1/f%-charge-noise-robust voltage control of semiconductor

quantum dot spin qubits using fractional calculus
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Long, low-amplitude, and broad exchange pulses, shaped
according to the beta distribution function B(1-a/2,1-a/2), realize
the SWAPX gates least sensitive to stationary 1/f charge noise
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= strong exchange interaction may not be necessary for the
optimal performance of spin qubit processors

= this could ease fabrication requirements

\\
§' "bohdan.khromets@uwaterloo.ca ‘baugh@uwaterloo.ca
-

Methods Optimal shape: derivation for 0 < a <1

For short SWAPK pulses compared to the timescale of

Semiconductor quantum dot spin qubits: _ Generalization of integration/ the experiment 0 = 27 f,5, T ~ T'/T, < 1:
. . Fractional calculus . - . »
v Precise voltage control of localized differentiation to fractional orders 012 — «)
. . R(71, 1) o — -1, 7n2€l0,1]
few-electron spin-orbital states 7 — " !
X Performance significantly hindered by low- Mrc:.:lvatl.on: 1 /f ds;ectrall behavtl.or |sB|ntterm;d£ate b?tweez1 P
. — a—1 T JoASH(T1,S T2,5)dS %
frequency 1/f® charge noise with 0 < a < 2 white noise w(t) and Brownian motion B(t):  B(t) = [, w(s)ds From [2], | — 7" = = Frame N T smMKK
Image: zach D. Merino Riemann-Liouville fractional integrals: K(t,s) = F(Taa//z) (1 —8)2 L 702 [y 4(s), K =72 o270/
Goal (I7p) (z) = ﬁfax(:v —5)" " lp(s)ds, (Ibﬁw) (x) = ﬁ ff(s —x)7 p(s) ds A
_ This yields a quadratic Lagrangian for M = K*S:
Develop a new method based on of fractional calculus [1] Riemann-Liouville fractional derivatives are inverse operators: o
: " - . o SIS | 1
to design quantum gates least sensitive to 1/ f“ noise Dby = (d/d@[ﬁ]ﬂall_{g}% ngp (— d/d:z;) Bl+1pi- {6}@ A[M| o< | (M, M) o] MK, M)
ight-si - i . OA =0 vyields:  Myu(7) oc 702 (D2 (779%) oc 770/
Left- and right-sided operators are conjugate w.r.t. inner product: y : opt\T) & T770

B\ — (15 B\* _ b
(0, oI0) = (L', ¥), (W17) =1, Optimal exchange pulse shape follows from

S = r=2/2D™?ra/2)1  and the normalization (1, S) = 1:

Control problem

System 2 silicon quantum dot spin qubits with exchange Variational Lagrangian: average infidelity + normalization
interaction:  H(t) = @‘fl 0 nllalingfr£=Yi(elaM constraint on exchange pulse shape

Optimal exchange pulse shape
¢ charge noise is the dominant decoherence mechanism

t
- - - Sopt(r) = T () = (e — 0
Control Nonlinear control of exchange with voltage (tunneling Operator form of autocorrelation determines the existence and o) T TR(1—4,1-9) Opt\’t/) =
electrode / bias): J(V) = J(Vj) explsc(V — V})] functional form of the minimizer!
= Exponential amplification of noise ¥(t) in voltage Results
controls & environment: J(V +v) = J(V) exp(s0)
| Average infidelity decreases Noises with smaller «
Quantum 2-qubit SWAP*:  J(t) = nkhS(t)/T Stationary noise (Z)(T)  with pulse length [Fig. (b)] (Z) (@)  values [Fig. (c)] give:
. . _ for all noise colors a € (0, 2) v lower infidelit
t for some normalized shape function S(%): : . y
gale Optimal voltage pulse shape [Fig. (a)] , _ . . .
| _ ¢ Decrease is fastest in weakly-correlated v/ biggest advantage of using optimal
= [ S(r)dr =1, T=1t/T is long, low-amplitude & broad: | | , | e
noise environments (with small « values):  shape: ~4x drop in infidelity vs. a
Vopt(t) = C(Vo, ) — 52 In [% (1 - %)] -5.2 dB/dec for a = 0.5 Gaussian voltage pulse at o =10.2
Performance  unitary infidelity: -# =1 — |t UTVIU[V + 7]
metric o . (b) (F)(T) (c) (F) ()
Average infidelity of a SWAPX operation: SWAP gate (k=1) infidelity 0.010; 0.010]
37r I'dey L dt 0.005 *
(F kQ 2f 1 f “S(t1)S(t2) R(t1, 1), (a) | *
| b > 0.001
. . . . o~ >l ] = 0.001, = |
is determined by noise autocorrelation: R(t,ts) = (v(t1)v(t2)) N - = S o 104 g
= | 7T 3 = : s
o> 0.05 v 5 é, 10
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1/f? noise models \ gt ol |
0 2 4 6 8 10 10° 10 107 10°  10° 10°¢)
: Ensemble of two-level fluctuators Time [ns] Pulse length [s] | | |
Stathnary TLFs): distributed ch " ’7% Voltage pulse V(t) shape .
(TLFs): distributed charge traps < | S Parabolic Censsian Device-specific parameters [3]: V= 0.04 V, J(Vj) = 0.01 peV, 3 =80 V!
Power-law distribution of fluctuator energies per switching rate Nonstationary
gives spectrum o 1/f“ in the bulk, with autocorrelation fBm ¢ Optimal pulse: as short & localized as possible ¢ Slow growth of infidelity with pulse length: (%) oc T~ !
R(t, t2) o< funn Ea(27 fuinlty — ta]) = fad Ba(27 fuaxlt — t2])
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