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A number of computational models have been developed over the last 2 decades that are remarkably
successful at explaining the process of translating print into sound. Nevertheless, 2 of the most successful
computational accounts on the table fail to simulate the results from factorial experiments reported in this
article in which university students read aloud letter strings that varied in terms of spelling–sound
regularity and lexicality (regular words vs. exception words vs. nonwords) and stimulus quality (bright
vs. dim). Skilled readers yielded additive effects of regularity and stimulus quality and additive effects
of lexicality and stimulus quality on both RT and errors when nonwords were mixed with words. When
only words appeared in the list, there was an interaction in which exception words were less affected by
low stimulus quality than regular words were; no existing account anticipates or explains these results.
We advance a hypothesis that assumes a novel module that accommodates these data and provide an
existence proof in the form of a simulation.
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Skilled readers know thousands of words, and they can read
many of them aloud quickly and accurately. However, there is a
class of words in English (and a number of other orthographies)
that cause difficulty for even skilled readers. These are words like
pint that are exceptions to the typical rules of pronunciation (_int is
typically pronounced as in mint/lint/hint). Reading aloud of such
exception words is slower and often less accurate when compared
with regular words like mint. Attempts to explain this effect (among
others) have given rise to a large number of computational accounts
of visual word recognition over the last two decades (e.g., Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001; Harm & Seidenberg,
1999; Perry, Ziegler, & Zorzi, 2007; Plaut, McClelland, Seiden-
berg, & Patterson, 1996; Seidenberg & McClelland, 1989). Argu-
ably, the two most successful accounts are Coltheart et al.’s (2001)
dual route cascaded (DRC) model and Perry et al.’s (2007) con-
nectionist dual process (CDP�) model.1 Both of these models
have a dual route architecture consisting of a lexical route and a
nonlexical route. Parallel feature analysis across the array activates
parallel letter level analysis that in turn activates both lexical and

nonlexical routines. The output of both of these routines converges
on the phonemic buffer, which is where the final pronunciation is
produced.

The Lexical Route

Both the DRC and CDP� use essentially identical lexical
routes, consisting of an orthographic input lexicon with localist
representations (lexical entries) for the spellings of each of the
monosyllabic words in English and a phonological output lexicon
with localist representations of the phonology for each of these
words. Presentation of a word yields activation that cascades from
features to letters through to the orthographic input lexicon and
then the phonological output lexicon. There is also interactive
activation between the letter level and the orthographic input
lexicon, between the orthographic input lexicon and the phonolog-
ical output lexicon, and between the phonemic buffer and the
phonological output lexicon. This route correctly pronounces all
words that have representations in both of these lexicons, but it is
unable to pronounce letter strings aloud that do not have repre-
sentations in both of these lexicons (e.g., frane and frilp).

The Nonlexical Route

Following feature and letter activation, the nonlexical route
converts spelling to sound sublexically by converting orthographic
units into phonological units serially, from left to right (in DRC; in
CDP�, letters enter the graphemic buffer serially and left to right).
This route correctly reads aloud virtually all letter strings that

1 We have not considered any of the parallel distributed processing class
of models of reading aloud here because we have been unable to obtain any
of these models from their authors.
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could be words in terms of their orthography but happen not to be
(e.g., frane and frilp) and all words that are regular in terms of their
spelling–sound correspondences (e.g., gave/save/rave/wave and
lint/mint/hint/dint). However, it assigns the regular pronunciation
to strings like pint and have, rather than reading them aloud
correctly.
The key difference between the models lies in the details of the

nonlexical route’s operation. Most significantly, the DRC uses a
set of specified rules to convert print into phonology, whereas the
CDP� uses a parallel distributed processing network trained to
encode the statistical properties of the language. Though these
differences are significant with respect to the ability to simulate
some phenomena (e.g., consistency), they are not particularly
germane to the present study of these models, so we do not discuss
them further.
Both routines are always activated by print. Thus, when the

intact models read aloud, the lexical route drives the correct
pronunciation for an exception word, but this output is slowed in
the phonemic buffer (particularly in the case of low-frequency
words) because of competition between the different pronuncia-
tions produced by lexical and nonlexical routes.

On the Usefulness of Multifactor Experiments

When only a single factor is manipulated in an experiment, the
results can often be explained in a variety of ways (e.g., the effect
of word frequency in lexical decision and reading aloud has a wide
range of explanations; Becker, 1976; Besner & Smith, 1992;
Borowsky & Besner, 1993; Forster & Chambers, 1973; Morton,
1969; Murray & Forster, 2004; Norris, 2006). In short, it is often
too easy to generate explanations for a main effect, and hence there
are many competing explanations. One approach to discriminating
between competing accounts is to jointly manipulate the psycho-
linguistic factor of interest and a second factor (here, stimulus
quality). Adding complexity to an experiment is usually something
to be avoided, but it is strategic in the current context because it

produces more complex data patterns that in turn can help falsify
some of the various accounts (e.g., in the case of word frequency,
see Besner & O’Malley, 2009; O’Malley & Besner, 2008; Yap,
Balota, Tse, & Besner, 2008). Stimulus quality is a useful second
manipulation because it can be simulated in most computational
models, typically by modifying the connection weights at one or
more levels. The models’ behavior can then be compared with how
humans behave.

Background to the Present Experiments

Previous work with this multifactor approach has examined the
joint effects of stimulus quality when factorially combined with (a)
letter length when reading nonwords aloud (Besner & Roberts,
2003), (b) lexical density when reading nonwords aloud (Reynolds
& Besner, 2004), and (c) word frequency when reading aloud
(O’Malley & Besner, 2008; O’Malley, Reynolds, & Besner, 2007;
Yap & Balota, 2007). Table 1 provides a summary of the results of
experiments reported to date on the presence or absence of an
interaction between various factors and stimulus quality as a
function of list type. Of particular relevance to the present inves-
tigation, O’Malley and Besner (2008) found that low-frequency
words were slowed more by a reduction in stimulus quality than
were high-frequency words, provided that only words appeared in
the list. In contrast, the joint effects of these same factors were
additive on the time to read aloud when words and nonwords were
mixed in a single block. O’Malley and Besner therefore argued
that when nonwords are present, the effects of stimulus quality are
constrained to the feature and letter level (achieved by threshold-
ing the letter level) to reduce the probability of lexicalizations in
response to nonwords, particularly when they appear in degraded
form.

Two New Predictions

One new prediction that follows from the O’Malley and Besner
(2008) account (see also Besner & Roberts, 2003; Reynolds &

Table 1
Results of Experiments on the Joint Effects of Various Lexical (and Nonlexical) Factors and Stimulus Quality When Reading Aloud,
as a Function of List Type

Lexical or nonlexical
factor

Stimulus quality

Pure list
(words only)

Pure list
(nonwords only)

Mixed list
(words and nonwords)

1. Word frequency Interactiona (Yap & Balota, 2008;
O’Malley & Besner, 2008)

— No interaction (O’Malley & Besner,
2008)

2. Neighborhood density No interaction (Reynolds & Besner, 2004)
3. Letter length No interaction (Besner & Roberts, 2003)
4. Repetition Interactionb (Ferguson et al., 2009) Interaction/no interactionc (Blais &

Besner, 2007)
5. Regularity Interactiond (present article)/no interaction

(Herdman et al., 1999)
— No interaction (present article)

6. Lexicality — — No interaction (present article)
7. Semantic priming Interactione (Ferguson et al., 2009) —

Note. Empty cells indicate that no experiments exist. Dashes indicate that it is not possible to do this comparison.
a The effect of stimulus quality is greater for low frequency words than for high frequency words. b The effect of stimulus quality is greater for
nonrepeated words than for repeated words. c The effect of stimulus quality is greater for nonrepeated words than for repeated words. There is no
interaction for nonwords. d The effect of stimulus quality is greater for regular words than for exception words. e The effect of stimulus quality is
greater for unrelated target words than for related target words when relatedness proportion is .5.
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Besner, 2004) is that the joint effects of regularity and stimulus
quality on reaction time (RT) should also be additive when words
and nonwords are randomly intermixed. This follows because in
their account the effect of stimulus quality does not extend beyond
the letter level (or perhaps the feature level) when nonwords are
mixed with words. Given that regularity does not affect processing
until well after the letter level, we expect that the joint effects of
these manipulations ought not to interact. This assumption regard-
ing the locus of the regularity effect is explicit in the implemen-
tations of the two models discussed here.
A second new prediction is that lexicality (words vs. nonwords)

should also be additive with stimulus quality on RT. This again
follows from the assumption that the effect of stimulus quality
does not extend beyond the feature or letter level when words are
read in the context of being mixed with nonwords.

Stimulus Quality � Regularity When Only Words
Appear in the List

It is also of interest to examine the joint effects of stimulus
quality and regularity on reading aloud when only words appear in
the list. If the effect of stimulus quality extends sufficiently deep
into the processing system, it might also produce an interaction
with regularity. On the other hand, there is some evidence that the
effect of stimulus quality does not extend beyond the orthographic
input lexicon (Ferguson, Robidoux, & Besner, 2009). Herdman,
Chernecki, and Norris (1999) reported that stimulus quality and
regularity had additive effects on the time to read aloud when only
words appeared in the experiment. However, the trend in this
experiment was unusual; low-frequency exception words were less
affected by low stimulus quality than were regular words (51 ms
vs. 38 ms; see Table 4 in Herdman et al., 1999). Further, in the
same experiment, these authors also reported additive effects of
stimulus quality and word frequency on the time to read aloud.
Given that other experiments have yielded an interaction between
stimulus quality and word frequency under this condition, and
given that the Herdman et al. experiment had few items per cell
(20), it may well be that their failure to detect both interactions (of
opposing signs) reflects Type II errors. In short, their report of
additive effects of stimulus quality and regularity on RT is on
weak footing and bears closer examination. Whatever the out-
come, it will serve to constrain theoretical accounts.
We conducted three experiments with skilled readers. In all

experiments a single letter string appeared on the screen, and the
subject read it aloud. Experiment 1 manipulated stimulus quality,
regularity, and lexicality. Experiment 2 repeated Experiment 1,
except that nonwords did not appear in the experiment. Experiment
3 replicated the novel pattern observed in Experiment 2. All
conditions were randomized in a single block of trials in all
experiments. We then carried out simulations with both the DRC2

and CDP� models to determine whether either of these models
could simulate the human data.
To anticipate the main results: Skilled readers yielded additive

effects of regularity, lexicality, and stimulus quality when non-
words were intermixed with the words but yielded an interaction
between regularity and stimulus quality when only words appeared
in the experiment. This interaction took the form of a smaller
regularity effect when the stimuli were dim compared with when
they were bright. Neither of the models simulated the joint effects

of the factors explored here under any of the experimental condi-
tions, despite the fact that both models yielded robust main effects
of regularity, lexicality, and stimulus quality. The general discus-
sion takes up the issue of how these results can be understood and
how the models can be modified to correctly simulate them.

Experiment 1

Method

Participants. Twenty-four undergraduate students from the
University of Waterloo participated for course credit. All were
native English speakers and reported normal or corrected-to-
normal vision.

Stimuli. One hundred regular words and 100 exception words
were matched for frequency, neighborhood density, and wham-
mies (Rastle & Coltheart, 1998). The words were run through both
DRC and CDP� with the nonlexical route turned off to verify that
the two sets of words were matched for lexical characteristics.
Three of the words either were not in DRC’s lexicon ( peon) or
were outliers (mould and moult yielded responses greater than
three standard deviations from the mean) and were thus removed
from all analyses, leaving 197 experimental stimuli. DRC took an
average of 77.7 cycles to read the regular words and 77.9 cycles to
read the exception words (t � 1). For CDP�, peon, mould, moult,
and gauge were all absent from the lexicon. CDP� took an
average of 126.4 cycles to read regular words and 128.1 cycles to
read exception words (t � 1). The average ratings on other
important lexical factors for each stimulus type can be seen in
Table 2.
There was also a set of 200 nonwords matched to the words for

letter length. Seminal work on letter confusability by D. Fiset,
Arguin, Bub, Humphreys, and Riddoch (2005) and S. Fiset,
Arguin, and Fiset (2006) suggests that this measure will be im-
portant in future studies of normal readers. We therefore also
report these values for our stimulus set: Average total letter con-
fusability was 467.5 for the regular words, 476.5 for the exception
words, and 493.0 for the nonwords. The regular and exception
words did not differ on this measure (t � 1), whereas the nonwords
differed significantly from the regular words (t � 2.5, df � 298,
p � .001), but not from the exception words (t � 1.5, df � 298,
p � .13).
The stimuli were rotated through stimulus quality conditions

across participants, who were assigned to a counterbalancing con-

2 A reviewer of the first submission of the present article questioned why
we would do simulations with DRC, given his/her claim that “DRC will
never produce additive effects—at least in its current form—because all
processing is cascaded.” There are a number of misconceptions here: (a)
DRC uses different types of activation to connect various levels, not just
cascaded processing—a number of levels are engaged in interactive acti-
vation, and at least one operation (part of the nonlexical route) is serial and
thresholded; (b) McClelland (1979), Ashby (1982), and Roberts and Stern-
berg (1993) have demonstrated that purely cascaded models can produce
additive effects, at least on mean RT, provided certain boundary conditions
are respected; and (c) Reynolds and Besner (2004) reported one simulation
with DRC in which additive effects of lexical density and stimulus quality
are seen (although DRC does not produce systematic additivity in our
experience).
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dition on the basis of order of arrival in the laboratory. Words were
displayed in lowercase 16-point Times New Roman font on a
black background (writing color 000, 000, 000). In the bright
condition, the letter strings appeared in writing color 255, 255,
255; in the dim condition, they appeared in writing color 075, 075,
075. Stimulus type and brightness level were intermixed in a
different random order for each participant.

Apparatus. The data were collected on a Pentium 4 computer
using DMDX software (Forster & Forster, 2003). RTs and errors
were determined using CheckVocal software (Protopapas, 2007).

Procedure. Participants were tested individually and were
seated approximately 50 cm from the screen. Participants were
instructed that when a letter string appeared on the screen, their
task was to pronounce it as quickly and as accurately as possible.
Each trial consisted of a fixation symbol (�) at the center of the
screen for 56 ms, followed by a blank screen for 150 ms, after
which the word was presented at fixation until a vocal response
was detected. A set of 20 practice trials (10 words and 10 non-
words) served to familiarize the participant with the procedure.
Responses were coded offline as correct, incorrect, or mistrial
(e.g., the participant coughed or some other error in the recording
occurred) using the CheckVocal software.

Results

RTs. The data for one of the participants was lost during data
transfer, and therefore only 23 participants were analyzed. Trials
on which there was a mistrial (1.6%) or an incorrect response
(9.1%) were removed prior to RT analysis. The remaining RTs for
the words were submitted to a recursive data trimming procedure
(Van Selst & Jolicoeur, 1994), resulting in the removal of an
additional 5.1% of the data. Mean RTs and mean percentage errors
from the subject analysis can be seen in Table 3 for all conditions.
Following Reynolds and Besner (2004; see also O’Malley &
Besner, 2008), the item analysis is based on the z-scored RTs to
minimize the contribution from between-subject variance. (Item

means and z scores are available at http://artsweb.uwaterloo.ca/
�dbesner2/publications.html)

Regularity � Stimulus Quality.
RTs. Words presented brightly were read aloud faster than

those in the dim condition, F1(1, 22) � 148.7, MSE � 495.7, p �
.001, F2(1, 195) � 601.5, MSE � 0.07, p � .001. Regular words
were read aloud faster than exception words, F1(1, 22) � 79.1,
MSE � 294.5, p � .001, F2(1, 195) � 35.8, MSE � 0.49, p �
.001. Most centrally, there was no interaction between stimulus
quality and regularity, F1 � 1, F2(1, 195)� 1.6,MSE � 0.07, p �
.2. The 95% confidence interval around the interaction (calculated
using the Masson & Loftus, 2003, within-subjects method)
is �6 ms.

Errors. There was no main effect of stimulus quality, F1(1,
22) � 0.3, MSE � 20.9, p � .05, F2(1, 195) � 0.5, MSE � 72.8,
p � .05. More errors were made to exception words than to regular
words, F1(1, 22) � 50.3, MSE � 33.4, p � .001, F2(1, 195) �
27.1, MSE � 254.3, p � .001. There was no interaction between
stimulus quality and regularity (Fs � 1).

Lexicality � Stimulus Quality. Here we report a pair of 2 �
2 analyses of variance (ANOVAs) to facilitate later comparison
with the computational models. One ANOVA compared the effect
of levels of stimulus quality on regular words versus nonwords,
and the other compared the effect of levels of stimulus quality on
exception words versus nonwords.

RTs (regular words vs. nonwords). There was a main effect of
lexicality, F1(1, 22)� 62.6,MSE � 419.8, p � .001, F2(1, 298)�
50.2, MSE � 0.46, p � .001; a main effect of stimulus quality,
F1(1, 22) � 118.5, MSE � 579.7, p � .001, F2(1, 298) � 736.8,
MSE � 0.08, p � .001; and no interaction (Fs � 1).

Errors (regular words vs. nonwords). There was a main effect
of lexicality, F1(1, 22) � 26.4, MSE � 39.3, p � .001, F2(1,
298) � 42.7, MSE � 140.4, p � .001; no main effect of stimulus
quality (Fs � 1), and no interaction, (Fs � 1).

RTs (exception words vs. nonwords). There was no main
effect of lexicality (Fs � 1). There was a main effect of stimulus

Table 2
Average Ratings on Various Lexical Factors for the Regular
Words, Exception Words, and Nonwords

Lexical factor
Regular
words

Exception
words Nonwords

Number of letters 4.6 4.6 4.6
Frequency 5.2 5.2
Neighborhood density 3.1 3.2 7.8
Letter confusability 467.5 476.5 493.0
Cycles to criterion (DRC
model intact) 77.8 92.6 156.8

Cycles to criterion (DRC
nonlexical route
lesioned) 77.7 77.9

Cycles to criterion (CDP�
model intact) 102.7 117.2 155.0

Cycles to criterion (CDP�
nonlexical route
lesioned) 126.4 128.1

Note. Word frequency � mean count per million (from the CELEX
database; Baayen et al., 1993); letter confusability � average total letter
confusability.

Table 3
Mean RTs (ms) and Mean Percentage Errors (%E) in
Experiments 1, 2 and 3 When Reading Aloud as a Function of
Regularity, Lexicality, and Stimulus Quality

Stimulus type

Bright Dim

RT %E RT %E

Experiment 1
Exception 517 13.8 574 13.0
Regular 486 5.0 542 4.7
Difference 31 8.8 32 8.3

Nonwords 521 11.1 574 12.0

Experiment 2
Exception 514 10.7 614 12.8
Regular 473 1.3 588 4.6
Difference 41 9.4 26 8.2

Experiment 3
Exception 570 12.2 646 14.3
Regular 520 2.4 609 4.7
Difference 50 9.8 37 9.6

Note. RT � reaction time.
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quality, F1(1, 22) � 105.6, MSE � 667.3, p � .001, F2(1, 295) �
545.7, MSE � 0.10, p � .001, but no interaction (Fs � 1).

Errors (exception words vs. nonwords). There was a main
effect of lexicality in the subject analysis, F1(1, 22) � 8.0, MSE �
9.6, p � .01, but not in the item analysis (F2 � 1.5); no main effect
of stimulus quality (Fs � 1); and no interaction (Fs � 1.4).

Vincentiles. Given that Experiment 1 produced additive ef-
fects of stimulus quality and regularity on mean RT, we also
investigated whether this additivity was true of the RT distribution
in general or whether the distribution reveals an interaction not
observed in the mean RT (see Yap et al., 2008, for an example in
which such an analysis reveals a four-way interaction between
stimulus quality, word frequency, foil type, and the RT distribu-
tion). A vincentizing procedure was used in which the RT distri-
butions for individual participants were averaged across partici-
pants to produce the RT distribution (Vincent, 1912). Ten
vincentiles (the mean of observations within a given percentile
range) were first computed for each participant. The individual
vincentiles were then averaged across participants and the mean
vincentiles plotted. The vincentile plots reported here were com-
puted in R (R Development Core Team, 2004) and are plotted as
a function of word type and stimulus quality in Figure 1. The
difference scores for the words only (exception words 	 regular
words) for clear and degraded items are plotted in Figure 2. The
regularity effect increased across vincentiles for both clear and
degraded items, consistent with the additivity observed in the
means.

Discussion

The results from Experiment 1 show that both regularity and
lexicality have additive effects with stimulus quality on both mean
RT and errors and that this additivity is observed throughout the
RT distribution (except for the slowest vincentile; this may repre-
sent more reprocessing because of uncertainty, particularly in the
case of dim stimuli). These observations are consistent with the
hypothesis that the effect of stimulus quality is restricted to a
process common to words and nonwords, at least when words and
nonwords are intermixed. That is, stimulus quality at most affects

feature and letter level processing but does not extend further
(O’Malley & Besner, 2008; see also Besner & Roberts, 2003;
Reynolds & Besner, 2004). We take this issue up further in the
General Discussion.

Experiment 2

Experiment 2 investigated the joint effects of stimulus quality
and regularity when only words appear in the experiment. The
empirical issue here is whether additive effects of these two factors
are observed or whether there is an interaction in which exception

Figure 1. Experiment 1: Vincentile means for participants’ reading aloud times as a function of stimulus type
and stimulus quality. RT � reaction time.
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Figure 2. Experiment 1: The difference in the vincentile means for
exception versus regular words for participants’ reading aloud times. The
bars represent 95% confidence intervals. RT � reaction time.
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words are less affected by low stimulus quality than are regular
words (as is the trend in the data from Herdman et al., 1999).

Method

Participants. Twenty-four undergraduate students from the
University of Waterloo participated for $5 or for course credit. All
were native English speakers and reported normal or corrected-to-
normal vision.

Stimuli. The same 100 regular words and 97 exception words
from Experiment 1 were used in Experiment 2. Nonwords did not
appear in the experiment. The stimuli were rotated through stim-
ulus quality conditions across participants, who were assigned to a
counterbalancing condition on the basis of order of arrival in the
laboratory. Words were displayed in lowercase 16-point Times
New Roman font on a black background (writing color 000, 000,
000). In the bright condition, the letter strings appeared in writing
color 255, 255, 255; in the dim condition, they appeared in writing
color 075, 075, 075. All conditions were randomly intermixed in a
single block of trials.

Apparatus. The data were collected on a Pentium 4 computer
using DMDX software (Forster & Forster, 2003). RTs and errors
were determined using CheckVocal software (Protopapas, 2007).

Procedure. The same procedure as in Experiment 1 was used.
Responses were coded offline as correct, incorrect, or no response
using the CheckVocal software.

Results

Trials on which there was a mistrial (1.7%) or an incorrect
response (7.3%) were removed prior to RT analysis. The remain-
ing RTs for the words were again submitted to the recursive data
trimming procedure, which resulted in the removal of an additional
1.5% of the data. Mean RTs and mean percentage errors from the
subject analysis can be seen in Table 3 for all conditions (item
means and z scores can be downloaded at http://artsweb.uwaterloo
.ca/�dbesner2/publications.html). We report and discuss the vin-
centile plots after we report Experiment 3.

RTs. Words presented brightly were read aloud faster than
those in the dim condition, F1(1, 23) � 207, MSE � 1,336, p �
.001, F2(1, 195) � 1,571, MSE � 0.071, p � .001. Regular words
were read aloud faster than exception words, F1(1, 23) � 94,
MSE � 285, p � .001, F2(1, 195) � 29.3, MSE � 0.46, p � .001.
There was an interaction between stimulus quality and regularity,
F1(1, 23) � 5.2, MSE � 259, p � .05, though this was not
significant in the item analysis, F2(1, 195) � 0.8, MSE � 0.071,
p � .4. The 95% confidence interval around the interaction was �
7 ms. The regularity effect was smaller under the dim condition
compared with the bright condition.

Errors. There was a main effect of stimulus quality, F1(1,
23)� 21.4,MSE � 8.1, p � .001, F2(1, 196)� 14.4,MSE � 45.2,
p � .001. More errors were made to exception words than to
regular words, F1(1, 23) � 71.4, MSE � 25.8, p � .001, F2(1,
196) � 26.3, MSE � 259, p � .001. There was no interaction
between stimulus quality and regularity (Fs � 1).

Discussion

The results of Experiment 2 are clear in one respect. Exception
words are not more affected by low stimulus quality than are

regular words; they are less affected. This effect in which the
slower of two conditions is less affected by the action of a second
factor that also slows RT is highly unusual in the context of
standard reading-aloud experiments (though not in the context of
the psychological refractory period paradigm; e.g., see Besner,
Reynolds, & O’Malley, 2009; Reynolds & Besner, 2006).3 Exper-
iment 3 was therefore conducted to determine whether the inter-
action observed in Experiment 2 is replicable.

Experiment 3

Method

Participants. Thirty-six undergraduate students from the Uni-
versity of Waterloo participated for $5 or for course credit. All
were native English speakers and reported normal or corrected-to-
normal vision.

Procedure. The stimuli, apparatus, and procedure were iden-
tical to that of Experiment 2.

Results

One participant was dropped due to poor performance (less than
75% correct). For the remaining 35 participants, trials on which
there was a mistrial (2.8%) or an incorrect response (8.4%) were
removed prior to RT analysis. The remaining RTs were submitted
to the recursive data trimming procedure, which resulted in the
removal of an additional 1.5% of the data. Mean RTs and mean
percentage errors from the subject analysis can be seen in Table 3
for all conditions. (Item means and z-scores are available at http://
artsweb.uwaterloo.ca/�dbesner2/regxsqexp.html)

RTs. Words presented brightly were read aloud faster than
those in the dim condition, F1(1, 34) � 34.5, MSE � 6,899, p �
.001, F2(1, 195) � 750, MSE � 0.052, p � .001. Regular words
were read aloud faster than exception words, F1(1, 34) � 144,
MSE � 449, p � .001, F2(1, 195) � 45.7, MSE � 0.39, p � .001.
Most centrally, there was an interaction between the effects of
stimulus quality and regularity, F1(1, 34) � 5.6, MSE � 280, p �
.05, though it was not significant in the item analysis, F2(1, 195)�
1.9, MSE � 0.052, p � .17. The 95% confidence interval for the
interaction was � 6 ms.

Errors. There was a main effect of stimulus quality, F1(1,
34) � 8.1, MSE � 21.1, p � .01, F2(1, 195) � 12.1, MSE � 34.8,
p � .05. More errors were made to exception words than to regular
words, F1(1, 34) � 76, MSE � 43.4, p � .001, F2(1, 195) � 38.1,
MSE � 239, p � .001. There was no interaction between stimulus
quality and regularity (Fs � 1).

Combined Analysis of Experiments 2 and 3

Because Experiments 2 and 3 were essentially identical, we also
computed an analysis in which the data were combined. Namely,
an ANOVA was carried out in which experiment was not a factor.
Critically, this analysis yielded an interaction between stimulus
quality and regularity for both subjects and items, F1(1, 58) �

3 Though it never achieved significance, we note that Herdman et al.’s
(1999) experiments showed a small trend toward underadditivity between
case mixing and regularity (for low-frequency words).
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11.2, MSE � 272, p � .01, and items, F2(1, 195) � 3.9, MSE �
0.032, p � .05. There was no significant interaction in the errors,
F1(1, 58) � 0.2, MSE � 20.1, p � .1; F2(1, 195) � 0.7, MSE �
18.8, p � .1.

Vincentiles. The mean vincentiles for the data from Experi-
ments 2 and 3 are plotted as a function of regularity and stimulus
quality in Figure 3. The difference scores (exception words 	
regular words) for bright and dim items can be seen in Figure 4
(note the scale differences between Figures 3 and 4). Figure 4
shows that the regularity effect is larger under the bright condition
than under the dim condition, particularly so for the slower vin-
centiles.

Cross-Experiment Comparison: Experiment 1 Versus
Experiments 2 and 3

We also undertook a cross-experiment analysis in which we
compared the results of Experiment 1 for the words with those of
Experiments 2 and 3 (treated as a single experiment). Critically,
the three-way interaction of Experiments � Stimulus Quality �
Regularity was significant by subjects, F1(1, 80) � 4.1, MSE �
250, p � .05, although it was not significant by items (F2 � 1).
The lack of an interaction in the overall item analysis is not
surprising, given that inspection of the RT distribution and the
associated confidence intervals shows that the interaction in Ex-
periments 2 and 3 is specific to items in the slow end of the
distribution.
In short, experiments with small numbers of items (as are too

often seen in psycholinguistic experiments) are unlikely to have
the power to detect such interactions. The present analyses support
the view that the different patterns observed in Experiment 1
versus those seen in Experiments 2 and 3 are genuine.

Discussion

The separate results of Experiments 2 and 3 reveal a novel
pattern in which the slowing induced by low stimulus quality
affected the faster condition (regular words) more than the slower

one (exception words); the pattern can been seen even more
powerfully in the combined analysis, where the interaction was
also significant in the item analysis. This is a result unanticipated
by any theoretical discussion of visual word recognition of which
we are aware.

Simulations. We turn now to a consideration of the two most
successful computational accounts of reading aloud. Here we
report the results of a series of simulations with the DRC and
CDP� models to determine whether they are able to simulate the
results of the experiments reported here. To anticipate the findings:
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Figure 3. Experiment 2 and 3 combined: Vincentile means for participants’ reading aloud times as a function
of regularity and stimulus quality. RT � reaction time.

Regularity Effect (Dim Condition)
Regularity Effect (Bright Condition)

Vincentiles
M

ea
n 

R
T 

(m
s)

 D
iff

er
en

ce
 S

co
re

s 
(E

xc
ep

tio
n 

-R
eg

ul
ar

 W
or

ds
)

20

40

60

80

100

2 4 6 8 10

Figure 4. Experiment 2 and 3 combined: The difference in the vincentile
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Neither model correctly simulates the joint effects of any of the
factors considered here, despite yielding robust main effects of
stimulus quality, regularity, and lexicality.
In both DRC and CDP� we initially simulated low stimulus

quality with the method used in the context of the DRC model by
Besner and Roberts (2003) and Reynolds and Besner (2004), in
which feature to letter level activation is reduced (from .005 to
.004) and the feature to letter inhibition is reduced (from –.15 to
–.12). These data can be seen in Table 4. (Item means from all of
the simulations can be downloaded at http://artsweb.uwaterloo.ca/
�dbesner2/publications.html)

Regularity � Stimulus Quality.
DRC. The model made no errors, thus all 197 items were

included in the analysis. Words in the bright condition were read
in fewer cycles than those in the dim condition, F(1, 195)� 2,677,
MSE � 0.588, p � .001. Regular words were read in fewer cycles
than exception words, F(1, 195) � 347, MSE � 72.5, p � .001.
Most critically, there was a interaction in which exception words
were more affected by low stimulus quality than regular words,
F(1, 195) � 240, MSE � 0.588, p � .001, a result not seen in any
of the experiments reported here.

CDP�. The model made seven errors to bright exception
words and nine errors to dim exception words. If an error was
made to an item in one condition, it was also removed from the
other condition. This left 187 items in the analysis. Words in the
bright condition were read in fewer cycles than those in the dim
condition, F(1, 185) � 3,687, MSE � 2.7, p � .001. Regular
words were read in fewer cycles than were exception words, F(1,
185) � 64, MSE � 356, p � .001. Most critically, there was an

interaction in which exception words were more affected by low
stimulus quality than regular words, F(1, 185) � 48, MSE � 2.7,
p � .001, again inconsistent with all the results of the experiments
reported here.
Ziegler, Zorzi, and Perry (2009) reported simulations using the

CDP� model aimed at producing additive effects of stimulus
quality and word frequency, given that this is the pattern reported
by O’Malley and Besner (2008) in three experiments with skilled
readers. Ziegler et al. claimed that CDP� is able to simulate this
pattern.
There are two key differences between the simulations reported

above and those reported by Ziegler et al. (2009). First, both
activation and inhibition from features to letters were reduced here
to simulate the effect of stimulus quality, whereas Ziegler et al.
only reduced activation. To us, modifying only the activation from
feature to letter level lacks a strong theoretical rationale. For
humans, stimulus quality is generally conceived of as a very early
visual manipulation. It therefore seems likely that its effects are
best thought of as reducing input to the network. We cannot
directly manipulate input strength in the implemented models;
reducing the strength of the output from the feature level will
achieve the same end—but only if all output (both excitatory and
inhibitory) is weakened. Ziegler et al. argued that changing only
one parameter is more parsimonious, which is true only within the
confines of the model. When placed in the context of a broader
visual processing system, it is difficult to see why the effect would
be selective for only one type of output, and if it is, why it is
selective for the excitatory connections rather than the inhibitory
connections.
Second, Ziegler et al. (2009) also reduced the activation weight-

ing on the letter to orthographic lexical level, arguing that it is
central to allowing the nonlexical route to play more of a role and
therefore also central to producing additive effects of stimulus
quality and word frequency. A reviewer of the present work argued
that our failure to implement both of these parameter changes in
CDP� is the reason we do not see additivity between stimulus
quality and regularity. Our rationale for not reducing the weights
on the letter to orthographic input lexicon rests on the well-known
fact that the balance between lexical and nonlexical routines in
terms of their respective strength is a central issue in both CDP�
and in DRC. Thus, when CDP� reads exception words, decreasing
the influence of the lexical route is problematic because this
renders the nonlexical route too dominant; therefore, CDP� is
more likely to read exception words as though they are regular in
terms of their spelling sound correspondences. Indeed, Besner and
O’Malley (2009) showed that adopting Ziegler et al.’s parameter
set to simulate additive effects of stimulus quality and word
frequency yielded a large interaction in the error data, such that
low-frequency words were more impaired by low stimulus quality
than high-frequency words. Further inspection showed that this
interaction was almost entirely due to the items in those experi-
ments that were low-frequency exception words, which is exactly
what is to be expected on the basis of the theoretical analysis
offered above, as well as by Besner and O’Malley (2009).
Nonetheless, we provide further evidence of this problem by

presenting CDP� with the stimulus set from the present experi-
ment, this time using Zeigler et al.’s (2009) “mixed list” parameter
set, in which the letter level to orthographic input lexicon activa-
tion value is reduced from .075 to .0598. Also following Ziegler et

Table 4
Mean Cycles to Criterion and Mean Percentage Errors (%E)
for DRC and CDP� as a Function of Lexicality, Regularity,
and Stimulus Quality

Stimulus type

Bright Dim Interaction

Cycles %E Cycles %E Cycles %E

DRC
Exception 92.6 0.0 97.7 0.0
Regular 77.8 0.0 80.6 0.0
Nonwords 156.8 0.0 160.5 3.0

Differences
Exception 	 Regular 14.8 0.0 17.1 0.0 2.3�� 0.0
Nonwords 	 Regular 79.0 0.0 79.9 3.0 0.9� 3.0
Nonwords 	 Exception 64.2 0.0 62.8 3.0 	1.4†,�� 3.0

CDP�
Exception 117.2 7.3 128.8 9.3
Regular 102.7 0.0 112.0 0.0
Nonwords 155.0 1.0 159.0 4.0

Differences
Exception 	 Regular 14.5 7.3 16.8 9.3 2.3�� 2.0
Nonwords 	 Regular 52.3 1.0 47.0 4.0 	5.3†,�� 3.0
Nonwords 	 Exception 37.8 	6.3 30.2 	5.3 	7.6†,�� 1.0

Note. Low stimulus quality was simulated by reducing feature to letter
level activation from .005 to .004, and feature to letter level inhibition was
reduced from 	.15 to 	.12.
† A negative interaction value indicates that the effect of stimulus quality
is greater for words than for nonwords.
� p � .05. �� p � .001.
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al., we simulate the low stimulus quality condition by reducing the
feature to letter activation from .005 to .001 but leaving the
inhibition parameter value untouched. These data can be seen in
Table 5.
The first thing to note is that with these parameter values, the

model makes a very large number of errors to exception words
(over 50%) when stimulus quality is reduced. Given that skilled
readers do not make anything close to this amount of errors, it is
evident that this version of the model does not capture what skilled
readers do. Nonetheless, for completeness we report an ANOVA
on the remaining stimuli. There was a main effect of stimulus
quality, F(1, 134) � 2,605, MSE � 272, p � .001; a main effect
of regularity, F(1, 134) � 55, MSE � 675, p � .001; and an
interaction in which exception words are again more impaired than
regular words by low stimulus quality, F(1, 134) � 40, MSE � 2,
p � .001. Thus, even when the model produces the correct pho-
nological code, CDP� does not, with this parameter set, simulate
the pattern produced by skilled readers.
Finally, we did further simulations with CDP� using a smaller

reduction of feature to letter level activation to reduce the number
of errors in the exception word condition. We were able to bring
the error rate down in this condition to acceptable levels (around
10%); however, the interaction between stimulus quality and reg-
ularity in the cycles to criterion measure remains significant in the
wrong direction.

Lexicality � Stimulus Quality. The next set of simulations
addresses the issue of whether DRC and CDP� can simulate the
joint effects of lexicality (words vs. nonwords) and stimulus qual-
ity. As we noted earlier, the human data yielded additive effects for
both RTs and errors (see Table 3). The data from DRC and CDP�
are reported in Table 4.

Regular words versus nonwords. The parameters used to
simulate low stimulus quality as above were again used (feature to
letter activation � .004; feature to letter inhibition is set to –.12).

DRC. A 2 � 2 ANOVA on the cycles to criterion for correct
responses yielded a main effect of lexicality, F(1, 295) � 966,
MSE � 867, p � .001; a main effect of stimulus quality, F(1,
295) � 211, MSE � 6.6, p � .001; and a small interaction in
which nonwords are more affected by low stimulus quality than
the regular words, F(1, 295) � 4.0, MSE � 6.6, p � .05.

CDP�. A 2� 2 ANOVA on the cycles to criterion for correct
responses yielded a main effect of lexicality, F(1, 298) � 272.8,

MSE � 1,320, p � .001; a main effect of quality, F(1, 298) �
11,808, MSE � 0.50, p � .001, and an interaction in which
nonwords are less affected by low stimulus quality than are regular
words, F(1, 298) � 1840, MSE � 0.50, p � .001.

Exception words versus nonwords.
DRC. A 2 � 2 ANOVA on the cycles to criterion for correct

responses yielded a main effect of lexicality, F(1, 292) � 570,
MSE � 919, p � .001; a main effect of stimulus quality, F(1,
292) � 370, MSE � 6.9, p � .001; and an interaction in which
nonwords are less affected by low stimulus quality than are ex-
ception words, F(1, 292) � 10.5, MSE � 6.9, p � .001. Clearly,
the pattern seen with DRC does not mimic what is seen with the
skilled readers in either of these two cases.

CDP�. A 2� 2 ANOVA on the cycles to criterion for correct
responses yielded a main effect of lexicality, F(1, 285) � 107,
MSE � 1,492, p � .001; a main effect of stimulus quality, F(1,
285) � 5,811, MSE � 1.2, p � .001; and an interaction in which
nonwords were again less affected by low stimulus quality than the
exception words, F(1, 285) � 1,376, MSE � 1.2, p � .001.

Summary of the Simulation Results

Aside from the main effects of regularity, lexicality,4 and stim-
ulus quality, neither of these computational models simulated
additive effects of stimulus quality and regularity as seen in
Experiment 1, additive effects of stimulus quality and lexicality in
Experiment 1, or the correct form of the interaction between
stimulus quality and regularity in Experiments 2 and 3.

General Discussion

The results of the experiments with skilled readers are clear.
First, Experiment 1 shows that when words and nonwords are
randomly intermixed there are robust main effects of stimulus
quality and regularity and stimulus quality and lexicality, but no
hint of any interactions in either RT or errors or in the general
distribution of RTs. None of these joint effects are simulated by
either the DRC or the CDP� models.
Second, Experiments 2 and 3 show that when only words appear

in the experiment, there is an interaction in which low stimulus
quality affects exception words less than regular words. Neither of
the computational models simulated this result either. Instead, they
always produced an interaction in which exception words are more
affected by low stimulus quality than are regular words.
The discrepancies reported here between the models’ perfor-

mance and skilled readers’ performance thus call for some form of

4 Presented with our stimulus set, both models produce significant
differences between the exception words and the nonwords in both cycle
times and errors. Experiment 1 yielded no difference between these item
types in RT and only a small one in the errors. The RT data suggests that
the nonlexical route in these models is too slow relative to the lexical route.
However, speeding the nonlexical route would likely increase error rates to
exception words, potentially exacerbating the discrepancy in the error data.
It is worth noting that the nonwords have a higher neighborhood density
(see Table 2), which has been shown to speed RTs in reading aloud (e.g.,
Andrews, 1992; Reynolds & Besner, 2004). The models may not be as
sensitive to this factor as human subjects. Whatever the case, the models
are clearly not properly capturing this effect.

Table 5
Mean Cycles to Criterion and Mean Percentage Errors (%E)
for CDP� as a Function of Regularity and Stimulus Quality

Stimulus
type

Bright Dim

Cycles %E Cycles %E

Exception 125.4 12.5 250.6 57.2
Regular 113.7 0.0 211.2 5.0
Difference 11.7 12.5 39.4 52.2

Note. Low stimulus quality was simulated by reducing feature to letter
level activation from .005 to .001, and the contribution of the lexical route
was reduced by changing letter to orthographic input lexicon activation
from .075 to .0598 for both bright and dim conditions, following Ziegler et
al. (2009).
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modification to these models. What modification would make it
possible for these models to simulate not only these data but others
as well (e.g., those summarized in Table 1), and how would this
change our current understanding of the underlying processes?

Accounting for Additivity

O’Malley and Besner (2008; see also Besner & Roberts, 2003;
Reynolds & Besner, 2004) proposed that the effect of stimulus
quality is restricted to a point shared by both lexical and nonlexical
routines when words and nonwords are mixed together and read
aloud (or nonwords alone are read aloud). The consequence is that
a reduction in stimulus quality yields the same amount of delay to
both lexical and nonlexical routes. Given that the only front-end
processes common to both routes are feature and letter levels, and
given the assumption that low stimulus quality affects both levels,
a sufficient assumption is that the output of the letter level is the
same under bright and dim conditions, although the time to gen-
erate such an output is delayed by low stimulus quality. On this
analysis, if letter level processing does not pass activation on until
letters have been identified, this would produce additive effects of
stimulus quality and word frequency, as reported by O’Malley and
Besner (2008), and would also produce additive effects of stimulus
quality and regularity when reading aloud, as observed here in
Experiment 1. This assumption leads to the prediction that low
stimulus quality will affect nonwords and words to the same
extent, which is also what was observed with skilled readers in
Experiment 1 here. Phrased differently, this solution assumes that
at least some processes are serially organized and discrete (Stern-
berg, 1969, 1998).
A different account is more in keeping with one of the process-

ing assumptions that has been made in implementing these models.
Although it is not widely appreciated, under certain conditions it is
possible for purely cascaded processes to produce additive effects
of two factors on mean RT (e.g., when the factors influence the
rates of two different, relatively fast processes; see McClelland,
1979; Roberts & Sternberg, 1993). Nonetheless, our preference is
for the discrete processing (thresholded) account, because (a) it is
simpler, (b) the evidence for discrete processes in various RT tasks
is both broad and deep (see Roberts & Sternberg, 1993), and (c)
none of the current computational models of visual word recogni-
tion to date are purely cascaded (they include components engaged
in interactive activation).

Accounting for the Interaction: Stimulus Quality �
Word Frequency

O’Malley and Besner (2008) proposed that when stimulus qual-
ity and word frequency interact (i.e., when only words appear in
the experiment), this reflects processing along the lexical route that
has reverted to cascaded processing or interactive activation. Con-
sistent with this proposal, Reynolds and Besner (2004) reported
simulations with the DRC model that produced an interaction
between stimulus quality and word frequency when the lexical
route was either purely cascaded or engaged in interactive activa-
tion.

Accounting for the Interaction: Stimulus Quality �
Regularity

We emphasize that though both regularity and word frequency
interact with stimulus quality in reading aloud when only words
appear in the experiment, the nature of the interactions is qualita-
tively different. Stimulus quality and regularity yield an interaction
in which the slower condition (exception words) yields a smaller
increase in RT relative to the faster condition (regular words) when
stimulus quality decreases. When stimulus quality and word fre-
quency interact, the slower condition (low-frequency words) is
more affected by reductions in stimulus quality than is the faster
condition (high-frequency words). We know of no account on the
table that can accommodate these results, and certainly the two
models examined here do not produce them with the parameters
we have explored thus far. Below we offer one plausible hypoth-
esis that can explain the interaction between stimulus quality and
regularity.

An Independent Influence of Stimulus Quality on the
Nonlexical Route When Only Words Appear

Stated baldly, stimulus quality may have an influence on the
nonlexical route that is independent of the general slowing of the
processing system (which affects both routes equally) when only
words appear in the experiment. The regularity effect arises due to
competition between the two routes in the phonemic buffer when
naming exception words. If the nonlexical route is more strongly
influenced by low stimulus quality in this context, then on dim
trials there will be less opportunity for the nonlexical route’s
regularized pronunciation to compete with the lexical route’s cor-
rect pronunciation, and thus the regularity effect will be smaller.
Because the nonlexical route does not contribute to the word
frequency effect in the same way, low-frequency words do not
benefit from this differential influence of stimulus quality.

A Simulation Proof

Conceptually, this account is straightforward, and thus it is not
surprising that our attempts to simulate the pattern were successful.
For an existence proof we turned to the most successful manipu-
lation of stimulus quality (reducing all output from the feature
level, as in the simulations in Table 4), but in addition, we further
slowed the nonlexical route by reducing the strength of the exci-
tatory connections from the nonlexical processes (the grapheme–
phoneme conversion in the DRC and the two-layer assembly
network in CDP�) to the phonemic buffer.5 The idea here is that
the reduction in feature level output represents a general slowing
of the system that is not route specific, whereas the reduction in the
output of the nonlexical route represents an additional slowing of
this route relative to the lexical route. As is clear from Table 6,
both models now successfully simulate the RT pattern found with

5 We are agnostic about where exactly this additional slowing takes
place. It may be in the connections from the letters to the nonlexical
processes, within the processes themselves, or in the connections from the
processes to the phonemic buffer. In the implemented models, we do not
have access to parameters that would allow us to simulate the first two, so
we implemented the third.
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humans in Experiments 2 and 3 while preserving the pattern
observed between stimulus quality and word frequency. In the
simulations of the present experiments (see Table 6, top panel), the
main effects of stimulus quality and regularity and the interaction
between them is significant for both models. In simulating the
O’Malley and Besner (2008) data when only words are present,
both models show main effects of stimulus quality and word
frequency and a significant interaction between them that takes the
correct form.6

How Does the Differential Influence of Stimulus
Quality on the Two Routes Arise?

Descriptively and computationally, our account successfully
produces the pattern of RT data found in Experiments 2 and 3. This
leaves the question of why stimulus quality would influence the
nonlexical route more than the lexical route when only words
appear in the experiment. We can envision only two possibilities:
Either it is simply an emergent property of the system, or it is a
result of dynamic changes to the system. In either case, we do not
think that subjects are anticipating a dim trial; rather, when they
encounter a dim trial, they dampen the nonlexical route. That is,
there exists a process that monitors the activation over time at the
feature and/or letter level. When this activation is “slow” in the
context of an experiment such as ours, this leads to a dampening
of the nonlexical route (for related examples of online parameter
adjustment, see Bub, Masson, & Lalonde, 2006; Coltheart, Dav-
elaar, Jonasson, & Besner, 1977; Reynolds & Besner, 2005, 2008;
Ridderinkhof, 2002). We discuss these two possibilities (emergent
property vs. dynamic control) below.

Emergent Property

It may be that the system is organized in such a way that a
reduction in stimulus quality affects the nonlexical route more than
the lexical route (i.e., there is an independent effect of stimulus
quality on the nonlexical route). If this is the case, then stimulus
quality is not simply an input strength manipulation, as computa-

tional modelers have implicitly assumed in their simulation work
(and most theorists have assumed in their theorizing), but has a
much more complex relationship with the processes involved in
reading aloud. Such a change in thinking about the effects of
stimulus quality requires reconsideration of a body of work. To
begin, any simulation result that has involved a manipulation of
stimulus quality needs to be reexamined using a route-selective
manipulation like the one described here (though note that we have
already demonstrated that the interaction between word frequency
and stimulus quality is preserved when only words appear in the
list). It also raises the question of where else in the system stimulus
quality is having additional influences and what those influences
look like. In short, if the present data reflect an emergent property
of how stimulus quality manipulations affect processing, then
those engaged in the study of visual word recognition processes
have overlooked this influence, with potentially serious ramifica-
tions for theories and models.

Dynamic Control

Another possibility is that the greater slowing of the nonlexical
route by low stimulus quality when only words appear in the list
reflects the reading system trying to achieve its goal: to read aloud
both rapidly and accurately. If reducing the quality of the stimulus
has a greater influence on the lexical route than on the nonlexical
route, then on dim trials there will be more opportunity for the
nonlexical route to influence pronunciation. For exception words,
this increases the likelihood of regularization. It may be, then, that
on detecting a dim stimulus the system dampens the nonlexical
route to prevent these regularizations. This account raises two
questions.

6 We also considered the hypothesis that the system might increase
feedback along the lexical route on dim trials to more strongly support the
lexical contribution to the pronunciation. Our attempts to simulate this
approach were unsuccessful; even increasing the feedback by a factor of 15
had little effect on cycle times in the CDP� model.

Table 6
Mean Cycles to Criterion and Mean Percentage Errors (%E) for DRC and CDP� as a Function of Stimulus Quality and Regularity
and Stimulus Quality and Word Frequency, With a Greater Slowing of the Nonlexical Route

Stimulus type

DRC CDP�

Bright Dim Bright Dim

Cycles %E Cycles %E Cycles %E Cycles %E

1. Stimulus quality by regularity
Exception 92.4 1.0 96.3 0.0 117.7 7.3 133.1 3.1
Regular 77.8 0.0 84.9 0.0 102.7 0.0 120.3 0.0
Difference 14.6 1.0 11.4 0.0 15.0 7.3 12.8 3.1

2. Stimulus quality by word frequency
Low frequency 78.3 0.0 85.2 0.0 100.7 0.0 116.6 0.0
High frequency 73.6 0.0 79.0 0.0 83.7 0.0 93.4 0.0
Difference 4.7 0.0 6.1 0.0 17.0 0.0 23.2 0.0

Note. In DRC, the low stimulus quality condition was simulated by reducing feature to letter level activation from .005 to .003, feature to letter level
inhibition from 	.15 to 	.09, and the output from the nonlexical route from .055 to .04. In CDP�, low stimulus quality was simulated by reducing feature
to letter level activation from .005 to .004, feature to letter level inhibition from 	.15 to 	.12, and the output from the nonlexical route from .085 to .05.
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First, given that only words appear in Experiments 2 and 3, why
not completely suppress the nonlexical route? One possible reason
is structural; there may be restrictions on the extent to which the
route can be dampened. For example, it may not be possible to turn
the route off entirely. This view is held by many theorists; pho-
nological processes are automatic in the sense of being ballistic
and impossible to prevent. Another possibility is that the reader
still needs the nonlexical route on some trials. All of the words
used here are low frequency. Enough items may be unknown to
subjects that they need the nonlexical route to decipher them
correctly (this would work for the regular words, though of course
this would result in errors to any unknown exception words).
The second question raised by the dynamic control account is

that if dampening the nonlexical route reduces regularizations,
why not dampen it during bright trials as well? One answer is that
although the nonlexical route does slow reading of exception
words and can result in regularizations, it is not widely appreciated
that it has the opposite effect for regular words. Both routes are
converging on the same pronunciation for regular words; the
nonlexical route is thus facilitating rapid responding on half of the
trials (indeed, simulations with the CDP� model reveal that re-
sponses to regular words when both routes are operating are much
faster than when only the lexical route is operating, and this benefit
is larger than the cost of the difference between regular and
exception words when both routes are operating). Slowing the
nonlexical route across all trials would thus incur a speed penalty
on bright trials where the system is already reading at a high rate
of accuracy. On dim trials, the system accepts the reduction in
speed as a fair trade for improvements in accuracy.

Regularizations and the Nonlexical-Route-Specific
Influence of Stimulus Quality

Our data and the present simulations do not offer a way of
distinguishing between the emergent property and dynamic control
accounts, and thus we are agnostic at present as to which account
should be preferred. What we can confidently conclude from our
data is that something about regularity differs from any other
linguistic factor studied to date (at least of those that have been
jointly manipulated with stimulus quality). Simulation results sup-
port the hypothesis that the difference arises from a specific
influence of low stimulus quality on the nonlexical route. How-
ever, this route-specific influence makes a prediction that we can
address by examining the types of errors that both the models and
our subjects produce. Specifically, if the nonlexical route is damp-
ened on dim trials, then regularizations should be less common.
The simulation results support this prediction. The error data for
CDP� in Table 6 clearly show a pattern where the number of
errors to exception words when the nonlexical route is dampened
in the dim condition is smaller than in the bright condition when
the nonlexical route is not dampened (in the DRC model there is
a weak trend in the same direction, but it is less prominent due to
the very small number of errors in general). This is at least
consistent with our intuition that the present account predicts
reduced regularizations under dim conditions. Do human readers
show a similar pattern?
To examine whether or not humans also showed a tendency

toward fewer regularizations under dim conditions (consistent with
the idea that the nonlexical route is playing a lesser role), we

classified errors to exception words according to whether they
were regularizations or not. These data are summarized in Table 7.

Selecting a Baseline

The question of whether or not there is a reduction in the
number of regularizations on dim trials necessitates a discussion of
the appropriate comparison condition. The ideal comparison is
between dim trials with and without the extra slowing of the
nonlexical route. However, that comparison cannot exist in human
subjects; the nonlexical route either is or is not locally attenuated
on dim trials.
One possibility is to compare the error pattern in Experiment 1

(nonwords present) to those of Experiments 2 and 3 (words only).
There are problems with this comparison. First, it assumes that the
additional attenuation of the nonlexical route does not apply when
nonwords are present. If attenuation is present in both conditions,
then the critical factor is not varied. The difficulty is that our
theory is agnostic with respect to whether route-specific attenua-
tion is operating in Experiment 1 or not: If the attenuation is an
emergent property, then we assume that it would be operative;
otherwise, it may or may not be operative. Second, using this
baseline ignores the influence of thresholding on regularizations. If
we assume for the moment that the route-specific attenuation is not
operating in Experiment 1, then reducing stimulus quality should
increase the number of regularizations. However, thresholding the
output should counteract this effect and reduce the number of
regularizations. Potentially confounding these two theoretical
mechanisms makes interpretation of the results difficult.
The other possibility is to compare regularizations under dim

conditions to those under bright conditions. This comparison has
the advantage that the theory explicitly assumes that the attenua-
tion of the nonlexical route is absent in the baseline (bright) and
present in the comparison (dim) condition. Thresholding is also
held constant across the two conditions (present for the Experi-
ment 1 comparison, absent for the Experiment 2 and 3 compari-
sons, by hypothesis). The difficulty with this baseline is that it
confounds the general dimming of the stimuli (which ought to
increase the number of regularizations—and errors in general)
with the nonlexical-route-specific slowing (which ought to reduce
the number of regularizations). Because these factors influence

Table 7
Regularizations and Other Errors in Response to Exception
Words in Experiments 1, 2, and 3

Error types

Bright Dim

# Errors % Errors # Errors % Errors

Experiment 1
Regularizations 82 52.9 69 45.5
Other 72 47.1 83 54.6

Experiment 2
Regularizations 77 57.5 84 52.5
Other 57 42.5 76 47.5

Experiment 3
Regularizations 124 53.9 110 42.5
Other 106 46.1 149 57.5
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regularizations in opposite directions, the results will underesti-
mate the real influence of route-specific attenuation.
Both baselines have their problems. Use of the bright condition

as a baseline biases against finding an effect by pitting the general
slowing of the system against the route-specific attenuation of the
nonlexical route. However, we are of the opinion that this is
preferable to using the Experiment 1 dim condition as a baseline,
as it is unclear whether or not we would be varying the factor of
interest: local attenuation of the nonlexical route.

Words only. The results from Experiment 3 are consistent
with our account. There is a lower proportion of regularizations
under dim than bright conditions, 
2(1, N � 489) � 6.391, p �
.05. Experiment 2 is identical to Experiment 3, and the trend is
toward a similar pattern in the error data; however, it is not
significant, 
2(1, N � 294) � 1. When we collapse the two
experiments together (as they are effectively the same experiment),
the effect remains significant, 
2(1, N � 783) � 6.199, p � .05.
These results suggest that humans are behaving in a way that is
consistent with the predictions of a low-stimulus-quality effect
specific to the nonlexical route.7

Nonwords and words. The error data from Experiment 1
show a similar trend toward a reduction in the number of regular-
izations. However, this trend is also not significant, 
2(1, N �
306) � 1.887, p � .16, though as argued earlier, it is less clear
what is going on in Experiment 1 with respect to nonlexical-route-
specific attenuation.
We stress that error data were not a primary dependent variable

in our experiments. Nonetheless, in all three experiments the
relative number of regularizations is reduced in the dim condition.
This reduction is significant for Experiment 3 and for the two
words-only experiments combined, though not for Experiments 1
or 2 independently. In our view this provides some support for the
theory that stimulus quality is having a route-specific effect that is
not currently considered by theories of visual word recognition.
That being said, the present data are clearly not strong enough to
provide a final word on the subject.
Some readers may be uncomfortable with the idea of a dynam-

ically controlled process rather than an emergent process. Though
our simulation results and data cannot differentiate the two ac-
counts, this is not the first time that context-dependent dynamic
processing has been proposed (e.g., see Bub et al., 2006; Coltheart
et al., 1977; Reynolds & Besner, 2005, 2008; Ridderinkhof, 2002).
There are considerable extant data that appear to require that
processing vary across contexts in ways that have not been widely
entertained. Empirically, when words and nonwords are inter-
mixed in the context of reading aloud (or when only nonwords are
presented), the effect of stimulus quality is to simply add a con-
stant to RT. This is true for the joint effects reported here, as well
as for the joint effects of stimulus quality and letter length when
reading nonwords aloud (Besner & Roberts, 2003), stimulus qual-
ity and word frequency (O’Malley & Besner, 2008), and stimulus
quality and N when reading nonwords aloud (Reynolds & Besner,
2004). Thus, if other ways of modifying processing are to be
proposed, they must accommodate these facts too.8

Our simulations are successful in that they provide an existence
proof that, when configured this way, both models produce the
same pattern of RTs and regularization data as produced by skilled
readers in Experiments 2 and 3. Of course, this assumption (that
nonlexical processing is more affected by low stimulus quality

than is the lexical route when only words are being read) is entirely
post hoc.9 Moreover, although the data can be simulated by the
existing models discussed here by simply changing a single pa-
rameter, to do so they require a module that neither model pos-
sesses at present. That is, our hypothesis is that a module exists
that monitors rate of evidence accumulation at feature and/or letter
level; when it is too slow (as when stimulus quality is low) this
either directly serves to change the single parameter in the non-
lexical route or signals some local “control” module, which in turn
does this. This hypothesis strikes us as simple, plausible on its
face, and sufficient in that it allows the models to simulate the
highly unusual data pattern seen in Experiments 2 and 3.

Conclusions

The results of the three experiments reported here constitute a
set of novel observations that any viable theory of reading aloud
needs to be able to explain. Neither of the computational models
discussed here are, in their current form, able to simulate all the
results from the present experiments (nor related ones in the
literature). However, we have advanced the idea that when words
are read alone (i.e., with no nonwords), low stimulus quality has a
specific influence on the nonlexical route over and above its effect
on feature and letter level processing (which is common to both
routes). When this idea is tested with a simulation, it produces both
the RT and regularization patterns that we observed with human
subjects in Experiments 2 and 3. We have also appealed to a
thresholding account (offered previously in related contexts) to
accommodate additive effects of stimulus quality and regularity
and stimulus quality and lexicality like those observed in Experi-
ment 1 when words and nonwords are randomly intermixed.
It remains to be seen whether any of the proposals offered here

will be implemented in these or any other computational models or
whether other ways of understanding and simulating these effects
will emerge. Most generally, the present results can be taken as a

7 These results were obtained despite the fact that errors and error types
were not our main dependent variable of interest. Indeed, instructions to the
participant are typically designed to avoid having complicated data patterns
in the errors to facilitate interpretation of the RT data.
8 There is one fact that does not fit this empirical generalization: Rep-

etition interacts with stimulus quality for words (but not nonwords) in the
presence of nonwords (Blais & Besner, 2007). It remains to be seen
whether these findings hold up when word frequency is also manipulated
within the same experiment and whether word frequency will add or
interact with stimulus quality in that context.
9 One might be tempted to suppose, therefore, that skilled readers should

yield larger effects of stimulus quality when reading only nonwords com-
pared with only exception words, on the grounds that nonwords must be
read via the nonlexical route and only the lexical route can correctly read
aloud exception words. However, this prediction is predicated on the
assumption that the nonlexical route is more affected by low stimulus
quality than the lexical route in all cases; our theory argues that this is true
when processing along the nonlexical route is not thresholded. When
nonwords (blocked or mixed) are read, we argue that the nonlexical route
is thresholded and make no claims about the effects of stimulus quality
along that route. In short, the nonword cell cannot be tested, because when
nonwords are read aloud the assumption is that both the lexical and
nonlexical routes are thresholded to explain the data from Experiment 1 (as
well as the data from Besner & Roberts, 2003; Reynolds & Besner, 2004).
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set of phenomena that elude computational models in their cur-
rently implemented forms. These data also reinforce the conclu-
sion that what seem like small changes in context can have
profound effects on how some of the underlying processes unfold
over time. Put differently, the processes underlying visual word
recognition and reading aloud appear considerably more dynamic
than generally envisioned to date.
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