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There are numerous reports in the visual word recognition literature that the joint effects of various
factors are additive on reaction time. A central claim by D. C. Plaut and J. R. Booth (2000, 2006) is that
their parallel distributed processing model simulates additive effects of stimulus quality and word
frequency in the context of lexical decision. If correct, this success would have important implications
for computational accounts of reading processes. However, the results of further simulations with this
model undermine this claim given that the joint effects of stimulus quality and word frequency yield a
nonmonotonic function (underadditivity, additivity, and overadditivity) depending on the size of the
stimulus quality effect, whereas skilled readers yield additivity more broadly. The implications of these
results both locally and more globally are discussed, and a number of other issues are noted. Additivity
of factor effects constitutes a benchmark that computational accounts should strive to meet.
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It is widely accepted that mental computation in various reading
tasks involves a number of distinct special purpose modules. A
widely entertained theoretical account assumes that processing in
one module feeds activation forward to other modules as soon as
activation begins in the original module (processing is cascaded)
and is accompanied by feedback between adjacent modules. These
assumptions appear in models with very different types of repre-
sentations (e.g., localist models vs. parallel distributed processing
[PDP] models; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Grainger & Jacobs, 1996; Harm & Seidenberg, 2004; McClelland,
1987, 1991; McClelland & Rumelhart, 1981; Perry, Ziegler, &
Zorzi, 2007; Plaut, McClelland, Seidenberg, & Patterson, 1996;
Rogers & McClelland, 2004).

It is not difficult to intuit how cascaded activation across dis-
crete representational levels combined with feedback between
some of these levels yields interactions between various experi-
mental factors. It is less obvious that such processing can also
produce additive effects of two factors on reaction time (RT). This
question is of interest given that there are numerous reports of such
additivity in the visual word recognition literature on skilled read-
ers over the past 30 years (e.g., see Table 1 for a number of
examples).

To date, the issue of additivity of factor effects has been ad-
dressed by few computational modelers working on visual word
recognition.1 A singular exception is Plaut and Booth (2000), who
asserted that their PDP model simulates additive effects of two

particular factors on RT. This claim, among others, has been the
source of some debate between Borowsky and Besner (2006;
Besner & Borowsky, 2006) and Plaut and Booth (2006). A central
aspect of this ongoing debate has not been resolved and is there-
fore revisited here.

We first briefly describe the highlights of the Plaut and Booth
(2000) model. We then revisit a central issue raised by Borowsky
and Besner (2006) and the simulation data reported by Plaut and
Booth (2006) in their response. We then reconsider this issue with
a set of new simulations. We (a) conclude that the Plaut and Booth
(2000) model does not simulate the pattern observed with skilled
readers, (b) discuss some reasons why this might be so, (c) briefly
discuss some other examples of additivity in the literature that are
not restricted to lexical decision, and (d) argue that computational
models of reading processes should view additivity of factor
effects as a basic benchmark.

Computational Models and Lexical Decision

To the best of our knowledge, only a few computational models
have been developed that purport to explain a subset of results
from the vast lexical decision literature (Seidenberg & McClel-
land, 1989—but see Besner, Twilley, McCann, & Seergobin,
1990; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;
Grainger & Jacobs, 1996; Norris, 2006; Plaut & Booth, 2000). Of
the PDP models, the one that has attracted the most attention
among reading researchers in the context of lexical decision is the
Plaut and Booth (2000) model. The article introducing this model
has more than 60 citations (a considerable achievement in a
domain in which competition is fierce) and has been discussed
favorably and at considerable length in McNamara’s (2005) mono-
graph on semantic priming.

1 Joordens, Masson, and Besner (1995) reported simulations with a
Hopfield net in which they were unable to simulate additive effects of
stimulus quality and word frequency. This failure led them to suggest that
discrete stages of processing might be necessary (e.g., see Sternberg,
1998).
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This PDP model of lexical processing (here, in the context of the
lexical decision task) has been described at some length several
times (Plaut & Booth, 2000, 2006); we therefore provide only a
brief sketch here. The architecture consists of orthographic and
semantic units, with an intervening set of hidden units (see Figure
1 from Plaut & Booth, 2000). Processing feeds forward in a
cascaded fasion from orthography to the hidden units and on to
semantics; the hidden units and the semantic layer are engaged in
interactive activation. The activation function of the units in each
layer is sigmoidal. The network is exposed to a training phase in
which word pairs are presented with differing frequencies, and a
back-propagation algorithm adjusts the connection weights until it
settles on a set of weights that allows it to differentiate between
items. Details of how a lexical decision is actually computed (over
semantics) are described in Plaut and Booth’s studies (2000,
2006).

Our initial interest centers on Plaut and Booth’s (2000) claim that
the model simulates additive effects of stimulus quality and word
frequency in lexical decision at the same time that it simulates an
interaction between stimulus quality and semantic priming in which

targets preceded by an unrelated prime are more impaired by low
stimulus quality (relative to high stimulus quality) than are targets
preceded by a related prime (Borowsky & Besner, 1993; McDonald,
1980). We also consider the joint effects of stimulus quality and word
frequency in lexical decision when there is no formal “prime” event,
given that this is the prototypical context in which additive effects of
these factors on RT have been observed with skilled readers (see
Balota & Abrams, 1995; Becker & Killion, 1977; O’Malley, Reyn-
olds, & Besner, 2007; Norris, 19842; Plourde & Besner, 1997; Stan-
ners, Jastrzembski, & Westbook, 1975; Wilding, 19882; Yap &
Balota, 2007; note that Plaut & Booth, 2000, did not report any
simulations in this context).

On Additivity Between the Joint Effects of Word
Frequency and Stimulus Quality in the Plaut and Booth

(2000) Model

Plaut and Booth (2000, 2006) simulated a reduction in stimulus
quality by reducing the strength of external input to the ortho-
graphic units of the model (see Borowsky & Besner’s, 2006, p. 183
comments in this regard). Word frequency is manipulated during
the training stage of the network only. On each trial, high-
frequency words were twice as likely to appear as low-frequency
words so that on average the network had twice as much experi-
ence with high- as opposed to low-frequency words.

Plaut and Booth (2000) argued that the model simulates addi-
tivity between these two factors because of the architecture and
particularly because of the processing dynamics associated with
the sigmoidal activation function (see Figure 2 from Plaut and
Booth, 2000).

Borowsky and Besner (2006) argued that it should therefore not
be possible to produce both additive and interactive effects in the
same region of the sigmoidal activation function. Additive effects
of two factors should be seen if all four points in a 2 � 2 factorial
design fall on the linear portion of the activation function, whereas
if one or more points are not equidistant from the center relative to
the other points, then an interaction should be seen.

2 One of Wilding’s (1988) experiments, with a long intertrial interval,
produced an interaction, as did the long intertrial interval condition in
Norris’s (1984) study. Wilding attributed the interaction to the joint effects
of the long foreperiod and attention, arguing that it had nothing to do with
reading-related processes.

100 semantic units

100 hidden units

18 orthographic units

Figure 1. The architecture of the network. Ovals represent groups of
units, and arrows represent full connectivity between these groups. Re-
printed from “Individual and Developmental Differences in Semantic
Priming: Empirical and Computational Support for a Single-Mechanism
Account of Lexical Processing,” by D. C. Plaut and J. R. Booth, 2000,
Psychological Review, 107, p. 801. Copyright 2000 by the American
Psychological Association.

Table 1
Examples of Additive Effects of Various Factors Reported in the
Literature

Lexical decision Reading aloud

1. Stimulus quality and word
frequency

1. Stimulus quality and neighborhood
density (for nonwords)

Stanners et al. (1975) Reynolds & Besner (2004)
Becker & Killion (1977)
Wilding (1988)
Borowsky & Besner (1993)
Plourde & Besner (1997)
Yap & Balota (2006)

2. Stimulus quality and semantic
priming (when relatedness
proportion is .25)

2. Stimulus quality and letter length
(for nonwords) Besner & Roberts
(2003)

Stolz & Neely (1995)
Brown, Stolz, & Besner
(2006)

3. Stimulus quality and semantic
priming (when [spatial]
cueing proportion is low)

3. SOA and letter length/whammies
(for nonwords) in the PRP
paradigm

Stolz & Stevanovski (2004) Reynolds & Besner (2006)
4. Semantic priming and

[spatial] cueing (when cue
proportion is low)
Stolz & McCann (2000)

4. SOA and word frequency (in the
PRP paradigm)
McCann, Remington, & Van Selst
(2000)

Stolz & Stevanovski (2004)
5. Spatial cueing and word

frequency/lexicality
McCann, Folk, & Johnston
(1992)

6. SOA and word frequency (in
the Psychological Refractory
Period [PRP] paradigm)
McCann, Remington, & Van
Selst (2000)

Note. From “Visual Language Processing and Additive Effects of Mul-
tiple Factors on Timed Performance: A Challenge for the Interactive
Activation Framework?” by D. Besner, September 7, 2006, PsyCrit, p. 2.
Copyright 2006 by Derek Besner. Reprinted with permission. SOA �
stimulus onset asynchrony.
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In reply, Plaut and Booth (2006) reported a simulation in which
both additive and interacting effects of several factors are observed
when the joint effects of two factors that produce additive effects
fall within the range in which one of these factors and a third factor
produce an interaction. This apparent success nonetheless led Plaut
and Booth (2006) to conclude that

Insofar as this pattern of results is precluded by Plaut and Booth’s
sigmoid-based explanation of additive and interactive effects—as
argued by Borowsky and Besner (2006)—the results suggest that the
account only approximates the actual behavior of the model. (p. 199)

In short, this simulation enterprise is running ahead of research-
ers’ current ability to understand what the model is doing in detail.
Perhaps this is an inevitable stage in the development of compu-
tational models with distributed representations. It is nonetheless
disquieting not to be able to understand such details.

Replication

The first order of business here is to show that, in our hands,
the Plaut and Booth (2000) model replicates the data reported

Figure 2. A depiction of how nonlinearities in the sigmoid activation function for semantic units in a
distributed attractor network can give rise to greater priming (i.e., the difference in performance following related
[Rel] vs. unrelated [Unrel] primes) of low- versus high-frequency target words (LF and HF, respectively) for
participants with high perceptual ability (H Ability; narrow-lined regions) but approximately equal priming for
low- and high-frequency words for participants with low perceptual ability (L Ability; wide-lined regions). The
combination of arrows at the bottom depicts the separate contributions of perceptual ability, target frequency
(Freq), and priming context, which are summed together to form the input to a given semantic unit (indicated
by the small vertical lines on the x-axis), to which the sigmoid function is applied to determine the activation
of the unit. Note that relative magnitudes of these contributions are assumed to be greater for high- compared
with low-ability participants, greater for high- compared with low-frequency targets, and positive for related
primes but negative for unrelated primes (reflecting both facilitation and inhibition, respectively). Moreover, the
magnitudes of the contributions of target frequency and priming context are assumed to be greater for
high-ability participants because they can process both primes and targets more effectively than low-ability
participants. The bottom portion of the sigmoid function is omitted for clarity. Reprinted from “Individual and
Developmental Differences in Semantic Priming: Empirical and Computational Support for a Single-Mechanism
Account of Lexical Processing,” by D. C. Plaut and J. R. Booth, 2000, Psychological Review, 107, p. 790.
Copyright 2000 by the American Psychological Association.
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by Plaut and Booth (2006). We therefore started by running the
model with Plaut and Booth’s (2006) stimulus onset asynchrony
(SOA) and stimulus duration parameters in order to examine the
joint effects of stimulus quality and word frequency, and stim-
ulus quality and semantic relatedness. The top panel of Table 2
shows the data from Plaut and Booth (2006). The middle panel
depicts the data obtained when we ran the model. The bottom
panel shows the difference scores between their data and the
present results. The largest difference between the Plaut and
Booth (2000) results and the present simulation is .002 units
(RTs from the model). The results of the present simulations
therefore appear to be a good (if not perfect) match to those
reported by Plaut and Booth (2006).3

These data are also reported in Figure 3 in a different format so
as to make it easier for the reader to appreciate the pattern. Given
that the magnitude of some of the effects is very small, the
magnitude of the interaction (represented by a single point) be-
tween stimulus quality and word frequency is plotted in the left-
hand panel, and the magnitude of the interaction between stimulus
quality and semantic relatedness is plotted in the right-hand panel.
Given this successful replication, we now consider Plaut and
Booth’s (2000, 2006) claim that the model produces additive
effects of stimulus quality and word frequency.

An Underadditive Trend Between Stimulus Quality and
Word Frequency

Our first comment concerns the unusual trend Besner and
Borowsky (2006) noted in the Plaut and Booth (2006) simulation
data and that we reproduced here in the left-hand panel of Figure 3.
That is, low stimulus quality slows high-frequency words more
than do low-frequency words (relative to the high stimulus quality
condition)—a pattern that has never been reported in studies of
skilled readers. This underadditivity is not significant (despite
being nearly twice the magnitude of the significant interaction

between semantic relatedness and stimulus quality seen in the
right-hand panel). Nonetheless, we take this as a sign that the
model may not capture what it is that skilled readers produce. We
return to this issue when we consider the joint effects of stimulus
quality and word frequency in the absence of a prime event.

How Is the Size of the Stimulus Quality Effect in the
Model Related to the Size of the Stimulus Quality Effect

in Skilled Readers?

It is also apparent from Figure 3 that virtually perfect additivity
is observed when reduced activation strength (representing low-
ered stimulus quality) is .75. This is the largest reduction in
stimulus quality that Plaut and Booth (2006) tested in response to
Borowsky and Besner’s (2006) concern that the range of stimulus
quality tested by Plaut and Booth (2000) was very small indeed
(.82 [reduced activation] vs. full activation of .90).

We remain unsatisfied by the small range tested to date, given
that stimulus quality and word frequency have additive effects in
skilled readers even with remarkably large stimulus quality ma-
nipulations. For example, Stanners et al. (1975), Yap and Balota
(2007), and O’Malley et al. (2007), each of whom used a different
method of reducing stimulus quality, all reported additive effects
of stimulus quality and word frequency when the main effect of
stimulus quality is at least 100 ms. Indeed, Borowsky and Besner
(1993) reported statistically additive effects of stimulus quality and
word frequency when the main effect of stimulus quality was over
200 ms.

Plaut and Booth’s (2006) Estimates of the Magnitude of
the Stimulus Quality Effect

In their initial report, Plaut and Booth (2000, p. 803) conducted
a simple linear regression to relate their model’s settling times to
human RTs. Using the results of this regression, they arrived at an
estimate of 35.3 ms for the magnitude of the stimulus quality effect
in the model when 0.82 was the activation strength on low stimulus
quality trials. In response to Borowsky and Besner’s (2006) con-
cern about the small size of the stimulus quality manipulation,
Plaut and Booth (2006) replicated the simulation using 0.82 as the
input strength and added a simulation using a stronger stimulus
quality manipulation (reducing the input strength in the low stim-
ulus quality condition from 0.82 to 0.75). Observing that reducing
the input strength to 0.75 resulted in a 2.54-fold increase in the
magnitude of the stimulus quality effect in model RTs, Plaut and
Booth (2006) multiplied their original estimate of 35.3 (based on
the simulations in 2000) by 2.54 (based on the simulations in 2006)
to arrive at a new estimate of 89.7 ms in terms of human RTs.

3 The reader may wonder why any discrepancies exist at all. Though we
are unable to verify 100% of the output from our simulations, Plaut and
Booth (2006) kindly provided a sample of their output from the simulations
conducted in 2006. For that sample, the output from our replication
simulations matched exactly. Given this consistency in the two sets of
simulation outputs, we assume that the discrepancies arise from differences
in the details of the postsimulation analyses—we did our best to match the
procedures described in Plaut and Booth’s (2000, 2006) studies, but slight
variations may have been introduced where the procedures were less
clearly specified.

Table 2
Settling Times (in Cycles) for Target Words in the Model as
Reported by Plaut and Booth (2006) and in the Present
Simulations

Activation
strength

High frequency Low frequency

Related Unrelated Related Unrelated

Plaut and Booth (2006)

0.90 4.437 4.483 4.609 4.684
0.82 4.463 4.516 4.625 4.705
0.75 4.497 4.555 4.658 4.749

Present simulations

0.90 4.436 4.482 4.609 4.683
0.82 4.463 4.516 4.625 4.705
0.75 4.496 4.554 4.658 4.747

Difference scores

0.90 �0.001 �0.001 0.000 �0.001
0.82 0.000 0.000 0.000 0.000
0.75 �0.001 �0.001 0.000 �0.002
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Given that the data from the simulations in Plaut and Booth’s
(2000) study were not reported and have since been lost (Plaut &
Booth, 2006, footnote p. 197), it would seem prudent to redo the
regressions to ensure that the new simulations conducted in 2006
replicate the estimates from the original simulations for the 0.82
versus the 0.90 simulations before using the new simulation (0.75)
to scale the estimate.

Our Estimates of the Magnitude of the Stimulus Quality
Effect

Here we undertake to provide estimates of the magnitude of
the stimulus quality effect at various levels of input strength
based only on the current simulations. One approach might be
to treat each level of low input strength as a separate experiment
and thus use those data to produce estimates of the magnitude
of the stimulus quality manipulation separately for each exper-
iment. However, because this approach yields regression equa-
tions that differ considerably from each other, the implication
would be that the relationship between model time and human
RT differs depending on the level of low input strength.4 A
better approach is to choose one condition of low input strength
(low stimulus quality) and apply the resulting regression for-
mula to all other simulations. There is no theoretical reason to
choose one level of input strength over another as best repre-
senting the human experiment conducted in Plaut and Booth’s
(2000) study. Consequently, we conducted individual regres-
sion analyses for each level of low input strength and regressed
the model’s reported RTs against the adult data reported in
Plaut and Booth’s (2000) study.5 In all cases, the same simu-

lation data (that for an input strength of 0.90) was used to
reflect the “high perceptual ability” data. We then used each of
these regression estimates to produce estimates of the effect at
all levels of input strength. The result was four estimates of the
magnitude of the stimulus quality manipulation for each level of
input strength simulated. (In the interest of completeness, we
conducted the regression analyses for both levels of input
strength reported in Plaut and Booth’s, 2006, study as well as
for the additional simulations presented later in this article.)
Because the model under discussion is meant to represent a
skilled reader, we used the human RTs reported in Plaut and
Booth’s (2000) experiments with adult participants. Table 3
provides a summary of the regression analyses when fitting
models of the form Y � mX � b, where Y is the human RT data
from each condition reported in Plaut and Booth’s (2000, Ap-
pendix B) study, X is the corresponding model settling time for
each condition, m is the slope, and b is the intercept.

First, it is important to note that the 35.3-ms stimulus quality
effect in the 0.82 condition that was reported in Plaut and
Booth’s (2000) study was not replicated using the simulation

4 We thank Dave Plaut for pointing out this problem with the described
approach.

5 Because the results we are discussing are taken from Plaut and Booth’s
(2006) study, in which the analysis was collapsed across SOA, the human
data used here represent the collapsing of the adult data from Experiments
1 (long SOA) and 3 (short SOA) in Plaut and Booth’s (2000) study.
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Figure 3. Replication of Plaut and Booth’s (2006) simulations. Following Plaut and Booth (2006), these data
are collapsed across both prime-target stimulus onset asynchrony and prime duration. The interaction scores
between stimulus quality and word frequency can be seen in the left panel (collapsed across semantic context)
and between stimulus quality and semantic context in the right panel (collapsed across word frequency). The
horizontal line at 0 represents perfect additivity. Values below the line represent underadditivity, and values
above the line represent overadditivity. The standard error associated with each interaction is indicated by the
error bar.
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data from 2006,6 regardless of which model data are used to
represent the low stimulus quality condition. Second, Plaut and
Booth (2000) used the human data and simulation data from
their Experiment 1 and applied the resulting coefficients to all
subsequent estimates. This seems a somewhat arbitrary choice
(Why Experiment 1 rather than Experiment 3?). The present
analysis presents estimates of the stimulus quality effect size for
all conditions, using each simulation as the baseline or Plaut
and Booth’s (2000) equivalent condition in turn. The key point
is that regardless of which simulation is used to represent the
human results in Plaut and Booth’s (2000) study, the estimates
of the stimulus quality manipulations remain well within the
range of stimulus quality effects reported in the literature.
Indeed, the largest estimate of the stimulus quality effect size is
109 ms, which is very close to where Stanners et al. (1975),
O’Malley et al. (2007), and Yap and Balota (2007) all reported
statistically additive effects of stimulus quality and word fre-
quency.

These new regression results also highlight another problem
with these estimates. That is, a theoretical dilemma is raised by the
large negative intercept coefficients reported in Table 3 (where
low stimulus quality is represented by activation strengths of 0.82,
0.75, 0.70). The intercept can be thought of as the amount of time
that would be required to produce a response in the absence of any
of the processing presumably described by the model. Under this
interpretation, the intercept should encapsulate any precognitive
and postcognitive processing or motor-response times. If one ig-
nores extrasensory perception for the moment, it is theoretically
untenable that these values would be negative. It is perhaps more
reasonable to constrain the intercept to be no smaller than 0 and
use those slopes to estimate human RTs. Fitting linear regressions
to models of the form Y � mX � 0 (i.e., constraining the intercept
to be 0) produces the results in Table 4. The estimates of the

stimulus quality effects are now reduced in these models (and are
remarkably stable).7

Given this regression analysis, we are confident that decreasing
the input strength to as low as 0.65 provides a better test of the
model’s performance across the range of stimulus quality manip-
ulations found in the literature with skilled readers.

The Joint Effects of Stimulus Quality and Word
Frequency in the Presence of a Prime Event

The results of this simulation (collapsed across SOA, prime
duration, and semantic relatedness) can be seen on the right-hand
side of Figure 4. We confirm Plaut and Booth’s (2006) report that
at 0.82 and 0.75 the interaction between stimulus quality and word
frequency is not significant (0.82: F[1, 126] � 1.88, p � .10,
MSE � .002; 0.75: F[1, 126] � 1, p � .40, MSE � .005).
However, when the strength of the external input to the model is
reduced beyond .75 (0.70 and 0.65), the model now produces a
significant interaction between stimulus quality and word fre-
quency that has typically not been observed in the literature on

6 Our interpretation of the procedures described in Plaut and Booth’s (2000)
study suggests that the human adult data collapsed across Experiments 1 and
3 are most appropriate to the present analysis. However, to reassure ourselves
that the failure to produce results more similar to theirs was not simply a matter
of using the wrong human data, we conducted similar regressions with the
children’s RTs and with the adult RTs on the subset of items presented to the
children. When we used the children’s data, we fared only marginally better,
estimating the stimulus quality effect at approximately 9 ms.

7 Constraining the models in this way reduces the adjusted r2. This is to
be expected because models of the form Y � mX � b have two freely
varying parameters (m and b), whereas models of the form Y � mX have
only one (m). However, the benefit of having the extra parameter must be
weighed against the cost of having a model that is theoretically impossible.

Table 3
Results From Regressing Human Reaction Times Against Model
Settling Times and Estimates of the Magnitude of the Stimulus
Quality (SQ) Manipulation

Alternative analysis
Slope
(m)

Intercept
(b)

Estimated SQ effect sizes

0.82 0.75 0.70 0.65

Raw model settling
timesa

0.025 0.061 0.154 0.385

Model data used for
regressionb

Low input � 0.82 230 �348 6 ms 14 ms 35 ms 89 ms
Low input � 0.75 284 �598 7 ms 17 ms 44 ms 109 ms
Low input � 0.70 246 �438 6 ms 15 ms 38 ms 95 ms
Low input � 0.65 139 42 3 ms 8 ms 21 ms 54 ms

Note. Models of the form Y � mX � b, where Y is the human reaction
time data from each condition reported in Plaut and Booth’s (2000,
Appendix B) study, and X is the corresponding model settling time for each
condition.
a The SQ effect sizes for the raw model settling times are the difference in
settling times between the high and low activation strength conditions,
collapsed across semantic context and word frequency. Human RTs are
estimated from the model parameters (slope and intercept). b All models
used 0.90 as the baseline (high stimulus quality).

Table 4
Results From Regressing Human Reaction Times Against Model
Settling Times and Estimates of the Magnitude of the Stimulus
Quality (SQ) Manipulation

Alternative analysis
Slope
(m)

Intercept
(b)

Estimated SQ effect sizes

0.82 0.75 0.70 0.65

Raw model settling
timesa

0.025 0.061 0.154 0.385

Model data used for
regressionb

Low input � 0.82 154 0 4 ms 9 ms 24 ms 59 ms
Low input � 0.75 153 0 4 ms 9 ms 24 ms 59 ms
Low input � 0.70 152 0 4 ms 9 ms 23 ms 59 ms
Low input � 0.65 148 0 4 ms 9 ms 23 ms 57 ms

Note. Models of the form Y � mX (intercept constrained to 0), where Y
is the human reaction time data from each condition reported in Plaut and
Booth’s (2000, Appendix B) study, and X is the corresponding model
settling time for each condition.
a The SQ effect sizes for the raw model settling times are the difference in
settling times between the high and low activation strength conditions,
collapsed across semantic context and word frequency. Human RTs are
estimated from the model parameters (slope and intercept). b All models
used 0.90 as the baseline (high stimulus quality).
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skilled readers (0.70: F[1, 125] � 4.09, p � .05, MSE � .069;
0.65: F[1, 124] � 12.55, p � .005, MSE � .280).

The Joint Effect of Stimulus Quality and Word Frequency
When There Is No Prime Event

The joint effects of stimulus quality and word frequency have
most often been examined in the context of a so-called “running”
lexical decision, in which there is no prime event between targets
(e.g., Balota & Abrams, 1995; Becker & Killion, 1977; Norris,
1984; Plourde & Besner, 1997; O’Malley et al., 2007; Stanners et
al., 1975; Wilding, 1988; Yap & Balota, 2007). In our final set of
simulations, we considered the effect of the full range of stimulus
quality tested here (.90, .82, .75, .70, .65) on performance when
there is no prime event. The absence of a prime event in the model
eliminates the variance in target processing attributable to prime
processing, which should increase power to detect the underaddi-
tive interaction trend noted earlier when the reduction in the size of
the stimulus quality effect is small. These data can be seen in
Figure 5.

When the reduction in stimulus quality is small (0.82 and 0.75
input strength; the levels reported in Plaut and Booth’s, 2006,
study), high-frequency words are more impaired than low-
frequency words (0.82: F[1, 123] � 6.21, p � .05, MSE � .002;
0.75: F[1, 122] � 4.32, p � .05, MSE � .004). We emphasize,
again, that this underadditive pattern has never been reported in
studies of skilled readers.

When the reduction in stimulus quality is slightly larger (.70
input strength), additivity is seen, F(1, 122) � 1.37, p � .20,
MSE � .044. However, as the reduction in stimulus quality in-
creases (.65 input strength), low-frequency words are more im-

paired than high-frequency words, F(1, 118) � 8.22, p � .01,
MSE � .159).8

In short, the joint effects of stimulus quality and word frequency
in the Plaut and Booth (2000) model are not constant. Instead,
three patterns of performance (underadditive, additive, and overad-
ditive) are observed as the size of the stimulus quality manipula-
tion increases from small to large. The literature on skilled readers
displays no such trend. Instead, across a wide range, the joint
effects of stimulus quality and word frequency are statistically
additive.

General Discussion

It is not immediately obvious why this implemented model
fails to produce systematic additivity. One possibility is that the
presence of feedback between the hidden units and semantics
works against it. If this is true then interactive activation (IA),
currently seen as a fundamental principle of cognition in some
quarters, would be rather more limited (indeed, a number of
researchers argue that IA is more limited than generally ac-
knowledged: e.g., see Borowsky & Besner, 1993; Brown, Stolz,
& Besner, 2006; O’Malley et al., 2007; Robidoux, Stolz, &
Besner, 2007; Stolz & Neely, 1995; Smith & Besner, 2001; Yap
& Balota, 2007). Further simulation work that addresses the
general issue of whether it is possible to obtain additive effects
of two factors in the presence of processes engaged in interac-
tive activation would therefore appear to be an important goal.

Another possibility is that the ratio of cascade rates across
different levels needs consideration given what is known about the

8 When we applied the outlier removal procedure described in Plaut and
Booth’s (2000, 2006) studies to the output from the “no prime” simula-
tions, some items were left with no trials remaining in certain cells. These
items were not included in the analysis, resulting in the decreased degrees
of freedom reported here.
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Figure 4. Following Plaut and Booth (2006), these data are collapsed
across both prime-target stimulus onset asynchrony and prime duration.
Depicted here are interaction scores between stimulus quality and word
frequency, with the range of activation strength extended to include .70 and
.65. The horizontal line at 0 represents perfect additivity. Values below the
line represent underadditivity, and values above the line represent overad-
ditivity. The white bars are reproduced from the left panel of Figure 3 (note
that they are on a different scale), and the black bars represent stronger
stimulus quality manipulations. The standard error associated with each
interaction is indicated by the error bar.
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Figure 5. The interaction scores between stimulus quality and word
frequency when there is no prime event. The horizontal line at 0
represents perfect additivity. Values below the line represent underad-
ditivity, and values above the line represent overadditivity. The stan-
dard error associated with each interaction is indicated by the error bar.
RT � reaction time.
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conditions that produce additivity in the context of models that are
feedforward only (see McClelland, 1979; Roberts & Sternberg,
1993). Perhaps cascade rates and IA play a joint role in making
systematic additivity so difficult to obtain. Whatever the an-
swer(s), it seems clear that there are qualitative differences be-
tween the implemented model and the data from skilled readers
that undermine the Plaut and Booth (2000) model in its current
form.

It should not go unmentioned that other investigators (e.g.,
Borowsky & Besner, 1993; O’Malley et al., 2007; Plourde &
Besner, 1997; Yap & Balota, 2007) have suggested a rather
different approach to explaining why stimulus quality and word
frequency are additive in the context of lexical decision. They
proposed that the output from a processing stage affected by
stimulus quality is thresholded and that the effect(s) of word
frequency occur further downstream. This approach represents
a radical departure from the assumptions underlying all com-
putational models currently on the table (e.g., Coltheart et al.,
2001; Harm & Seidenberg, 2004; Perry et al., 2007; Plaut et al.,
1996; Seidenberg & McClelland, 1989), but of course it is
based on Sternberg’s seminal idea of serially organized and
discrete processing stages (Roberts & Sternberg, 1993; Stern-
berg, 1969, 1998, 2001). To be sure, the investigators proposing
thresholded processing so as to account for additive effects of
stimulus quality and word frequency in the context of lexical
decision (and in particular, with nonword foils that are ortho-
graphically legal and that are not pseudohomophones) restrict
this assumption to early processing. It remains to be seen
whether other processes are best explained in terms of a cas-
cade, IA, or thresholding.

Is Additivity of Stimulus Quality and Word Frequency
Restricted to the Lexical Decision Task?

Yap and Balota (2007) and O’Malley et al. (2007) have
reported that this pattern of additivity between stimulus quality
and word frequency is not observed in other tasks; in both
reading aloud and semantic categorization, these two factors
interact. This observation might incline some theorists to view
the lexical decision data (and task?) as less important than, for
example, the reading aloud data. It turns out, however, that the
interaction observed in reading aloud is not task specific but is
instead modulated by the presence versus absence of nonwords
in the stimulus list. Additivity is again observed in reading
aloud when nonwords are mixed with the words (O’Malley &
Besner, 2007).

Other Examples of Additive Effects

We have restricted the simulation work in the present article
to the joint effects of stimulus quality and word frequency in the
context of lexical decision. However, there are other examples
of additive effects in the visual word recognition literature that
are not restricted to this task (see Table 1 from Besner, 2006).

Beyond the examples summarized by Besner (2006), there
are a number of reports that the interaction between stimulus
quality and semantic priming (or relatedness) is modulated by

strength of association9 and by relatedness proportion10 in both
lexical decision (Brown et al., 2006; Robidoux et al., 2007;
Stolz & Neely, 1995) and reading aloud (Ferguson, Robidoux,
& Besner, 2007). When strength of association and/or related-
ness proportion is low, semantic relatedness and stimulus qual-
ity are additive factors in both tasks. Such results are likely
problematic for both the Plaut and Booth (2000) model and
other IA computational models currently on the table, given that
there are few restrictions to IA in the latter cases and our
suspicion that IA models have difficulty producing additivity.

Conclusion

There is currently no evidence that any computational model of
visual word recognition and reading aloud on the table is able to
simulate systematically additive effects of two factors on RT. This
situation exists despite the fact that the first instance of additive
effects in this domain was reported over a quarter of a century ago.

Coltheart et al. (2001) and Perry et al. (2007) have argued that
in order to assess the success of a computational model, research-
ers need to develop a set of benchmarks against which perfor-
mance can be measured. We suggest that many of the examples of
additivity reported in the literature are overdue to be considered
benchmarks.

9 The interaction is present when strength of association between prime
and target is relatively strong, but it disappears when the strength of
association is weak, regardless of whether the strength of association
manipulation (strong vs. weak) is blocked (Stolz & Neely, 1995) or
intermixed (Robidoux et al., 2007).

10 In both of the cited experiments, the interaction between relatedness
and stimulus quality is eliminated when only 25% of word trials are related.

References

Balota, D. A., & Abrams, R. A. (1995). Mental chronometry: Beyond onset
latencies in the lexical decision task. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21, 1289–1302.

Becker, C. A., & Killion, T. H. (1977). Interaction of visual and cognitive
effects in word recognition. Journal of Experimental Psychology: Hu-
man Perception and Performance, 3, 389–401.

Besner, D. (2006). Visual language processing and additive effects of
multiple factors on timed performance: A challenge for the interactive
activation framework? Retrieved July 16, 2007, from PsyCrit Web site:
http://psycrit.com/wikiup/6/6a/Besner2006.pdf

Besner, D., & Borowsky, R. (2006). Postscript: Plaut and Booth’s (2006)
new simulations: What have we learned? Psychological Review, 113,
194–195.

Besner, D., Twilley, L., McCann, R. S., & Seergobin, K. (1990). On the
association between connectionism and data: Are a few words neces-
sary? Psychological Review, 97, 432–446.

Borowsky, R., & Besner, D. (1993). Visual word recognition: A multistage
activation model. Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 19, 813–840.

Borowsky, R., & Besner, D. (2006). Parallel distributed processing and
lexical-semantic effects in visual word recognition: Are a few stages
necessary? Psychological Review, 113, 181–194.

Brown, M., Stolz, J. A., & Besner, D. (2006). Dissociative effects of
stimulus quality on semantic and morphological context effects in visual
word recognition. Canadian Journal of Experimental Psychology, 60,
190–199.

249OBSERVATIONS



Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001).
DRC: A dual route cascaded model of visual word recognition and
reading aloud. Psychological Review, 108, 204–256.

Ferguson, R., Robidoux, S., & Besner, D. (2007). Reading aloud: On the
joint effects of semantic context and stimulus quality as modulated by
relatedness proportion. Manuscript in progress.

Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual
word recognition: A multiple read-out model. Psychological Review,
103, 518–565.

Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of
words in reading: Cooperative division of labor between visual and
phonological processes. Psychological Review, 111, 662–720.

Joordens, S., Masson, M. E. J., & Besner, D. (1995, November). Connec-
tionist models and additive effects: Are distinct stages of processing
necessary? Poster session presented at the annual meeting of the Psy-
chonomic Society, Los Angeles.

McClelland, J. L. (1979). On the time relations of mental processes: An
examination of systems of processes in cascade. Psychological Review,
86, 287–330.

McClelland, J. L. (1987). The case for interactionism in language process-
ing. In M. Coltheart (Ed.), Attention and performance XII: The psychol-
ogy of reading (pp. 3–36). Hillsdale, NJ, England: Erlbaum.

McClelland, J. L. (1991). Stochastic interactive processes and the effect of
context on perception. Cognitive Psychology, 23, 1–44.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation
model of context effects in letter perception: I. An account of basic
findings. Psychological Review, 88, 375–407.

McDonald, J. E. (1980). An information processing analysis of word
recognition. Unpublished doctoral dissertation, New Mexico State Uni-
versity.

McNamara, T. P. (2005). Semantic priming: Perspectives from memory
and word recognition. New York: Psychology Press.

Norris, D. (1984). The effects of frequency, repetition and stimulus quality
in visual word recognition. Quarterly Journal of Experimental Psychol-
ogy: Human Experimental Psychology, 36(A), 507–518.

Norris, D. (2006). The Bayesian reader: Explaining word recognition as an
optimal Bayesian decision process. Psychological Rreview, 113, 327–
357.

O’Malley, S., & Besner, D. (2007, June). Visual word recognition: Are the
processing dynamics fixed? Paper presented at the annual meeting of the
Canadian Society for Brain, Behaviour, and Cognitive Science, Victoria,
British Columbia, Canada.

O’Malley, S., Reynolds, M. G., & Besner, D. (2007). Qualitative differ-
ences between the joint effects of stimulus quality and word frequency
in reading aloud and lexical decision: Extensions to Yap and Balota
(2007). Journal of Experimental Psychology: Learning, Memory, and
Cognition, 33, 451–458.

Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling
in the development of computational theories: The CDP� model of
reading aloud. Psychological Review, 114, 273–315.

Plaut, D. C., & Booth, J. R. (2000). Individual and developmental differ-
ences in semantic priming: Empirical and computational support for a
single-mechanism account of lexical processing. Psychological Review,
107, 786–823.

Plaut, D. C., & Booth, J. R. (2006). More modeling but still no stages:
Reply to Borowsky and Besner. Psychological Review, 113, 196–200.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996).
Understanding normal and impaired word reading: Computational prin-
ciples in quasi-regular domains. Psychological Review, 103, 56–115.

Plourde, C. E., & Besner, D. (1997). On the locus of the word frequency
effect in visual word recognition. Canadian Journal of Experimental
Psychology, 51, 181–194.

Roberts, S., & Sternberg, S. (1993). The meaning of additive reaction-time
effects: Tests of three alternatives. In D. E. Meyer & S. Kornblum
(Eds.), Attention and performance XIV: Synergies in experimental psy-
chology, artificial intelligence, and cognitive neuroscience (pp. 611–
653). Cambridge, MA: MIT Press.

Robidoux, S., Stolz, J. A., & Besner, D. (2007, June). Visual word
recognition: Control over interactive activation. Paper presented at the
annual meeting of the Canadian Society for Brain, Behaviour, and
Cognitive Sciences, Victoria, British Columbia, Canada.

Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel
distributed processing approach. Cambridge, MA: MIT Press.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, develop-
mental model of word recognition and naming. Psychological Review,
96, 523–568.

Smith, M. C., & Besner, D. (2001). Modulating semantic feedback in
visual word recognition. Psychonomic Bulletin and Review, 8, 111–117.

Stanners, R. F., Jastrzembski, J. E., & Westbrook, A. (1975). Frequency
and visual quality in a word–nonword classification task. Journal of
Verbal Learning and Verbal Behavior, 14, 259–264.

Sternberg, S. (1969). The discovery of processing stages: Extensions of
Donders’ method. Acta Psychologica, Amsterdam, 30, 276–315.

Sternberg, S. (1998). Discovering mental processing stages: The method of
additive factors. In D. Scarborough& S. Sternberg (Eds.), Methods,
models, and conceptual issues: An invitation to cognitive science (Vol
4., pp. 703–863). Cambridge, MA: MIT Press.

Sternberg, S. (2001). Separate modifiability, mental modules, and the use
of pure and composite measures to reveal them. Acta Psychologica, 106,
147–246.

Stolz, J. A., & Neely, J. H. (1995). When target degradation does and does
not enhance semantic context effects in visual word recognition. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 21,
596–611.

Wilding, J. M. (1988). The interaction of word frequency and stimulus
quality in the lexical decision task: Now you see it, now you don’t.
Quarterly Journal of Experimental Psychology: Human Experimental
Psychology, 40(A), 757–770.

Yap, M. J., & Balota, D. A. (2007). Additive and interactive effects on
response time distributions in visual word recognition. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 33, 274–
296.

Received March 19, 2007
Revision received July 13, 2007

Accepted July 16, 2007 �

250 OBSERVATIONS


