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We present a comprehensive simulator of 
electron spin qubits in electrostatically-defined
quantum dots (QDs) to address challenges in 
designing quantum information processors.

Finite element solutions to Poisson's equation of 
realistic Silicon MOS are leveraged:
• Determine charge stability regions for various 

voltage configurations
• Engineer voltage pulses for spin qubit control
• Simulate gate operations on spin qubits in  

quantum circuits
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Hubbard parameters 
calculated from 
electrostatic potential
[1]:
• Chemical potential
• Tunnel coupling
• Coulomb repulsion: 

onsite & interdot
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Charge stability regions 
for a double QD 
device. Coulomb 
repulsion and tunnel 
coupling features:
• Inform optimal 

control: pulse 
engineering & 
experiment

Global Electron Spin 
Resonance (ESR) field 
with gate voltage 
control enables 
effective parameter 
control:
• ESR 1-qubit gates
• Voltage-only 2-qubit 

gates 

Spin Hamiltonian in 
rotating frame [2]:
• Stark shift: g-

factor deviation
• Exchange 

interaction: 
Heitler-London/ 
Hund-Mulliken
approximation

A novel, custom 
control method maps 
experimental control 
pulses from the 
expected effective 
parameter behavior:
• Incorporation of 

realistic device 
geometries

• Account for 
electrostatic cross-
talk between QDs

• Universal set of 
gates & quantum 
algorithms

VQE sets an upper bound on ground state energy 
for a molecular electronic system. Approximating 
the multi-electron wavefunction is crucial in 
capturing correlation features in a many-electron 
system. With proper choice of Ansatz and 
optimization routine, a multi-electron 
wavefunction can be computed efficiently and 
accurately [3].

H2 Molecular VQE Circuit

Simulation of electrical noise generated by an 
ensemble of Random Telegraph Noise (RTN) 
fluctuators for varied switching times 𝜏. A Coupled 
Cluster (CC) designed VQE is applied to a 4-qubit 
QD linear array, which optimizes parameter 𝜃 for a 
quantum circuit with gate 𝑅𝑥(𝜃) to estimate the 
ground state wavefunction.

The impact on process fidelity of variational 
algorithm: RTN with varying electrical amplitudes 
and switching times →mimic that of experiment-
tally observed values in real QD devices.
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