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M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen (2001) implemented their
conflict-monitoring hypothesis of cognitive control in a series of computational models. The authors of
the current article first demonstrate that M. M. Botvinick et al.’s (2001) conflict-monitoring Stroop model
fails to simulate L. L. Jacoby, D. S. Lindsay, and S. Hessels’s (2003) report of an item-specific
proportion-congruent (ISPC) effect in the Stroop task. The authors then implement a variant of M. M.
Botvinick et al.’s model based on the assumption that control must be able to operate at the item level.
This model successfully simulates the ISPC effect. In addition, the model provides an alternative to
M. M. Botvinick et al.’s explanation of the list-level proportion-congruent effect in terms of an ISPC
effect. Implications of the present modeling effort are discussed.
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Botvinick, Braver, Barch, Carter, and Cohen’s (2001) conflict-
monitoring hypothesis proposes a neurally plausible mechanism
for cognitive control. Evidence consistent with this hypothesis has
accumulated across a number of behavioral, imaging (Carter et al.,
2000; Kerns et al., 2004), and neurophysiological studies (Yeung,
Botvinick, & Cohen, 2004). Botvinick et al. (2001) implemented
this idea in a series of computational models that successfully
simulated results from both behavioral and functional magnetic
resonance imaging studies of control-related phenomena. Here, we
extend Botvinick et al.’s conflict-monitoring model of Stroop
performance to another control-related phenomenon heretofore
unexamined from the conflict-monitoring perspective. Although
the initial modeling effort was successful, it requires a critical
change to the model’s architecture. This change has important
implications for a more general understanding of cognitive control.

Cognitive Control

Cognitive control is required to adapt behavior to situational
demands. The most common example of cognitive control comes
from studies of the Stroop task (see MacLeod, 1991). In the Stroop
task, participants are presented with color words printed in various
colors (i.e., the word red in BLUE) and asked to respond to the

print color of the color word. Here, participants must suppress their
habitual tendency to read the word in order to perform the less
practiced task of naming the print color. Lack of cognitive control
would lead to behavior dominated by habitual responses (i.e.,
reading the color word).

The Conflict-Monitoring Hypothesis

The conflict-monitoring hypothesis posits a neural mechanism
that supports the adaptive control of behavior in situations like the
Stroop task. According to the conflict-monitoring hypothesis, a
specific subsystem of the human brain, the anterior cingulate
cortex (ACC), responds to conflict in information processing. The
detection of conflict triggers adjustments in cognitive control (e.g.,
by reinforcing goal representations) via the prefrontal cortex in
order to reduce conflict in subsequent performance (Botvinick,
Cohen, & Carter, 2004). For example, on an incongruent Stroop
trial, the color word and the display color produce response con-
flict. This response conflict is detected by the ACC, which signals
the prefrontal cortex that is responsible for enhancing top-down
control (e.g., by enhancing the strength of goal representation),
thus reducing conflict (Botvinick et al., 2001, 2004).

The Conflict-Monitoring Model of Stroop Performance

Botvinick et al. (2001) implemented their conflict-monitoring
hypothesis in a series of neural network simulations. Their ap-
proach consisted of adding a conflict-monitoring module, repre-
senting the ACC, to extant computational models of various tasks
(e.g., Stroop). In these simulations, activation within the conflict-
monitoring module increased or decreased as a function of the
amount of conflict between response units in the neural network.
Using this basic architecture, Botvinick et al. simulated both
behavioral manifestations of cognitive control and brain activation
in the ACC.
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For the present purposes, the most relevant of these simulations
is the one relating to the Stroop effect. To simulate the Stroop
effect, Botvinick et al. (2001) used a version (Cohen & Huston,
1994) of Cohen, Dunbar, and McClelland’s (1990) popular model
of performance in the Stroop task. A brief overview of Cohen et
al.’s (1990) model appears here, but we refer the reader to the
original article for a more complete treatment.

Cohen et al.’s (1990) model (see Figure 1) consists of a color-
processing pathway and a word-processing pathway. These path-
ways feed activation through to a common set of response units. It
is the competition between these response units that Botvinick et
al. (2001) used as an index of conflict in information processing.
Given that we are more practiced at reading words than naming
colors, the connection weights between the word units and the
response units are stronger than those between the color units and
the response units. This difference in the connection weights gives
rise to the asymmetrical interference pattern where words interfere
with color naming more than colors interfere with word naming.
This asymmetry in the strength of connections along the two
processing pathways creates the need for a selective attention
mechanism; otherwise the model would simply read the word on

every trial. In Cohen et al.’s model, selective attention is instan-
tiated through a set of task demand units, subsequently argued to
reside in the prefrontal cortex (e.g., Botvinick et al., 2004), that
serve to strengthen activation along the relevant pathway. In
Botvinick et al.’s (2001) model, the conflict monitor sends a signal
to the task demand units altering its input to the color pathway thus
strengthening the connection between input and response node.

Botvinick et al. (2001) first demonstrated that their conflict-
monitoring module, adjoined to the response units in the Cohen et
al. (1990) framework, behaved in a fashion similar to that found in
brain activation studies of the ACC. For example, they demon-
strated that activity in the conflict module was higher in the
incongruent condition (e.g., the word red in BLUE) than in the
neutral (e.g., the word house in BLUE) and congruent conditions
(e.g., the word blue in BLUE). Numerous imaging studies have
reported a similar pattern of brain activation in the ACC while
participants performed a Stroop task (e.g., Carter et al., 2000;
Kerns et al., 2004).

In a second set of simulations, Botvinick et al. (2001) demon-
strated that this conflict-monitoring module could serve as a sig-
naling device for control-related processes to adapt to the presence
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Figure 1. Representation of the Cohen et al. (1990) model of Stroop performance. Adapted from “On the
Control of Automatic Processes: A Parallel Distributed Processing Account of the Stroop Effect,” by J. D.
Cohen, K. Dunbar, and J. L. McClelland, 1990, Psychological Review, 97, p. 336. Copyright 1990 by the
American Psychological Association.
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of conflict in information processing. On each trial, the conflict-
monitoring module provided a control signal to the task demand
units. High levels of conflict increased the input from the task
demand units to the color pathway, whereas low levels of conflict
reduced the input from the task demand units.1

Botvinick et al. (2001) simulated the proportion-congruent ef-
fect, a prominent control phenomenon in the Stroop literature. This
effect refers to the observation that the relative proportion of
congruent trials in an experimental list affects the magnitude of the
Stroop effect (e.g., Cheesman & Merikle, 1986; Lindsay & Jacoby,
1994; Logan & Zbrodoff, 1979; Tzelgov, Henik, & Berger, 1992).
That is, the magnitude of the Stroop effect increases as the
proportion of congruent trials increases. Botvinick et al. (2001)
demonstrated that their model simulates this pattern of data. As the
proportion of congruent trials increases, the amount of conflict in
the system decreases, leading to a decrease in top-down control
(i.e., input from the task demand unit to the color pathway). This
decrease in top-down control results in a larger Stroop effect
because the word pathway exerts a stronger influence on the
response nodes. Thus, the implementation of the conflict-
monitoring hypothesis in the form of a computational neural
network model accounts for cognitive control in both brain acti-
vation and behavioral studies.

In the present investigation, we attempted to model a more
recent instance of cognitive control, the item-specific proportion-
congruent (ISPC) effect (Jacoby, Lindsay, & Hessels, 2003), in the
context of the conflict-monitoring hypothesis and more specifi-
cally within Botvinick et al.’s (2001) conflict-monitoring model of
Stroop performance.

The ISPC Effect

Jacoby and colleagues (Jacoby et al., 2003; Jacoby, McElree, &
Trainham, 1999; Trainham, Lindsay, & Jacoby, 1997) have dem-
onstrated that the magnitude of the Stroop effect is affected by the
proportion of congruent trials at the item level. For example,
Jacoby et al. (2003) varied the proportion of congruent trials at the
level of specific items (i.e., a specific pairing of a color word and
color) while keeping the list-level congruency proportion at 50%
and found that items that were “mostly congruent” showed a larger
Stroop effect than items that were “mostly incongruent.” They
referred to this item-level effect as the ISPC effect. Jacoby et al.
(2003) claimed that a control mechanism like Cohen et al.’s (1990)
and by association Botvinick et al.’s (2001), where a single task
demand unit controls attention to all items within a processing
pathway, could not account for this effect.

The reason Cohen et al.’s (1990) and Botvinick et al.’s (2001)
models encounter difficulty in explaining the ISPC effect is be-
cause control operates at the level of the color pathway, rather than
at the level of individual color representations. As previously
discussed, Botvinick et al.’s (2001) model simulated the list-level
proportion-congruent (LLPC) effect with a conflict module that
signaled the task demand unit to increase or decrease input to the
color pathway. Critically, increasing or decreasing the task de-
mand unit’s input to the color pathway affects the processing of all
colors. Implementing control in this manner is unlikely to be able
to explain the ISPC effect because the ISPC effect suggests that
control can occur at the level of individual items.

Rather than discarding Botvinick et al.’s (2001) model of con-
trol in Stroop performance, we suggest that an amendment to this
model will allow it to account for the ISPC effect. Specifically, we
suggest that control has to be implemented at the item level.

Present Investigation

The present investigation tests the hypothesis that a conflict-
monitoring model based on Cohen et al.’s (1990) model of Stroop
performance can account for the ISPC effect when control is
implemented at the item level but not when control is implemented
at the pathway level.

In the first set of simulations, we added a conflict module to
Cohen et al.’s (1990) model of Stroop performance and attempted
to simulate the ISPC effect with control acting at the pathway
level. As suggested, this approach failed to simulate the ISPC
effect. Next, we implemented control at the item level and dem-
onstrated that the model was then able to simulate the ISPC effect.
Thus, by implementing control at the item level rather than the
pathway level we were able to simulate the ISPC effect using the
principles outlined in the conflict-monitoring hypothesis.

Computational Properties of the Model

Architecture

Cohen et al.’s (1990) model has already been briefly described
above. Our implementation of this part of the model did not
include a learning algorithm.2 As such, the connection weights
were hard-coded, rather than learned (cf. Cohen et al., 1990), to
values that had been used successfully in other simulations with
four response alternatives (Kanne, Balota, Spieler, & Faust, 1998).
These are shown in Table 1. The remaining details of this model
are not critical to the implementation of control but are presented
in the Appendix. What follows is a discussion of the modifications
introduced by Botvinick et al. (2001) and those introduced by us
for the current simulations.

Botvinick et al.’s (2001) most significant change to Cohen et
al.’s (1990) model was the introduction of a control-monitoring
device. This device relies on a measure of the “energy” in the
response units (Hopfield, 1982) to determine the degree of conflict
resulting from a given trial. Hopfield’s formula is provided in
Equation 1:

Hopfield Energy � EH � � �
i

�
j

aiajwij. (1)

1 The reader might wonder why the participant would not simply mod-
ulate attention to the relevant dimension in such a way as to completely
eliminate conflict. The question, however, depends on the assumption that
removing attention from the word dimension would stop processing of the
word. This view is inconsistent with the claim that word processing can
occur in the absence of attention (Brown, Gore, & Carr, 2002; Cohen,
Dunbar, & McClelland, 1990). For example, in Cohen et al.’s (1990)
Stroop model, removing attention entirely from the word dimension does
not eliminate the Stroop effect. Furthermore, participants may perceive the
irrelevant dimension as useful and thus choose to attend to it at the cost of
increasing conflict (Dishon-Berkovits & Algom, 2000).

2 The source code can be downloaded from http://www.arts.uwater-
loo.ca/�dbesner2/blais2007/
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EH then acted as the input to a formula that determined the extent
of control to be exerted (Equation 2):

Control � C�t � 1� � �C�t� � �1 � ����E�t� � ��, (2)

where C(t) is control on trial t, E(t) is the energy at the end of trial
t, � is a weighting parameter (restricted to values between 0 and 1)
that indicates the degree to which control will change on each trial,
and � and � are scaling parameters. Theoretically, parameters �
and � are uninteresting as they simply scale the energy value to a
range that will have a functional role at the control level. Con-
versely, the � parameter is very important. It functionally operates
as a memory “buffer.” When � is large, the memory buffer
contains information about the amount of conflict on many previ-
ous trials and, as such, “history” dominates the control value.
When this value is small, the memory buffer heavily weights the
amount of conflict on the most recent trial and, as such, the
“previous trial” dominates the control setting.

Consistent with this interpretation, when simulating LLPC ef-
fects, Botvinick et al. (2001) set � to a large value (.95), presum-
ably reflecting the dominant view in the field that proportion
effects result from participants recognizing that the word is infor-
mative and thus actively reading it on every (or most) trial(s).
Also, when simulating sequential effects, � was set to a relatively
smaller value (.50) consistent with the view that participants are
affected by the previous trial’s congruency. In all the present
simulations, � was 21.01873, � was �5.41268, and � was .50.

C(t) provides the weight for the connections from the task
demand unit to the relevant word/color units for the next trial,
subject to the constraint that the connection weights must fall
between 2.3 and 4.0. That is, at the end of each trial control is
calculated according to Equation 3, and the weights on the relevant
connections are then set to C(t � 1). Details about which connec-
tions are adjusted and under what circumstances follow a brief
discussion of the differences between Botvinick et al.’s (2001)
approach and ours.

Due to the cascaded (as opposed to interactive activation) nature
of our model (chosen for ease of implementation), certain adjust-
ments to the equations specified above are required. First, as our
model does not include within-level inhibitory connections, we
adjusted Equation 1 to reflect the assumption that connections
between response units are �1.0. Furthermore, the Hopfield for-
mula as described in Equation 1 cycles over each pair of units
twice. This makes sense only if connections between units are not
symmetric (i.e., uniti inhibits unitj more than unitj inhibits uniti),
however, when connections are symmetric between any two units,
there is no need to compare each pair twice. The assumption of

unit negative inhibition implies that all connections are symmetric
so our formula calculates the energy for each pair only once. These
changes represent minor adjustments to the original formula and
give rise to (Equation 3):

Energy � E � �
i

j	i
aiaj. (3)

As with Botvinick et al.’s (2001) approach, energy is calculated on
the basis of activation in the response units. This energy provides
the input to a formula that calculates control in the same way
described by Botvinick et al. (2001; Equation 2).

Pathway-level control (Model P). Our implementation of
pathway control (see Figure 2) differs slightly from that described
in Botvinick et al. (2001). In lieu of adjusting the activation of the
task demand unit, the connection weights between the task demand
units and the relevant color or word units were modified. When
implementing the item-specific mechanism, we found that chang-
ing the connection weights rather than activity in the task demand
unit was more tractable. Implementing an item-specific mecha-
nism via changing activity in the task demand unit would require
a move from two task demand units representing word and color to
eight separate task demand units representing the four color words
and the four colors. The present option is less cumbersome and
does not require a drastic change to the architecture of the under-
lying model. Mathematically these are equivalent operations as the
effect on units in the subsequent layers is given by the weight of
the connection multiplied by the activation strength (please refer to
Paragraph 1 of the Appendix). Whether one doubles the activation
level in the task demand unit or the weight between the task
demand unit and the relevant color/word units, the net result will
be a doubling of the input from the task demand unit.

Item-level control (Model I). Our implementation of item-
level control (see Figure 3) involves modifying only the connec-
tion from the task demand unit to the hidden unit that was asso-
ciated with the color that was relevant on that trial. For illustration,
if the task is color naming, and the previous trial consisted of the
word red presented in BLUE (an incongruent trial), C(t) would be
large, and thus the weight on the connection to the presented color
(BLUE) is increased to reflect increased attention. Conversely if
the previous trial was congruent (e.g., the word red presented in
RED), C(t) would be relatively small, and the weight on the
connection to the presented color (RED) would be decreased. The
operation of control is the only way in which Models P and I differ.

Simulation 1: The ISPC Effect

Here, we compare the ability of Model P and Model I to
simulate the ISPC effect. In Model P, control is implemented at the
pathway level following Botvinick et al. (2001), and in Model I
control is implemented at the item level.

One thousand randomized lists of 192 (48 practice, 144 exper-
imental) items were constructed such that the words blue and red
appeared mostly incongruent and the words yellow and green
appeared mostly congruent. The relationship between items and
congruency was consistent within the practice and experimental
trials. Table 2 shows the trial structure. These lists were presented
to both versions of the model.

Analysis. Following Botvinick et al. (2001), for each list, the
48 practice trials served to allow the task weights in the model an

Table 1
Connection Weights Used in the Simulations

Connection weight Excitatory Inhibitory

Task units 4.0
Words

Input to hidden units 3.1 �2.3
Hidden to response units 3.3 �2.6

Colors
Input to hidden units 2.5 �2.1
Hidden to response units 1.8 �1.5

1079THEORETICAL NOTE



opportunity to settle. The remaining 144 experimental trials were
analyzed for the presence of an ISPC effect. Table 3 shows the
average in each condition across the 1,000 simulations for each
version of the model.

As is evident in Figure 4, Model P shows no trace of an ISPC
effect. Specifically, across the 1,000 simulations, the average size
of the Stroop effect (incongruent–congruent) for the “mostly con-
gruent” items is 164.2 cycles, and the average size of the Stroop
effect for the “mostly incongruent” items is 163.5 cycles. Model I,
however, shows an ISPC effect of 30.2 cycles. The size of the
Stroop effect for the “mostly congruent” items is 191.5 cycles, and
the size of the Stroop effect for the “mostly incongruent” items is
161.3 cycles.

Discussion. In Simulation 1, Model P failed and Model I
succeeded in simulating the ISPC effect. The only difference
between these two models was the level at which control was
implemented. Not surprisingly, when control was implemented at
the level of the pathway the model did not produce an ISPC effect.
However, when control was implemented at the level of the item,
the model readily produced an ISPC effect. Thus, with control
implemented at the item level, the ISPC effect can be added to a
growing list of control-related phenomena that are explicable in
terms of a conflict-monitoring mechanism. In a second set of
simulations, we tested the ability of the item-level mechanism just
introduced to account for an LLPC effect.

Simulation 2: The LLPC Effect

Some researchers (Jacoby et al., 1999; Trainham et al., 1997)
have suggested that the ISPC effect and the LLPC effect could
emerge from a similar mechanism. Essentially, LLPC manipula-
tions could be construed as item-level manipulations with all items
sharing the same congruency proportion. Thus, it is possible that
the list-level effect is simply an ISPC effect in disguise. We tested
this possibility in Simulation 2 by simulating the LLPC effect
using both Model P and Model I. The magnitude of the proportion-
congruent effect in Model P relative to Model I should determine
the extent to which the LLPC effect can be considered an ISPC
effect, at least within the context of the present model.

One thousand randomized lists of 192 items each were con-
structed. In 500 of the lists, 25% of the items were congruent. In
the remaining 500 lists, 75% of the items were congruent. Table 4
shows the trial structure for each of these lists. All of these lists
were presented to each version of the model.

Analysis. As in Simulation 1, the first 48 trials in each list
served to allow the task weights in the model an opportunity to
settle. The remaining 144 trials in each list were analyzed for the
presence of a proportion effect. Table 5 shows the average in each
condition across the 1,000 simulations for each version of the
model.
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“green”“yellow”

greenyellow
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bluered
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“blue”“red”
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word

color

ACC modifies all connection
weights equivalently

Figure 2. Representation of Model P, an implementation of pathway-level control. ACC 
 anterior cingulate
cortex.
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As is evident in Figure 5, both Model P and Model I show an
LLPC effect. For Model P, the size of the Stroop effect for the 25%
lists is 143.9 cycles, and the size of the Stroop effect for the 75%
lists is 185.9 cycles. For Model I, the size of the Stroop effect for
the 25% lists is 158.2 cycles, and the size of the Stroop effect for
the 75% lists is 201.3 cycles. The magnitude of the interaction
between congruency proportion (25% vs. 75%) and the magnitude
of the Stroop effect (incongruent vs. congruent) is nearly identical
for both Model P (42.0 cycles) and Model I (43.1 cycles).

Discussion. Both Model P and Model I produced an LLPC
effect. In addition, the size of this interaction was the same for both

versions of the model. Thus, the LLPC effect can be accounted for
by an ISPC effect.

General Discussion

The current investigation presented a computational account of
the ISPC effect in the context of the conflict-monitoring hypoth-
esis. The control mechanism hypothesized to account for the ISPC
effect was also demonstrated to be able to account for the LLPC
effect. In Botvinick et al. (2001), this latter effect was accounted
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“green”“yellow”

greenyellow

-4-4

GREENYELLOW

-4-4

bluered

-4-4

“blue”“red”

ACC

Model I

word

color

ACC modifies individual
connection weights

Figure 3. Representation of Model I, an implementation of item-level control. ACC 
 anterior cingulate
cortex.

Table 2
Trial Structure for Simulation 1

Color

Word

yellow green blue red

YELLOW 27 9
GREEN 9 27
BLUE 9 27
RED 27 9

Table 3
Cycles for Models P and I as a Function of Congruency and
Congruent Proportion Manipulated at the Item Level

Model type Incongruent Congruent Stroop effect

Model P
25% congruent 326.6 163.1 163.5
75% congruent 327.4 163.2 164.2

Model I
25% congruent 323.8 162.4 161.3
75% congruent 358.4 166.8 191.5

1081THEORETICAL NOTE



for via control that operated at the level of the entire pathway.
Critically, we showed that this locus of control, although sufficient
to account for the LLPC effect, is insufficient to account for the
ISPC effect. However, the presently proposed item-level control is
both necessary to account for the ISPC effect and sufficient to
account for the list-level effect.

In the following sections, we discuss alternative accounts of the
ISPC effect, explore the implications of recent conflict-adaptation
findings for conflict-monitoring models, present predictions de-
rived from our account of the ISPC effect, and offer some future
directions for the conflict-monitoring framework.

Alternative Accounts of the ISPC Effect

An alternative explanation of the ISPC effect attributes it to
stimulus-specific priming. Specifically, manipulations of ISPC
effects involve increasing the frequency of some stimuli and

decreasing the frequency of others and this difference in frequency
could produce an ISPC effect (see Table 2). For example, in the
mostly congruent condition, the congruent stimuli (i.e., yellow–
YELLOW and green–GREEN) occurred more often than the in-
congruent stimuli (i.e., yellow–GREEN and green–YELLOW). In
the mostly incongruent condition, the incongruent stimuli (i.e.,
red–BLUE and blue–RED) occurred more often than the congru-
ent stimuli (i.e., red–RED and blue–BLUE). If increases in fre-
quency of occurrence speeds processing, for example through a
priming mechanism, then the Stroop effect should be larger in the
mostly congruent condition than in the mostly incongruent condi-
tion because congruent trials were more frequent than incongruent
trials in the former condition, and incongruent trials were more
frequent than congruent trials in the latter condition. Critically, this
account would require only that stimulus processing be sensitive to
relative frequency. A control mechanism, such as the one proposed
here, would not be required. It is important to note that the same
stimulus-specific priming mechanism could also account for the
global proportion effect.

Table 5
Cycles for Models P and I as a Function of Congruency and
Congruent Proportion Manipulated at the List Level

Model type Incongruent Congruent Stroop effect

Model P
25% congruent 305.5 161.6 143.9
75% congruent 350.9 165.0 185.9

Model I
25% congruent 321.1 162.9 158.2
75% congruent 367.5 166.2 201.3
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Figure 4. The interaction between the proportion of congruent trials and congruency when the proportion of
congruent items is manipulated at the item level as a function of the level at which control operates. When
control operates equally across the entire pathway as in Model P (left panel), this interaction is absent. When
control operates at the level of the individual items as in Model I (right panel), this interaction is present.

Table 4
Trial Structure for Simulation 2

Proportion
congruent Color

Word

yellow green blue red

25% YELLOW 9 9 9 9
GREEN 9 9 9 9
BLUE 9 9 9 9
RED 9 9 9 9

75% YELLOW 27 3 3 3
GREEN 3 27 3 3
BLUE 3 3 27 3
RED 3 3 3 27
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Evidence against a priming account of both the ISPC effect and
the global proportion-congruent effect has been provided by nu-
merous researchers (Jacoby et al., 1999, 2003; Lindsay & Jacoby,
1994; Schmidt, Crump, Cheesman & Besner, 2007). With respect
to the ISPC effect, Jacoby et al. (1999, 2003) used the process-
dissociation procedure and demonstrated that the ISPC manipula-
tion affects the word process and not the color process. If stimulus-
specific priming had been responsible for the ISPC effect, the
process dissociation procedure should have revealed influences on
both the word and color processes. Thus, it appears that the ISPC
effect cannot be entirely accounted for by a priming mechanism.
Lindsay and Jacoby (1994), also using the process-dissociation
procedure, provided a similar demonstration using a global ma-
nipulation of proportion congruence.

Jacoby et al.’s (1999, 2003) results support the need for some
form of control mechanism to account for the ISPC effect but
suggest an alternative means through which this control is exerted
in the context of the Stroop task. Using the process-dissociation
procedure, Jacoby et al. (1999, 2003) demonstrated that the ISPC
manipulations affect the influence of word processes, not the
influence of color processes, and they demonstrated the viability of
this account in the context of the Stroop Counter model (i.e., by
modulating the influence of the word process as a function of
proportion congruent). In Botvinick et al.’s (2001) model and the
present model, the task demand parameters along the color path-
way are modulated to account for proportion-congruent effects.
Thus, the two accounts differ with respect to what is being con-
trolled.

At this point it is useful to draw attention to the distinction
between the conflict-monitoring hypothesis (i.e., the detection of
conflict in the system signals the need for control) and the mech-
anism responsible for control. Specifically, the conflict-monitoring
hypothesis addresses the question of how the need for control is

determined (i.e., conflict detection); how control is implemented
following the detection of conflict is a separate and independent
issue. The models differ only with respect to the latter issue.
Jacoby et al.’s (1999) model does not specify how the need for
control is determined. We have demonstrated here that a conflict-
monitoring module in concert with a control mechanism similar to
Botvinick et al.’s (2001) can be used to model the ISPC effect.
However, we see no reason why a conflict-monitoring mechanism
could not be added to a model that implements control in a
different way (such as Jacoby et al.’s, 1999, Stroop Counter
model). The conflict-monitoring hypothesis is not tied to a specific
model (e.g., Cohen et al.’s, 1990, Stroop model), and its applica-
tion to other existing models (e.g., the Stroop Counter model)
represents an interesting direction for future computational work.

Conflict-Adaptation Effects

Botvinick et al.’s (2001) conflict-monitoring model also pro-
vides an account of conflict-adaptation effects (Gratton, Coles, &
Donchin, 1992). The conflict-adaptation effect in the Stroop task
refers to the observation that the size of the Stroop effect is smaller
following an incongruent trial than following a congruent trial
(Kerns et al., 2004). According to the conflict-monitoring theory,
the conflict-adaptation effect is due to variation in the amount of
top-down control on a trial-by-trial basis. Following the detection
of conflict on an incongruent trial, the amount of top-down control
will be higher, thus reducing the word’s influence on the subse-
quent trial. This would serve to reduce the magnitude of the Stroop
effect following incongruent trials.

Recent work has suggested that the conflict-adaptation effect
may be modulated by stimulus repetition (see Mayr, Awh, &
Laurey, 2003; Nieuwenhuis et al., 2006; Ullsperger, Bylsma, &
Botvinick, 2005). The exact relation between stimulus repetition
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and conflict adaptation is currently unclear, however, it appears
that although the conflict-adaptation effect may be reduced after
removal of stimulus repetitions, it is not eliminated. This pattern of
data is difficult to account for in terms of a conflict-monitoring
device. With a pathway-level mechanism, an individual item pro-
duces conflict on trial n � 1, and attention is increased to all items
equally, which would reduce the word’s impact on trial n for all
items. Thus, the conflict-adaptation effect would be unaffected by
the inclusion/exclusion of stimulus repetitions. With an item-level
mechanism, the item that produces the conflict on trial n � 1 has
attention to it increased. Thus, the word’s impact on the following trial
would only be reduced when the stimulus repeats.3

Thus, both Model P and Model I have difficulty explaining the
interaction between stimulus repetition and conflict adaptation.
However, the results produced by Model P and Model I hint at the
possibility that a hybrid model that combines an item-level control
mechanism with a pathway-level control mechanism might pro-
vide a better account of the conflict-adaptation effect. In this
hybrid model, the conflict-adaptation effect should be larger when
stimulus repetitions are included rather than excluded because in
the latter case the item-specific contribution would be removed
and only the item-independent contribution would remain.4 Such a
model is discussed in the Future Directions section.

New Predictions

The utility of a theory and by extension any computational
model instantiating that theory is found not just in what it explains
but in what new predictions it makes. Critically, the present
account of the ISPC effect in terms of conflict monitoring makes
a strong prediction that has yet to be tested.

If the ISPC effect is to be explained in the context of the
conflict-monitoring hypothesis, as we have proposed, then the
ACC, claimed to house the conflict monitor, should be sensitive to
conflict at the level of individual items. Specifically, if an ISPC
manipulation were employed, ACC activation on incongruent tri-
als should be higher for mostly congruent items than for mostly
incongruent items. Critically, Botvinick et al.’s (2001) model
predicts no difference between mostly congruent and mostly in-
congruent items in terms of ACC activation on incongruent trials
in the context of an ISPC manipulation. In the only similar study
that we are aware of, Carter et al. (2000) demonstrated that, in the
context of an LLPC manipulation, ACC activation was highest on
incongruent trials in a mostly congruent list. This result, as we
demonstrated in the above simulations, is explicable in terms of
either item-level control or pathway-level control. It is only with
an ISPC manipulation, wherein individual items differ in propor-
tion congruence but the overall list is 50% congruent, that these
two theories can be differentiated. This experiment has yet to be
conducted, but it is clear that if the ISPC effect is to be explained
in the context of the conflict-monitoring hypothesis, the ACC itself
would need to be sensitive to conflict at the item level.

A second, more specific, prediction is that if the ISPC effect is
the result of ACC modulation, then persons with impaired (e.g.,
schizophrenics or stroke patients with frontal lobe lesions) or
otherwise dysfunctional (e.g., children with attention-deficit/
hyperactivity disorder, see van Meel, Heslenfeld, Oosterlaan, &
Sergeant, 2007) ACC function should show a decreased, or no,
ISPC effect. Temporary lesions to the ACC made via rapid trans-

cranial magnetic stimulation (see also Gobell, Rushworth, &
Walsh, 2006) may also reduce the ISPC effect.

Future Directions—A Challenge for Formal Models of
Conflict Monitoring?

In Botvinick et al. (2001), a number of different control mech-
anisms, all subserved by a conflict-detection device, were intro-
duced to account for various control phenomena.5 To account for
conflict-adaptation effects in the flanker task, they had a conflict
monitor signal a unit responsible for the focusing of spatial atten-
tion. To account for the error-related slowdown in a two-choice
speeded response task, they had a conflict monitor signal a re-
sponse priming unit that served to shift the system to a new point
on the speed-accuracy tradeoff curve. Finally, as discussed here, to
account for the LLPC effect in Stroop, they had a conflict monitor
signal a task demand unit that increased/decreased selective atten-
tion to the color dimension. Here, we have introduced an addi-
tional control mechanism (i.e., item-level control) that is able to
account for the ISPC effect. In addition, this item-level control
mechanism is able to account for the LLPC effect. Thus, the
item-specific mechanism is the only mechanism that appears able
to account for more than a single phenomenon. Given all of these
different control mechanisms that have been postulated, an impor-
tant future direction for the conflict-monitoring approach is to
integrate all of these mechanisms within a single model that
produces all relevant phenomena, preferably with a single param-
eter set. A rough sketch of such a model is presented next.

As briefly noted in the section on conflict-adaptation effects, a
hybrid Stroop model that combines an item-level mechanism with
a pathway-level mechanism would produce the ISPC effect, the
LLPC effect, and a conflict-adaptation effect that is reduced but
still present after removal of stimulus repetitions. To account for
the error-related slowdown, this model would require a response
priming mechanism. Thus, the model would have three separate
loci for control: (a) item-level control, (b) pathway-level control,
and (c) response priming, all of which would be subserved by a
conflict-detection module. In addition to addressing behavioral
phenomena, the described model would also inherit the ability to
account for data from a large number of brain activation (e.g.,
Botvinick et al., 2001; Kerns et al., 2004) and electrophysiological
(e.g., Yeung et al., 2004; Yeung & Cohen, 2006) studies. The
integration of these mechanisms is a computationally daunting task
but would mark an important step forward in the formal develop-
ment of the conflict-monitoring account.

3 Simulations with Model P and Model I support this claim. Both
produce conflict-adaptation effects. In Model P, this effect is unaffected by
the inclusion/exclusion of stimulus repetitions, whereas in Model I, the
conflict-adaptation effect is eliminated following removal of stimulus
repetitions.

4 In a preliminary set of simulations, such a model produced an ISPC
effect, an LLPC effect, and a conflict-adaptation effect that was reduced
but not eliminated following the removal of stimulus repetitions.

5 Botvinick et al. (2001) used a different parameter set for each different
control phenomenon. Here, the same parameter set was used to simulate
both the ISPC effect and the LLPC effect.
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Conclusions

The present investigation introduced the idea of item-level con-
trol in the context of the conflict-monitoring hypothesis. We dem-
onstrated that an existing model of the Stroop task with the
addition of a conflict-monitoring mechanism based on this princi-
ple could account for both the ISPC effect and the LLPC effect
with the same parameter set.
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Appendix

Model Details

Below is a brief description of how activation in the model
operates; more details are available in Cohen et al. (1990). Within
the network, units update their activations by taking a weighted
sum of the input they receive from other levels in the network. As
the present network is cascaded (rather than based on interactive
activation), input only arises from units in the preceding level.
Mathematically, the net input at time t for unitj (at leveln) is given
by:

net j�t� � �
i

ai�t�wij, (A1)

where ai(t) is the activation of each uniti (at leveln�1) from which
unitj receives input, and wij is the strength of the connection weight
between uniti at leveln and unitj at leveln�1. The activation of a
unit is a weighted average of its current net input and its previous
net input:

aj�t� � netj�t� � �netj�t� � �� � 1�netj�t � 1�, (A2)

where netj�t� is the average of the net input to unitj over time,
netj(t) is the net input to unitj at time t, and � is the cascade rate
(0 � � � 1). In a sense, � can be thought of as a resistance
parameter. If one thinks of activation in a unit as resistant to
change, then � provides the strength required to overcome the
resistance. As � increases, its strength increases: If � were set to 0,
there would be no change at all; if it were set to 1, change would
be very rapid (indeed, it would completely overcome the resis-
tance). The value for � was .005 in all simulations.

One problem with having a network cascade in this fashion is
that Equation A2 provides a linear activation function. Such net-
works suffer from a number of concerns related to computational
limitations (see Rumelhart, Hinton, & McClelland, 1986, for dis-
cussion). To overcome these limitations, researchers introduce
nonlinearity into the activation function by using a sigmoid func-
tion to calculate the activation of a unit based on its instantaneous
net input:

aj�t� � logisticnetj�t�� �
1

1 � e�netj�t�, (A3)

where netj(t) is given by Equation A1. The logistic function
constrains values between 0 and 1. This nonlinearity provides all

the important behaviors of cascaded networks without suffering
from an unlimited buildup of activation over time. Furthermore,
the dynamic properties of the cascade model can be introduced by
incorporating the concept of � and using netj�t� as it is defined in
Equation A2 as the input to the logistic function. This gives us the
following activation rule:

aj�t� � logisticnetj�t��. (A4)

With this function, activation builds up slowly over time (as
controlled by the cascade rate, �) and is constrained to a value
between 0 and 1. All that remains is to specify the mechanism for
response selection.

Response Selection

The model uses principles from a random walk (Link, 1975) and
a diffusion process (Ratcliff, 1978) to select its ultimate response.
Each potential response is paired with an evidence accumulator
that takes its input from the output units of the network. At the
beginning of each trial, the evidence accumulators are set to 0, and
at each time-step of processing (a cycle), evidence accumulates as
a function of the activation in the relevant output unit. The amount
of evidence accumulated for response i is given by the following
equation:

evidence i � N��acti � max�actj�i��, ��. (A5)

N(�, �) is a random value sampled from a normal (Gaussian)
distribution with mean � and standard deviation, �; � determines
the rate of evidence accumulation; acti is the activation in output
unit i; max(actj � i) is the maximum activation of the other output
units; and � is a noise parameter. Taking the difference between
activation in the output unit of interest, and the other output unit
with the strongest activation allows evidence in the response units
to differentiate more quickly as the activation in the output units
differentiates between potential responses. A response is generated
when one of the accumulators reaches a fixed threshold. For all of
the present simulations, the value of � was .08, � was 0.015, and
the response threshold was 1.0.
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