1/f^a-charge-noise-robust voltage control of semiconductor quantum dot spin qubits using fractional calculus

Bohdan Khromets[†] and Jonathan Baugh^{*}, Institute for Quantum Computing, University of Waterloo, ON, Canada

Long, low-amplitude, and **broad** exchange pulses, shaped according to the beta distribution function $B(1-\alpha/2, 1-\alpha/2)$, realize the SWAP^k gates least sensitive to stationary 1/f^a charge noise

strong exchange interaction may not be necessary for the optimal performance of spin qubit processors

[†]bohdan.khromets@uwaterloo.ca

baugh@uwaterloo.ca

Motivation

Semiconductor quantum dot spin qubits:

Precise voltage control of localized
 few-electron spin-orbital states

X Performance significantly hindered by low-frequency $1/f^{\alpha}$ charge noise with $0 < \alpha < 2$

Image: Zach D. Merino

Goal

Develop a new method based on of fractional calculus [1] to design quantum gates least sensitive to $1/f^{\alpha}$ noise

Control problem

2 silicon quantum dot spin qubits with exchange interaction: $H(t) = \frac{J(t)}{4}\vec{\sigma_1} \cdot \vec{\sigma_2}$

charge noise is the dominant decoherence mechanism

Control Nonlinear control of exchange with voltage (tunneling

Methods

Fractional calculus

Generalization of integration/ differentiation to fractional orders

Motivation: $1/f^{\alpha}$ spectral behavior is intermediate between white noise w(t) and Brownian motion B(t): $B(t) = \int_0^t w(s) \, ds$

Riemann-Liouville fractional integrals:

 $\left({}_{a}I^{\beta}\varphi\right)(x) = \frac{1}{\Gamma(\beta)} \int_{a}^{x} (x-s)^{\beta-1}\varphi(s) \,\mathrm{d}s \,, \quad \left(I_{b}^{\beta}\varphi\right)(x) = \frac{1}{\Gamma(\beta)} \int_{x}^{b} (s-x)^{\beta-1}\varphi(s) \,\mathrm{d}s \,.$

Riemann-Liouville fractional derivatives are inverse operators: ${}_{a}D^{\beta}\varphi = (d/dx)^{[\beta]+1}{}_{a}I^{1-\{\beta\}}\varphi, \quad D^{\beta}_{b}\varphi = (-d/dx)^{[\beta]+1}I^{1-\{\beta\}}_{b}\varphi$

Left- and right-sided operators are conjugate w.r.t. inner product: $\left(\varphi, \ _{a}I^{\beta}\psi\right) = \left(I_{b}^{\beta}\varphi, \ \psi\right), \qquad \left(_{a}I^{\beta}\right)^{*} = I_{b}^{\beta}$

Variational
minimizationLagrangian: average infidelity + normalizationconstraint on exchange pulse shape

 $\Lambda[S] = (S, \hat{R}S) - \lambda(1, S) \to \min_{S(t)}$

Operator form of autocorrelation determines the existence and

Optimal shape: derivation for $0 < \alpha < 1$

For short SWAP^k pulses compared to the timescale of the experiment $\theta = 2\pi f_{\min}T \sim T/T_{\exp} \ll 1$:

$$R(\tau_1, \tau_2) \propto \frac{\theta^{\alpha - 1} \Gamma(2 - \alpha)}{|\tau_1 - \tau_2|^{1 - \alpha}} - 1, \quad \tau_{1,2} \in [0, 1]$$

From [2], $|\tau_1 - \tau_2|^{\alpha - 1} = \frac{\pi \int_0^1 \mathrm{d}s K(\tau_1, s) K(\tau_2, s) \mathrm{d}s}{\Gamma(1 - \alpha) \sin \frac{\pi \alpha}{2}} \iff \frac{\pi}{\Gamma(1 - \alpha) \sin \frac{\pi \alpha}{2}} \hat{K} \hat{K}^*$ $K(\tau, s) = \frac{\tau^{\alpha/2}}{\Gamma(\alpha/2)} (\tau - s)^{\alpha/2 - 1} s^{-\alpha/2} \mathbb{I}_{[0, \tau]}(s), \qquad \hat{K} = \tau^{\alpha/2} \,_0 I^{\alpha/2} \tau^{-\alpha/2}$

This yields a quadratic Lagrangian for $M = \hat{K}^* S$: $\Lambda[M] \propto \left[(M, M) - \frac{\theta^{1-\alpha} \sin \frac{\pi \alpha}{2}}{\pi(1-\alpha)} \right] - \lambda(\hat{K}^{-1}1, M)$ $\delta\Lambda = 0 \quad \text{yields:} \qquad M_{\text{opt}}(\tau) \propto \tau^{\alpha/2} \ _0 D^{\alpha/2} \left(\tau^{-\alpha/2}\right) \propto \tau^{-\alpha/2}$

Optimal exchange pulse shape follows from $S = \tau^{-\alpha/2} D_1^{\alpha/2} \tau^{\alpha/2} M$ and the normalization (1, S) = 1:

Optimal exchange pulse shape

Stationary ensemble of TLFs

Non-stationary FBM

electrode / bias): $J(V) \approx J(V_0) \exp[\varkappa (V - V_0)]$

⇒ Exponential amplification of noise $\tilde{v}(t)$ in voltage controls & environment: $J(V + \tilde{v}) = J(V) \exp(\varkappa \tilde{v})$

Quantum
gate2-qubit SWAP*: $J(t) = \pi k \hbar S(t)/T$
for some normalized shape function S(t):
 $\langle S(t) \rangle = \int_0^1 S(\tau) d\tau = 1,$ $\tau = t/T$ Performance
metricUnitary infidelity: $\mathscr{F} = 1 - \frac{1}{4} |\operatorname{tr} U^{\dagger}[V] U[V + \widetilde{v}]|$
Average infidelity of a SWAP* operation:

 $\langle \mathscr{F} \rangle \approx \frac{3\pi^2}{32} k^2 \varkappa^2 \int_0^T \frac{\mathrm{d}t_1}{T} \int_0^T \frac{\mathrm{d}t_2}{T} S(t_1) S(t_2) R(t_1, t_2),$

is determined by noise autocorrelation: $R(t_1, t_2) = \langle \widetilde{v}(t_1) \widetilde{v}(t_2) \rangle$

1/f^a noise models

Stationary Ensemble of two-level fluctuators (TLFs): distributed charge traps

Power-law distribution of fluctuator energies per switching rate γ gives spectrum $\propto 1/f^{\alpha}$ in the bulk, with autocorrelation

igstarrow Optimal pulse: as short & localized as possible igstarrow Slow growth of infidelity with pulse length: $\langle \mathscr{F}
angle \propto T^{lpha-1}$

 $R(t_1, t_2) \propto f_{\min}^{1-\alpha} E_{\alpha}(2\pi f_{\min}|t_1 - t_2|) - f_{\max}^{1-\alpha} E_{\alpha}(2\pi f_{\max}|t_1 - t_2|)$

Fractional Brownian motion (fBm): fractional charge transport due to disorder (high charge trap density)

 $R_{\text{FBM}}(\tau_1, \tau_2) \propto \tau_1^{\alpha - 1} + \tau_2^{\alpha - 1} - |\tau_1 - \tau_2|^{\alpha - 1} \quad (1 < \alpha < 2)$

Nonstationary

fBm

Discussion: experimental implications

 \rightarrow With the presence of spin decoherence, we expect a sweet spot in pulse length T

 \rightarrow Our strategy is anticipated to become **increasingly more useful** as T₂ values rise

 \rightarrow Strong exchange coupling regimes may not be necessary for high fidelity

 \rightarrow This might ease requirements on fabrication by simplifying device layouts

thanks to materials and fabrication improvements

Khromets, Bohdan, and Jonathan Baugh. "Quantum optimal control robust to 1/f ^α noises using fractional calculus: Voltage-controlled exchange in semiconductor spin qubits." Physical Review A 110.4 (2024): L040602. Acknowledgements

• Canada First Research Excellence

Fund (Transformative Quantum
Technologies)
♦ Natural Sciences and Engineering
Research Council (NSERC) of Canada

References

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, et al., *Fractional integrals and derivatives*, Vol. 1 (Gordon and Breach science publishers, Yverdon-les-Bains, Switzerland, 1993).

[2] W. E. Williams, *A class of integral equations*, Mathematical Proceedings of the Cambridge Philosophical Society, Mathematical Proceedings of the Cambridge Philosophical Society 59, 589 (1963).

[3] B. Buonacorsi, M. Korkusinski, B. Khromets, and J. Baugh, Optimizing lateral quantum dot geometries for reduced exchange noise, arXiv:2012.10512 (2020).