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Long, low-amplitude, and broad exchange pulses, shaped 
according to the beta distribution function B(1−ɑ/2,1−ɑ/2), realize 
the SWAPk gates least sensitive to stationary 1/f ɑ charge noise

 ➥ strong exchange interaction may not be necessary for the  
optimal performance of spin qubit processors

➥ this could ease fabrication requirements
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1/f ɑ noise models

Stationary Ensemble of two-level fluctuators 

(TLFs): distributed charge traps

✔ Precise voltage control of localized 

few-electron spin-orbital states

✘ Performance significantly hindered by low-

frequency         charge noise with 

Semiconductor quantum dot spin qubits:

Develop a new method based on of fractional calculus [1] 

to design quantum gates least sensitive to          noise 

2 silicon quantum dot spin qubits with exchange 

interaction: 

2-qubit SWAPk: 

for some normalized shape function        :

Nonlinear control of exchange with voltage (tunneling 

electrode / bias):

⇒ Exponential amplification of noise         in voltage 

    controls & environment: 

Unitary infidelity:

Average infidelity of a SWAPk operation:

is determined by noise autocorrelation:  

♦ charge noise is the dominant decoherence mechanism

Quantum
gate

Methods

Generalization of integration/

differentiation to fractional orders

Operator form of autocorrelation determines the existence and 

functional form of the minimizer! 

Riemann-Liouville fractional integrals: 

Left- and right-sided operators are conjugate w.r.t. inner product: 

Riemann-Liouville fractional derivatives are inverse operators: 

Motivation:             spectral behavior is intermediate between 

white noise         and Brownian motion        :  

Image: Zach D. Merino

Power-law distribution of fluctuator energies per switching rate    

gives spectrum              in the bulk, with autocorrelation

Fractional Brownian motion (fBm):

fractional charge transport due to disorder 

(high charge trap density)

Nonstationary

Fractional calculus
1

Variational 
minimization

Lagrangian: average infidelity + normalization 

constraint on exchange pulse shape

2

Optimal exchange pulse shape 

Stationary ensemble of TLFs

Results

Stationary noise

Non-stationary FBM

yields:

From [2],      

This yields a quadratic Lagrangian for        

Optimal exchange pulse shape follows from 

                                     and the normalization                :     

:

Optimal shape: derivation for

Device-specific parameters [3]: 
Voltage pulse V t shape

Optimal Square Parabolic Gaussian
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Nonstationary
 fBm ♦ Optimal pulse: as short & localized as possible      ♦ Slow growth of infidelity with pulse length:

Optimal voltage pulse shape [Fig. (a)] 

is long, low-amplitude & broad:

Average infidelity decreases 

with pulse length [Fig. (b)] 

for all noise colors

♦ Decrease is fastest in weakly-correlated 

noise environments (with small     values):  

 -5.2 dB/dec for

Noises with smaller      

values [Fig. (c)] give:

✔ lower infidelity

✔biggest advantage of using optimal 

shape:   ~4× drop in infidelity vs. a 

Gaussian voltage pulse at

SWAP gate (k=1) infidelity 

Discussion: experimental implications
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→ Strong exchange coupling regimes may not be necessary for high fidelity

→ This might ease requirements on fabrication by simplifying device layouts

→ With the presence of spin decoherence, we expect a sweet spot in pulse length T

→ Our strategy is anticipated to become increasingly more useful as T2 values rise
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For short SWAPk pulses compared to the timescale of 

the experiment                                             :


