
- **extra clustered**
- **corners**
 - **anti-clustered**
Fisher for Complements

power spectrum workhorse

PDF underdog
$z=0, 0.5, 1$

$V_{tot} = 6 \, (\text{Gpc}/h)^3$

$P(k), k_{\text{max}} = 0.2 h/\text{Mpc}$

PDF, $R=10,15 \, \text{Mpc}/h$

PDF disentangles M_ν from σ_8
Planck base_mnu_plikHM_TT_lowl_lowE
z=0,0.5,1, \(V_{\text{tot}} = 6 \text{(Gpc/}h)^3 \):
\(P(k), k_{\text{max}} = 0.2h/\text{Mpc} \)
PDF, \(R = 10, 15, 20 \text{ Mpc}/h \)
joint \(P(k) + \text{PDF} \)

PDF complements power spectrum & Planck
Cosmo with Counts-In-Cells

Powerful statistics
non-Gaussian, beyond PT
robust & accurate predictions

Cosmology & fundamental physics
\(\Omega_m, \sigma_8, M_\nu \)
CU, Friedrich ++ 19
\(f_{\text{NL}} \) Friedrich, CU ++ 19

Reality: no 3D matter field
weak lensing: projected matter
galaxy clustering: bias & stochasticity
Weak Lensing in Cells

statistics of projected matter
Weak Lensing

source

(dark)
matter

convergence κ

& shear (γ_1, γ_2)

$|\kappa|, |\gamma| \ll 1$

<0

κ

size

γ_1

shape

γ_2

>0
Weak Lensing

many sources @ z_s

see different parts of large-scale structure along the line of sight

Euclid makes map of galaxy shapes
Weak Lensing

reconstruct convergence map from shapes
2D maps at source redshift z_s
Weak Lensing-in-Cells

weighted matter density in slices

$$\delta_{\text{disk}} < \theta D(z) w(z, z_s)$$

cylindrical collapse lensing weight
Cylindrical Collapse

\[r = \rho^{1/2} R \]

\[\delta_L = \frac{7}{5} \left(1 - \rho^{-\frac{5}{7}} \right) \]

\[\delta_L = \rho \rightarrow \rho \]

large density

small density

\[\rho_{\text{cyl}} \]

\[\delta_L \]

\[r \]

\[R \]

non-linear

linear
Weak Lensing-in-Cells

weighted matter density in slices

cumulant generator

$$\phi_{\theta D(z)}^{\text{disk}} \left(\lambda w(z, z_s) \right)$$

cylindrical collapse

lensing weight
Weak Lensing-in-Cells

convergence: weight density slices

\[\kappa_{<\theta} = \int_{0}^{\mathcal{D}(z_s)} d\mathcal{D}(z) \delta^{\text{disk}}_{<\theta \mathcal{D}(z)} w(z, z_s) \]

scale mixing
Weak Lensing-in-Cells

convergence: weight density slices

cumulant generator

\[
\phi^K_{\theta}(\lambda) = \int_0^\mathcal{D}(z_s) d\mathcal{D}(z) \phi^\text{disk}_{\theta \mathcal{D}}(z) (\lambda w(z, z_s))
\]

\[\rightarrow \text{reconstruct PDF} \quad \text{Bernardeau & Valageas 02}\]
Weak Lensing-in-Cells

Barthelemy, Codis, CU++ 19

$z_s = 1.5$

$P(\kappa)$

κ

- $\theta = 10$ arcmin
- $\theta = 20$ arcmin
- $\theta = 30$ arcmin
- $\theta = 40$ arcmin
- $\theta = 50$ arcmin

NO NULLING
Weak Lensing-in-Cells

Barthelemy, Codis, **CU++ 19**

\[\frac{P_{\text{sim}}(\kappa)}{P_{\text{th}}(\kappa)} - 1 \]

\[\kappa / \sigma \]

NO NULLING
Lensing Convergence PDF

single source redshift: $z_s=2$

simulations: DUSTGRAIN-pathfinder

Boyle, CU ++ in prep.
Lensing Convergence PDF

percent-level accuracy around the peak

Boyle, CU ++ in prep.
Lensing Convergence PDF

validated response to cosmo parameters

$\theta = 10.25'$

preliminary

simulations: DUSTGRAIN-cosmo

Boyle, CU ++ in prep.
$z_s = 2, V = 15000 \text{ deg}^2$

$\theta = 7.32', \theta = 10.25'$

Planck TT, TT, EE

lowl lowE

PDF 2 scales combined

2pcf $\theta_{min} = 5'$

complements

2pt correlation

& CMB

Euclid project

higher-order

WL statistics

Boyle, CU ++ in prep.
Cosmo with One-Point Stats

Powerful statistics
non-Gaussian, beyond PT
robust & accurate predictions
different density environments

Matter density PDF
\(\Omega_m, \sigma_8, M_v, w_0, f_{NL} \)
CU, Friedrich ++ 19, Friedrich, CU ++ 19

Weak lensing convergence PDF
probes projected matter
Barthelemy ++ (incl. CU) 20
\(\Omega_m, \sigma_8, w_0, M_v \)
Boyle, CU ++ in prep