
Journal of Quantitative Spectroscopy & Radiative Transfer 186 (2017) 158–166
Contents lists available at ScienceDirect
Journal of Quantitative Spectroscopy &
Radiative Transfer
http://d
0022-40

E-m
journal homepage: www.elsevier.com/locate/jqsrt
RKR1: A computer program implementing the first-order RKR
method for determining diatomic molecule potential
energy functions

Robert J. Le Roy
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
a r t i c l e i n f o

Article history:
Received 10 January 2016
Received in revised form
22 March 2016
Accepted 22 March 2016
Available online 8 April 2016
x.doi.org/10.1016/j.jqsrt.2016.03.030
73/& 2016 Elsevier Ltd. All rights reserved.

ail address: leroy@UWaterloo.ca
a b s t r a c t

This paper describes computer program RKR1, which implements the first-order semi-
classical Rydberg–Klein–Rees procedure for determining the potential energy function for
a diatomic molecule from a knowledge of the dependence of the molecular vibrational
energies Gv and inertial rotation constants Bv on the vibrational quantum number v. RKR1
allows the vibrational energies and rotational constants to be defined in terms of:
(i) conventional Dunham polynomial expansions, (ii) near-dissociation expansions
(NDE's), or (iii) the mixed Dunham/NDE “MXR” functions introduced by Tellinghuisen [J
Chem Phys 2003; 118: 3532]. Internal convergence tests ascertain and report on the
precision of the resulting turning points. For cases in which only vibrational data are
available, RKR1 also allows an overall potential to be constructed by combining directly-
calculated well widths with inner turning points generated from a Morse function. It can
also automatically smooth over irregular or unphysical behavior of the steep inner wall of
the potential.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The Rydberg [1,2]–Klein [3]–Rees [4] (RKR) method is a
widely used first-order semiclassical inversion procedure
for calculating the pointwise potential energy curve of a
diatomic molecule from a knowledge of the dependence of
its vibrational level energies Gv and inertial rotation con-
stants Bv upon the vibrational quantum number v. Within
the first-order semiclassical, or WKB, approximation [5],
this method yields a unique potential energy function that
exactly reflects the input functions representing the v-
dependence of Gv and Bv. This paper describes a computer
program, RKR1, for performing such calculations.

In spite of its later ubiquitous use, the success of the
RKR method was slow in coming. Rydberg's 1931 pub-
lication [1] of the original graphical trial-and-error version
of this procedure was followed promptly by Klein's deri-
vation [3] of the integral expressions that are at the core of
the method as we know it today [6]. However, while the
method did see some use [2], during the two decades
following its introduction it was largely ignored. This was
likely due to the remarkable success of Dunham's 1932
derivation [7,8] of exact (within the third-order WKB
approximation) analytic expressions relating the coeffi-
cients of a power series expansion for the potential energy
function to the coefficients of the conventional expansion
for vibrational–rotational energies as a double power ser-
ies in vþ1

2

� �
and ½JðJþ1Þ�, namely,

E v; Jð Þ ¼
X

m ¼ 0

X
l ¼ 0

Yl;m vþ1
2

� �l

J Jþ1ð Þ½ �m; ð1Þ

in which v and J, respectively, are the vibrational and
rotational quantum numbers. By the end of the 1940s,
however, the practical limitations of the Dunham
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approach, particularly its practical restriction to the lower
part of the potential well, began to make themselves felt.

In 1947, Rees led subsequent work on this problem by
turning his attention to the integral expressions for the
turning points derived by Klein [4]. Followed by a
number of other workers over the next decade and a
half, he devised analytic expressions for these integrals
based upon truncated or approximate local representa-
tions for the vibrational energies and rotational con-
stants. However, what really changed the situation was
Jarmain's 1961 proposal that these integrals should
simply be evaluated numerically [9], and Hurley's formal
proof that the RKR and first-order Dunham procedures
were equivalent [10]. In the early 1960s a number of
numerical techniques for evaluating the Klein integrals
were proposed and saw service. In particular, Zare's
development and generous distribution of his computer
program [11,12] effectively made it the de facto standard
for a number of years, and contributed immensely to the
infectious spread of the method throughout the spec-
troscopy and molecular physics communities. Moreover,
the insightful study by Mantz et al. in 1971 [13] showed
that even for a ‘moderately light’ diatomic such as CO,
level energies and Bv constants calculated quantum-
mechanically from an RKR potential could be in
remarkably good agreement (Gv discrepancies of
≲0:15 cm�1, Bv discrepancies of ≲0:003%) with the
analytic Gv and Bv functions used to generate that RKR
potential, up to over half the well depth. However, as
with virtually all methods in use before 1972, Zare's code
was based on a relatively crude treatment of the
(integrable) singularities in the integrands of the Klein
integrals (see below), and thus was incapable of yielding
results of high precision.

Finally, a single issue of the Journal of Molecular Spec-
troscopy in 1972 contained three papers reporting accurate
and efficient new procedures for evaluating the Klein
integrals [14–16]. Of these, the method of Tell-
inghuisen [16,17] has proved most durable, probably
because of its simplicity and very high potential accuracy.
The present program is based on the quadrature procedure
suggested by Tellinghuisen, but incorporates a number of
enhancements not included in other codes. These include:
(i) an improved ability to yield accurate results for levels
lying very near dissociation, (ii) an automatic smoothing
procedure to remove the unphysical behavior sometimes
found in the upper part of the inner wall of directly cal-
culated RKR potentials, (iii) the ability to generate com-
plete potentials when only vibrational energies are avail-
able (another innovation introduced by Tellinghuisen
[18]), and (iv) provision of upper bounds on the numerical
precision of the calculations.

The current version of the (thoroughly commented)
source code for RKR1 is included in the Supplementary
Material associated with this paper, together with a
Manual (presented as Appendices in that Supplementary
Material) that provides a detailed description of the nature
of the input data files, as well as sample input files and
listings of the resulting output.
2. Methodology

2.1. Background theory

The theory underlying the RKR method is discussed in
the literature and in a number of monographs [1–5,10,19–
24]. For the interested reader, a full derivation of the basic
equations is presented in Appendix D in the Supplemen-
tary Material associated with this paper. The key result of
this theory consists of the two Klein integrals on which the
RKR method is based, specifically

r2 vð Þ�r1 vð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Cu=μ

p Z v

vmin

dv0

½Gv�Gv0 �1=2
¼ 2f ; ð2Þ

1
r1 vð Þ�

1
r2 vð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
μ=Cu

p Z v

vmin

Bv0 dv
0

½Gv�Gv0 �1=2
¼ 2g; ð3Þ

in which r1ðvÞ and r2ðvÞ are the inner and outer classical
turning points respectively on the potential energy func-
tion for vibrational level v with energy Gv, Bv is the inertial
rotational constant for that vibrational level, and vmin is
the non-integer effective value of the vibrational quantum
number at the potential minimum. In this expression Gv

and Bv are assumed to have units cm�1, the reduced mass
μ is in amu, and the turning points are in Å, and hence the
constant Cu ¼ ℏ2=2¼ 16:857629206 amu Å

2
cm�1 [25].

Program RKR1 defines μ as Watson's charge-modified
reduced mass [26]

μ¼ μW � MAMB

MAþMB�Qme
; ð4Þ

in whichMA and MB are the normal atomic isotope masses,
me is the electron mass, and Q � CHARGE is the integer net
charge on the molecule. The numerical values of Cu andme

used in the program are based upon the current recom-
mended physical constants [25], while the most recent
values for the masses of all stable atomic isotopes [27] are
included in a program data subroutine. Rearrangement of
Eqs. (2) and (3) gives the final expressions:

r1ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2þ f =g

q
� f ; ð5Þ

r2ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2þ f =g

q
þ f : ð6Þ

It is important to remember that although the semi-
classical quantization condition maps integer values of v
onto the quantized vibrational energy levels, v may be
treated as a continuous variable within the semiclassical
approach. This is illustrated by the fact that within the
first-order RKR method the lower bound of integration,
defined by the potential minimum, is associated with
vmin ¼ �1

2, while in higher-order semiclassical treatments
it is a real number that is close to, but not identical to �1

2.
More generally, it means that turning points may be cal-
culated for either integer or non-integer values of v. This is
an important point, since turning points calculated only
for integer values of v would provide a relatively sparse
grid for defining the potential, thereby making it difficult
to rely on for precise numerical calculations. For this rea-
son program RKR1 allows the user to specify multiple
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vibrational intervals within which turning points may be
calculated using different mesh sizes.

Finally, it is also important to remember that the normal
RKR inversion procedure is only exact within the first-order
semiclassical or WKB approximation. This approximation is
sufficiently accurate that for ‘heavy’ (large-reduced-mass)
molecules, quantum mechanical level spacings and Bv values
calculated (numerically) from the resulting potentials nor-
mally agree fairly well with the experimentally determined
input Gv and Bv functions (i.e., with discrepancies close to the
experimental uncertainties). However, both for hydrides and
for heavier species (e.g., CO [13]) significant discrepancies are
often found between such results and the ‘exact’ experi-
mental values of those quantities defined by those input
functions. More accurate RKR-type methods based on
higher-order semiclassical quantization conditions have
been reported [22,28,29], but none has (yet!) been imple-
mented in a robust, documented, and publicly available code.

One approximate way of attempting to go beyond the
first-order semiclassical method has been implemented as
an option in RKR1. First introduced in 1970 by Kaiser [30],
this procedure is based upon the fact that within the third-
order semiclassical quantization condition [5,22,29,31],
the value of v associated with the potential minimum may
be written approximately as

vmin ¼ �1
2
�Y0;0

Y1;0
; ð7Þ

in which Y0;0 is given by [8,32]

Y0;0 ¼
Y0;1þY2;0

4
� Y1;1 Y1;0

12Y0;1

� �
þ 1
Y0;1

Y1;1 Y1;0

12Y0;1

� �2

; ð8Þ

and the Yl;m constants for fl;mgaf0;0g are defined by
appropriate derivatives of the vibration–rotation energy
with respect to v and ½JðJþ1Þ� (see Eq. (1)), evaluated at
v¼ �1

2 and J ¼ 0. This “Kaiser correction” has often been
used when calculating RKR potentials, especially for small-
reduced-mass species, such as hydrides, for which values
of Y0;0 tend to be relatively large.

Use of the Kaiser correction would superficially appear
to be ‘obviously’ better than a basic first-order treatment,
in that it takes at least some account of higher-order
semiclassical effects. However, detailed numerical studies
[33] indicate that its use sometimes/often yields a poten-
tial curve whose quantum-calculated vibrational level
spacings and Bv values are in worse agreement with the
input Gv and Bv functions than are those obtained from a
‘basic’ first-order calculation. The reason for this is that the
Kaiser correction effectively assumes that contributions to
the quantization condition from the higher-order phase
integrals are independent of v, which is not true in general
[34]. Thus, a user of RKR1 who chooses to invoke the
Kaiser correction to try to obtain highly accurate results
would be advised to perform quantum calculations on the
resulting potential [35,36] to check whether or not its use
actually improves the level of agreement with the Gv and
Bv functions employed to generate the potential.

In any case, independently of whether or not the Kaiser
correction is used, the zero of energy for turning points
generated by RKR1 is the energy associated with the value
of vmin � v00 shown in the program output (see Appendix
C of the Supplementary Material).

2.2. Representations for Gv and for Bv

RKR1 offers a user three possible ways of representing
the v-dependence of the vibrational energies Gv and the
inertial rotational constants Bv, with the choice of repre-
sentation for the particular case being specified by para-
meters in the input data file.

2.2.1. Dunham expansions
The first type of representation for Gv and Bv is the

conventional power series in vþ1
2

� �
associated with Dun-

ham: [8,32],

Gv ¼
X
l ¼ 1

Yl;0 vþ1
2

� �l

¼ωe vþ1
2

� �
�ωexe vþ1

2

� �2

þωeye vþ1
2

� �3

þ⋯ ð9Þ

Bv ¼
X
l ¼ 0

Yl;1 vþ1
2

� �l

¼ Be�αe vþ1
2

� �
þγe vþ1

2

� �2

þ⋯

ð10Þ

2.2.2. Near-dissociation expansions (NDE's)
The second type of functional representation allowed

by RKR1 is pure “near-dissociation expansions” (NDE's),
functions that incorporate the theoretically-known [37–
39] limiting near-dissociation behavior of Gv or Bv within
expressions that include empirical parameters to be
determined from the experimental data [40–45]. Just as
the conventional Dunham expressions are expansions
about the limiting case of harmonic-oscillator/rigid-rotor
behavior at the potential minimum, NDE's are expansions
about the theoretically-known limiting functional beha-
vior near dissociation, and hence they are much more
effective for extrapolating to large values of v, i.e., to values
of v lying beyond the range of observed data [41,42,44]
and/or for compactly representing data sets spanning a
large fraction of the potential well [40,43,45–47]. The rest
of this subsection describes the NDE expressions and their
parameterization in program RKR1: users who are not
familiar with this approach may wish to review some of
the associated theory and review papers [29,37–
39,42,48,49], and illustrative applications of this approach
[41,43,45–47,50–52].

The theory underlying NDE expressions for vibrational
energies, rotational constants and other properties of vibra-
tional levels lying near dissociation is based on the fact that
these properties depend mainly on the shape of the potential
energy function near the outer turning points [37]. As a result,
their v-dependence is mainly determined by the limiting
asymptotic behavior of the intermolecular potential, which
has the simple attractive inverse-power form

V rð Þ ¼D�Cn

rn
; ð11Þ

inwhichD is the energy at the dissociation limit, the (known)
power n is determined by the nature of the electronic states
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of the atoms formed when the given molecular state dis-
sociates [37,39], and reliable values of the limiting long-range
coefficient Cn are often known from theory.

The NDE expressions for Gv and Bv are usually written
as [43,45]

Gv ¼D�K1
0 ðvÞ � F 0ðvD�vÞ; ð12Þ

Bv ¼ K1
1 ðvÞ � F 1ðvD�vÞ; ð13Þ

in which vD is the (non-integer) effective vibrational index
at dissociation and the FmðvD�vÞ are empirically deter-
mined expressions that are required to approach unity in
the limit v-vD. The theoretical limiting near-dissociation
behavior of ½D�Gv� and Bv incorporated into these func-
tions is given by

K1
m ðvÞ ¼ Xmðn;Cn;μÞ vD�vð Þ½2n=ðn�2Þ��2m; ð14Þ

in which Xmðn;Cn;μÞ ¼ XmðnÞ=½ðμÞnðCnÞ2�1=ðn�2Þ and XmðnÞ is
a known numerical factor depending only on the physical
constants and the value of the integer n [29,37,38].

The empirically-determined functions FmðvD�vÞ used
by RKR1 have one of the forms

Fm vD�vð Þ ¼ 1þPL
i ¼ t p

m
i vD�vð Þi

1þPM
j ¼ t q

m
j vD�vð Þj

 !S
ð15Þ

or

FmðvD�vÞ ¼ exp
XL
i ¼ t

pmi ðvD�vÞi
( )

: ð16Þ

In the rational polynomial expression of Eq. (15) the
exponent power S is either S ¼ 1, yielding what is called
an “outer” expansion, or S ¼ 2n=ðn�2Þ, yielding an “inner”
expansion, and the most appropriate choice for the power
t of the leading expansion term is often known from the-
ory [49,53].

While they are somewhat more complicated to use,
NDE expressions have two particular advantages over
Dunham expansions.

� Because they explicitly incorporate the theoretically-
known limiting near-dissociation behavior of vibrational
energies and other properties, they are much more reliable
for the extrapolated prediction of the dissociation energy
and of the number, energies and properties of unobserved
high vibrational levels. This means that NDE expressions
allow the calculation of realistic and reasonably reliable
turning points in the region between the highest observed
vibrational level and the dissociation limit. In contrast, as
with all polynomial functions, Dunham expansions are
notoriously unreliable for performing extrapolations, and
even the turning points for the highest observed levels
may not be reliable [54].

� For systems in which the experimental data span a large
fraction of the potential well, NDE's tend to be more
compact than Dunham expansions that yield fits of
equivalent quality, as the dense manifold of levels near
dissociation is represented accurately by a very small
number of empirical NDE expansion parameters.
2.2.3. “MXR” mixed near-dissociation/Dunham expansions
In spite of their numerous advantages, applications of

NDE representations to states with very large numbers of
vibrational levels tend to encounter difficulties. Tell-
inghuisen has shown that these problems could be
resolved by using mixed representations consisting of
Dunham-type power series for levels spanning the lower
part of the potential energy well and NDE expansions for
levels lying near dissociation [46,55,56]. In particular, his
“MXR” mixed representation functions use

� a normal Dunham polynomials in vþ1
2

� �
for v≲vs, and

� a near-dissociation expansion for v≳vs,

and merges them at a chosen switch-over point v¼ vs
using the switching function

Fs vð Þ ¼ 1þexp
v�vs
δvs

� �� ��1

ð17Þ

to yield the MXR expressions

GMXR
v ¼ FsðvÞGDun

v þ½1�FsðvÞ� GNDE
v ; ð18Þ

and

BMXR
v ¼ FsðvÞGDun

v þ½1�FsðvÞ� BNDE
v : ð19Þ

Thus, to specify an MXR expansion it is necessary to input
values for the Dunham coefficients (fYl;mg), values of the
physical (D, vD and Xm) and empirical (fpmi g and fqmj g)
parameters defining the NDE function, and values of the
parameters vs and δvs defining the switching function.
Because of the sensitivity of the function to the values of
vD, vs and δvs, they should all be input precisely using
floating point “d” format (e.g., vs¼27.50d0).

Note that the type of representation that RKR1 uses for
Bv need not be the same at that used for Gv; however, the
former cannot be more sophisticated than the latter. In
particular: if Gv is represented by a Dunham expansion,
then so must Bv; if Gv is represented by an NDE function,
then Bv may be represented either by a Dunham or an NDE
function; if Gv is represented by an MXR function, then Bv
may be represented by any of the three types of function.

2.3. Evaluating the f and g integrals

As mentioned above, early applications of the Klein
inversion integrals Eqs. (2) and (3) had difficulty dealing
with the (integrable) integrand singularity at the upper
end of the range of integration. Tellinghuisen pointed out
[16,17] that this problem is completely removed by use of
the Gauss–Mehler quadrature formula [57,58] as its points
and weights implicitly take account of such behavior. In
particular, the f integral of Eq. (2) is readily rearranged into
the form:

f ¼
ffiffiffiffiffiffi
Cu

μ

s Z v

vmin

½v�v0�1=2
½Gv�Gv0 �1=2

dv0

½v�v0�1=2 ð20Þ

¼
ffiffiffiffiffiffi
Cu

μ

s Z v

vmin

p v0ð Þ dv0

½v�v0�1=2;
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in which the function pðv0Þ ¼ ½ðv�v0Þ=ðGv�Gv0 Þ�1=2 is well
behaved (smooth, with no singularities) on the entire
interval; this is precisely the form required by the Gauss–
Mehler quadrature formula [58].

Tellinghuisen showed that for vibrational levels
extending 80% of the way to dissociation, use of the
Gauss–Mehler formula with only four quadrature points
typically yields f and g integrals with an accuracy of better
than 1 part in 107 [16,17]. However, he also showed that
the error grows rapidly for the higher vibrational levels,
and it is important to ensure that these errors do not
become unacceptably large. Moreover, many applications
require (or at least desire) potentials that are smooth vir-
tually to machine precision. Thus, there is a need for an
enhanced procedure that can yield both higher accuracy
and some indication of the precision of the resulting
turning points.

The most obvious way of increasing the accuracy of any
integration procedure is simply to increase the number of
quadrature points used. However, for a Gaussian quadrature
procedure, whose points and weights are not readily gener-
ated analytically, it can be very inconvenient to attempt to
invoke ever-higher-order quadrature formulae for testing and
improving the accuracy of a desired result. Following an
approach introduced by Tellinghuisen [16,17] the present
program uses a fixed number of quadrature points in the
numerical integration procedure(s), but with the overall
integration interval being repeatedly subdivided into smaller
intervals until the total integral converges. In particular, since
the singularities in the integrands in Eqs. (2) and (3) lie at the
upper end of the range, dividing the interval in half will yield
two types of sub-intervals: in the first sub-interval,
½vmin; ðvminþvÞ=2�, the integrand is everywhere well behaved,
so the ordinary Gauss–Legendre quadrature formula will
suffice (See Section 25.4.30 of Ref. [57]); in the second sub-
interval, ½ðvminþvÞ=2; v�, the integrand has the same singular
behavior found when the whole interval is treated as a single
unit, and the Gauss–Mehler procedure is again appropriate. If
one repeatedly bisects all sub-intervals, then following the
mth stage of subdivision, the first ð2m�1Þ sub-intervals may
be treated using the ordinary Gauss–Legendre procedure,
while only the last sub-interval requires use of Gauss–Mehler
points and weights. Consideration of the error term asso-
ciated with the ordinary Gauss–Legendre quadrature scheme
indicates that if an N–point quadrature is being performed on
each subinterval, the overall error decreases by a factor of
1=22n with each stage of subdivision. For N¼ 16, this corre-
sponds to an increase in accuracy by more than four orders of
magnitude at each bisection, while only one set of points and
weights (of each type) needs to be introduced and stored.
Thus, both rapid convergence and programming simplicity
are achieved.

In the present version of program RKR1, N has been set
at 16, and the necessary Gauss–Legendre and Gauss–
Mehler quadrature points and weights are prepared (in
subroutine WGHT) on first entering the program. At each
energy Gv for which turning points are desired, the pro-
gram begins by using a single N¼ 16 point Gauss–Mehler
quadrature to evaluate the integrals of Eqs. (2) and (3). The
interval is then divided in half, the appropriate quadrature
schemes applied in the two parts, and the results summed.
The fractional changes in the two integrals tst(f) and tst

(g) are then calculated and compared with an internally
specified convergence criterion, TOLER. This iterative
subdivision is then repeated until the convergence criter-
ion is satisfied. When it is, the turning points are calcu-
lated from Eqs. (5) and (6) and printed out, together with
the final values of tst(f) and tst(g) and the total number
of sub-intervals used in the final iteration cycle,
NDIV¼ 2m. Thus, turning points generated by the present
program are accompanied by estimated upper bounds to
their numerical errors.

In a procedure such as this, the convergence criterion
TOLER would normally be set at a small number, such as
1� 10�10. For many computers, however, optimum con-
vergence is achieved by simply requiring the iteration cycle to
continue until the accumulative effect of numerical trunca-
tions causes the magnitude of tst(f) or tst(g) to increase
from its value for the preceding cycle. Both of these con-
vergence tests are used in RKR1. The first test is based on a
relative convergence test of TOLER¼ 10�10, which is set in
line 60 of the code (and may be modified by the user). If this
criterion is made too demanding for ordinary double-
precision arithmetic (say, TOLER¼ 10�16), the relative trun-
cation error criterion takes over.

The approach described above is implemented in RKR1,
and it provides a reliable and stable integration procedure
for essentially all cases. The only situations in which
complete numerical convergence is not achieved are those
in which a substantial loss of significant digits occurs in
the calculation of ½Gv�Gv0 � or Bv, either because the level
whose turning points are being calculated lies very close to
the dissociation limit or to the potential minimum, or
because of a loss of significant digits when adding large
terms of opposite sign. Examples of such behavior are
found in the illustrative cases presented in the Supple-
mentary Materials associated with this paper. These
anomalies could be removed by the use of quadruple
precision (REAL*16) arithmetic in the program. However,
the loss of accuracy due to these problems is not sig-
nificant relative to the error in the first-order RKR method
itself, and a REAL*16 implementation of the code would
inhibit its use by some researchers, so printout of occa-
sional warning messages due to this problem is deemed to
be a tolerable irritation.

2.4. Smoothing over an irregular inner potential wall

Inadequacies in the experimentally-derived functions
characterizing Gv and Bv will, of course, give rise to errors
in calculated RKR turning points. Since the repulsive inner
wall of the potential is very steep, especially at high
vibrational energies, these errors sometimes manifest
themselves as non-physical behavior in this region. For
example, rather than have a negative slope and positive
curvature that increases slowly with energy, this inner
wall may pass through an inflection point and take on
negative curvature, or the inner turning points obtained
from Eq. (5) may even turn outward with increasing
energy, with the algebraic sign of the slope becoming
positive. Occasional papers in the literature have accepted
behavior such as inflection and negative curvature or
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“wiggling” of the inner wall as being real, and attempted
to explain it in terms of potential curve crossings or related
effects. However, it normally merely reflects inadequacies
of the molecular constants used in the calculation [59–62].

Except for the zero-point level of the ground state,
whose properties may sometimes be determined by
microwave spectroscopy, experimental data often define
the Gv function with greater relative accuracy than the Bv
function. For this reason, irregular behavior of the inner
wall of an RKR potential may normally be attributed to
inadequacies in the latter [59,61]. (Indeed, minimization of
such irregularities has been proposed as a means of
improving otherwise poorly-known rotational constants
[59].) However, whatever the source of the problem, a
modest degree of inappropriate behavior of either the Gv

or Bv function will give rise to non-physical behavior of the
steep inner wall of the potential, since the expected
monotonic increase in slope with energy makes even very
small errors in the f and/or g integrals manifestly evident
there. At the same time, while small relative errors in the f
or g integral would make the curvature or slope of the
inner wall at high energy change in an unacceptable non-
physical manner, the rapid growth of the f integral with
increasing Gv means that the width of the potential
½r2ðvÞ�r1ðvÞ� as a function of energy may still be relatively
well defined by Eq. (2), even when the directly-calculated
inner potential wall is unreliable. Thus, combining this
directly-calculated well-width function with a reasonable
extrapolated inner potential wall (a procedure first intro-
duced by Verma [63]) should yield a ‘best’ estimate of the
upper portion of the potential obtainable from the avail-
able Gv and Bv functions. Program RKR1 incorporates the
following automatic procedure for doing this.

As a first step, it is necessary to determine whether or
not the directly-calculated inner potential wall displays
irregular behavior, and if it does, to locate its onset. RKR1
accomplishes this in the following way. The turning-point
calculation normally starts near the potential minimum
and proceeds monotonically to successively higher ener-
gies. On completion of the calculation for each value of v,
the program fits the inner turning point for that case and
those for the two closest smaller v values to the function

V inner rð Þ ¼ AþBe�Cr ; ð21Þ
and the value of the resulting exponent parameter
C � CðexpÞ is printed with the turning points in the main
output file. If the inner wall is well-behaved, the resulting
values of C(exp) will be positive and will increase slowly
from one level to the next. However, if the directly-
calculated repulsive inner wall passes through a point of
inflection, then C(exp) will change sign, while if that
directly-calculated wall begins to double over outward, C
(exp) will grow rapidly, become quite large (and negative)
and approach a singularity just before the slope becomes
positive. Thus, the behavior of C(exp) is the required
indicator of the onset of non-physical behavior (see illus-
trative output files in the Supplementary Material).

To correct for such irregular behavior by imposing a
smooth inner wall on the potential in the affected region,
the user must first perform an RKR calculation while set-
ting input parameter VEXT r0 (see READ statement #16
in Appendix B). Examination of the behavior of the C(exp)
values listed in the program output then allows one to
determine whether there exists some energy above which
the directly-calculated inner potential wall can no longer
be trusted. If so, the program should be re-run with the
value of VEXT set equal to the vibrational index associated
with that energy. When this is done, inner turning points
for levels vZVEXT will be calculated from Eq. (21) using
the values of the constants A, B and C associated with the
three largest v values for which vrVEXT, and the corre-
sponding outer turning points obtained by adding 2f to
the associate inner turning point. When this is done, the
program also prints the values of the displacements d

(RMIN) from the directly-calculated turning points
RMIN¼ r1ðvÞ that yield the desired smoothing of the inner
wall. Examples of this type of correction are found in the
sample illustrative output files in the Supplementary
Material.

2.5. Determining a potential in the absence of rotational
constants

If no experimental Bv values are available for the sys-
tem of interest, the g integrals of Eq. (3) may not be
evaluated. However, directly calculated values of the f
integral of Eq. (2) may still be combined with some
assumed inner potential wall and used to generate a rea-
listic overall potential. Following an approach recom-
mended by Tellinghuisen for this type of situation [18],
program RKR1 can automatically generate the inner
potential wall from a Morse function

VMorseðrÞ ¼De½e�βðr� reÞ �1�2 ð22Þ
and generate the corresponding outer turning points by
adding values of 2f calculated from Eq. (2) to the Morse-
function inner turning point at each specified energy.

This option is invoked in RKR1 by setting input para-
meter NDEBv¼ �1 and reading in a value for the Morse
potential equilibrium distance re ðÅÞ. The program then
uses the first two derivatives of the vibrational energy at
the potential minimum (Y1;0 ¼ωe and Y2;0 ¼ �ωexe) to
determine the apparent well depth De and exponent
parameters β that define the Morse function that will then
be employed to generate the required inner turning point
values at the specified energies.
3. Technical details: units, array dimensions and input/
output

All input or output quantities associated with program
RKR1 are either dimensionless or have units with energy
in cm�1 and lengths in Å. As was mentioned earlier, the
electron and atomic masses and the physical constants
used to define the constant Cu appearing in Eqs. (2) and
(3) were taken from the most recent compilations [27,25].
For all stable isotopes of all atoms, the masses are found in
the data subroutine MASSES, so all a user need to specify in
the input is the atomic number and mass number of each
atom of the molecular isotopolog considered in the
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analysis although, if desired, other non-standard masses
can be read in.

In the current version of the program, the array
dimensioning allows for the calculation of pairs of turning
points for up to 500 vibrational levels, and for Dunham or
NDE polynomial expansions of order up to 25. However, a
user may readily change this by making appropriate
modifications to the array dimensioning PARAMETER

statements in lines 19 and 600 of the source code.
Program RKR1 reads the input data file in ‘free format’

on Channel-5 (e.g., READ(5,*), etc.). The structure of the
requisite data file and precise definitions of the various
program options are presented in Appendices A and B of
the Supplementary Material. The program writes standard
output to Channel-6, and a supplementary output file to
Channel-7. The standard output written to Channel-6
presents a complete description of the input data and
lists the calculated turning points and upper bounds to the
precision of the calculated f and g integrals.

While the main Channel-6 output file contains both the
numerical results and a detailed description of the input
data file, the turning points are listed there in pairs as a
function of v, a format that is not convenient for use as
input to most other programs. The Channel-7 output file
therefore provides a compact listing of those turning
points, supplemented by the value of re defined by the
value of Bv at v¼ vmin, arranged in order of increasing
distance. In addition, to facilitate use of the resulting
potential array for making plots or for numerical calcula-
tions, the inner wall is extrapolated by including in the
Channel-7 output array five additional points generated
from the version of from Eq. (21) associated with the
highest vibrational levels for which turning points have
been generated.

The source code was written in the FORTRAN language,
and has been tested using the SUN FORTRAN-77 and FORTRAN-
90 compilers, as well as the public domain GFORTRAN

compilers.
If one is executing RKR1 in a UNIX or Linux operating

system environment, it may be convenient to do so using a
shell (named, say, rrkr) such as that shown below, which
may be stored in the system or user ‘bin’ directory
in which userpath is a path specifying the location of
the executable file rkr.x on the user's computer. This
shell allows the program to be executed using the input
file ‘molec.5’ with the simple command:

in which molec.5 is the data file containing the instruc-
tions regarding the type of fit to be performed, and molec

is a filename that may be chosen arbitrarily by the user. In
this case the standard output to Channel-6 will be written
to file molec.6 and the Channel-7 output to file molec.7

in the same directory as the molec.5 Channel-5 input
data file.
4. Concluding remarks

As a final point, one may well ask: what is the utility of
the first-order semiclassical RKR method in an era in
which it is increasingly common to use fully quantum
mechanical “Direct Potential Fit” (DPF) methods (see Ref.
[64] and references therein) to reduced large experimental
data sets to sophisticated, fully-analytic potential energy
functions? There are two answers to this question. First of
all, for many applications, workers may not consider it
worth the extra effort to determine a closed-form poten-
tial, and much of the time, the RKR-based quantum
properties (e.g., band constants and Franck–Condon fac-
tors) will be adequate. However, Dunham description of
the spectroscopic constants often will not suffice, so the
NDE and MXR options are important.

A second answer to this question lies the very sophis-
tication of the potential function forms used in such DPF
analyses. Their analytic complexity makes it difficult to
generate the sets of realistic initial-trial-parameter values
that are required to initiate those non-linear least-squares
fits. As a result, the most common approach is to start with
a classical analysis involving fits of assigned data to some
variant of Eq. (1), with Gv represented by one of Eqs. (9),
(12), or (18), and Bv represented by one of (10), (13), or (19)
(see, e.g., Ref. [65]). This is then followed by an RKR cal-
culation using a code such as the one described herein. Fits
to the resulting potential function points using a specia-
lized code, such as program dParFit, which is described in
another paper in this issue [66], then yield the set of trial
parameter values required to initiate the DPF analysis.
Thus, a classical analysis culminating in the performance
of an RKR calculation is also a crucial part of a modern DPF
analysis.
5. Supplementary materials

The Supplementary materials associated with this
paper consist of: (i) a plain text ASCII file containing the
full FORTRAN source code for program RKR1, (ii) a plain text
ASCII file containing copies of the sample data files
described in Appendix C, (iii) a PDF document containing:
Appendix A. “Input Data File Structure”, Appendix B.
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“Definitions and Descriptions of the Input File Data”,
Appendix C. “Illustrative Data and Output Files, and Com-
mentary”, and Appendix D. “Derivation of the RKR Equa-
tions”. Anyone who wishes to be Registered with the
author as a user of this code, eligible to be sent any future
bug fixes or updates, should fill in the online form at the
www address “http://scienide2.uwaterloo.ca/�rleroy/
RKR16”.
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