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Recent studies show that when words are correlated with the colours they are printed in
(e.g., MOVE is presented 75% of the time in blue), colour identification is faster when the
word is presented in its correlated colour (MOVE in blue) than in an uncorrelated colour
(MOVE in green). The present series of experiments explored the possible mechanisms
involved in this colour-word contingency learning effect. Experiment 1 demonstrated that
the effect is already present after 18 learning trials. During subsequent unlearning, the
effect extinguished equally rapidly. Two reanalyses of data from Schmidt, Crump, Chees-
man, and Besner (2007) ruled out an account of the effect in terms of stimulus repetitions.
Experiment 2 demonstrated that participants who carry a memory load do not show a con-
tingency effect, supporting the hypothesis that limited-capacity resources are required for
learning. Experiment 3 demonstrated that memory resources are required for both storage
and retrieval processes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The ability of humans to learn about contingencies between events in the world has recently re-appeared as a major topic
in experimental psychology (e.g., Allan, 2005; Beckers, De Houwer, & Matute, 2007; Mitchell, De Houwer, & Lovibond, 2009).
Most often, contingency learning in humans is studied using paradigms in which participants see a series of situations in
which stimuli or responses co-occur and are afterward asked to judge the strength of the contingency between the stimuli
or responses. Other paradigms allow one to assess learning without asking participants to explicitly judge the strength of
contingencies. One version of this is the colour-word contingency learning paradigm (Schmidt, Crump, Cheesman, & Besner,
2007; see also Schmidt & Besner, 2008; Musen & Squire, 1993). For instance, Schmidt and colleagues presented four arbitrary
words in four different display colours in a colour identification task using a key press response. Each word was presented in
all colours, but more often in a particular colour (e.g., MOVE was presented 75% of the time in blue, SENT 75% of the time in
green, etc.). Participants responded faster and made fewer errors on high contingency trials (where the word is presented in
its correlated colour; e.g., MOVEblue) than on low contingency trials (where the word is presented in any other colour; e.g.,
MOVEgreen). To date, little is known about how contingency information is actually learned in this paradigm. The present pa-
per briefly reviews past work, discusses several competing accounts, and reports three new experiments and two reanalyses
of old data that provide new insights into the mechanisms underlying the form of contingency learning in this paradigm.
. All rights reserved.

y, Ghent University, Henri Dunantlaan 2, B-9000 Ghent, Belgium.
hmidt).

http://dx.doi.org/10.1016/j.concog.2009.12.016
mailto:james.schmidt@ugent.be
http://www.sciencedirect.com/science/journal/10538100
http://www.elsevier.com/locate/concog


236 J.R. Schmidt et al. / Consciousness and Cognition 19 (2010) 235–250
There are several possible explanations for how contingency relations are learned, but there are a few findings that nar-
row the field of potential explanations. For instance, awareness of contingency information in the paradigm used here does
not seem to be crucial. Very few participants are aware of the contingency manipulation and the size of the colour-word
contingency effect is unaffected by a participant’s level of awareness (Schmidt et al., 2007, Experiment 3). Thus, awareness
of contingencies does not seem to ‘‘buy” participants anything; the effect is the same size regardless. This suggests that, inde-
pendent of the participant’s awareness of the task manipulation, learning is implicit. A similar argument has been made from
results of a flanker task in which flanking cues were predictive of the response (Carlson & Flowers, 1996), sequence learning
(Song, Howard, & Howard, 2007), and other paradigms (e.g., Lewicki, Hill, & Czyzewska, 1992). However, the role of aware-
ness in contingency learning is a highly controversial issue. In particular, there is little consensus on the proper way of
assessing awareness and proponents of objective measures of awareness often argue for a small amount of awareness of
learned information (e.g., see Fu, Fu, & Dienes, 2007 for a detailed discussion of these issues). We simply note that, at the
very least, the results of Schmidt and colleagues are difficult to reconcile with rule-based accounts that demand a role for
conscious intention (although such rule-based processes may well play a role in unspeeded judgment tasks; e.g., see De Hou-
wer, 2009; Mitchell et al., 2009 for discussions of propositional accounts of associative learning). As a result, in the rest of the
present paper we narrow our focus to implicit learning accounts.

Another important finding of Schmidt and colleagues (2007, Experiment 4) is that the colour-word contingency effect
does not simply reduce to stimulus–stimulus association or stimulus familiarity. In the critical experiment, two colours were
assigned to the left key (e.g., blue and green) and two others were assigned to the right key (e.g., yellow and orange). If MOVE
was presented most often in blue (i.e., MOVEblue), then participants were faster to make the correct left key response to
MOVEblue and MOVEgreen than they were to make right key responses to MOVEyellow and MOVEorange. Schmidt and colleagues
observed no difference in responses to MOVEblue and MOVEgreen. Thus, it is not the case that MOVE is associated with the
colour blue (or else MOVEgreen would not have been speeded), nor is it critical that participants saw the stimulus MOVEblue

more often than the stimulus MOVEgreen. Rather, it is critical that MOVE is associated with a left key response. When the cor-
rect response matches this associated response (for blue or green print), responding is facilitated. These results inform us
that the learning mechanism is picking up on the contingencies between the distracting word and the response, not the con-
tingencies between the distracting word and the target colour (however, it should be noted that effects of stimulus–stimulus
associations have been observed in other paradigms; e.g., Colzato, Raffone, & Hommel, 2006). Thus, we narrow our focus here
to accounts that posit a relationship between the distracter and the response.

There are a number of accounts that could potentially explain the colour-word contingency effect. The simplest of these
can be termed the repetition account, which explains the colour-word contingency effect in terms of transient memory ef-
fects. There are a few subtle variations of this. In one version, high contingency trials are speeded by the residual activation
of the memory of recently encountered matching trials (Bertelson, 1961). For instance, high contingency trials such as
MOVEblue would often be speeded because MOVEblue was recently encountered and the memory of this event is still active,
allowing for a quicker response. In contrast, a low contingency trial such as MOVEgreen will rarely be speeded, because the
probability of two instances of MOVEgreen occurring close temporally is much less likely. According to a slightly different ver-
sion of the repetition account, when a stimulus and response occur together the association between them is temporarily
strengthened for a period of time. If the same stimulus and response are presented together shortly after this, responding
will be facilitated (see Hommel, 1998). Again, high contingency trials are much more likely to have been recently preceded
by the same word-response pairing (e.g., MOVEblue before MOVEblue) than are low contingency trials (e.g., MOVEgreen before
MOVEgreen).

Connectionist accounts such as the simple recurrent network (SRN; Cleeremans & McClelland, 1991; Kinder & Shanks,
2001, 2003) could explain the colour-word contingency effect in terms of a highly interconnected arrangement of nodes
in which each trial causes the connection weights between nodes to change. For instance, presentation of MOVEblue would
lead to an increase in the connection strength between MOVE and the blue response (via a layer of hidden units) and a weak-
ening of other connections (e.g., MOVE to the green response). Unlike what is proposed by the repetition account, this change
does not dissipate quickly but is assumed to be relatively permanent until new relevant information is encountered. The idea
is that the system uses each trial to update the associations between stimuli and responses to gradually optimise perfor-
mance by adapting to the statistical regularities in the task. Depending on the learning rates of the model, this process could
happen relatively slowly or rapidly.

Finally, we consider a similar but conceptually distinct account based on the storage and retrieval of instances (see Logan,
1988), here termed the instance account. According to this instance account, participants in an experiment store a memory of
each encountered trial (instance). Each of these instance memories includes information about the stimuli presented along
with the response that was executed. Early processing of the word leads to retrieval of a set of the most recently encountered
(i.e., most accessible) instances associated with this word (e.g., MOVE leads to retrieval of instances containing MOVE) and
from these a response expectancy can be generated. As a result, high contingency trials will tend to be speeded because the
system will be able to detect the contingencies in the task and prepare for the high contingency response. Note that the dif-
ference between the instance and repetition accounts is that the repetition account purports that individual recently
encountered stimuli bias responding, whereas the instance account purports that several recently encountered instances
are retrieved and used to determine the likely outcome of the current trial.

As can be seen, there are a number of candidate explanations for the colour-word contingency effect. A number of impor-
tant questions remain to be answered before the best account can be specified. For instance, we still do not have information
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about basic issues such as: (1) the number of trials needed to obtain the effect (i.e., acquisition speed), (2) whether and how
fast the effect disappears when the contingencies are removed (i.e., extinction speed), and (3) whether contingency effects
can be found only when sufficient memory resources are available. Just like studies of acquisition, extinction, and the effect
of memory resources were crucial in developing theories about other forms of human contingency learning (e.g., De Houwer,
2009; De Houwer, Thomas, & Baeyens, 2001; Shanks, 2007), examining these three issues in the context of the current con-
tingency learning paradigm should provide important information about the processes underlying this effect. Experiment 1
addresses the first two questions and Experiments 2 and 3 address the final question.
2. Experiment 1

The rate of acquisition of contingency information is an important issue. For instance, if contingency information is both
learned and unlearned rapidly, then this would pose a problem for a connectionist model with a low learning rate. It is al-
ready known that the colour-word contingency effect appears relatively early on in the course of an experiment. In a block
analysis, Schmidt et al. (2007) found that the contingency effect was already significant in the very first block of 48 trials. The
first goal of Experiment 1 is to increase the resolution of the block analysis by using smaller blocks of 18 trials. One possible
outcome is that a contingency effect occurs very early on, perhaps in the first block of 18 trials, indicating that very few trials
need to be experienced before contingency information can be extracted. Such a finding would be consistent with any model
that is able to alter responding based on a limited sample of trials. This includes the repetition account, which explains the
effect in terms of transient connections or activations and for connectionist accounts with a high learning rate. According to
low learning rate connectionist accounts, however, acquisition should be slower and participants would need to accumulate
experience with several blocks of trials before the effect emerges.

In an instance framework, understanding how fast a contingency is learned does not necessarily provide us with much
information on how much data the system can take into account. For instance, imagine an instance account in which the
system calculates the most likely response based on the identity of the word using the last 100 trials (a relatively large win-
dow) that it has encoded. Presumably, the system does not actually need 100 trials before it can start calculating; it can use
whatever information it has accumulated so far (e.g., 12 instances if it is on trial 13). The system can use up to 100 trials, but
does not necessarily need that many. In this sense, a rapid learning rate is not particularly diagnostic in discriminating be-
tween accounts stating that the system can handle, for instance, 100 versus just 10 trials of information. As explained below,
the unlearning manipulation reported here is much more informative in this respect.

The second goal of Experiment 1, therefore, is to investigate the rate of unlearning. Partway through the experiment, con-
tingencies were suddenly and without notice switched from 67% (in a three-choice task) to 33% (chance; i.e., each word is
presented equally often in all colours). The questions being investigated are whether the colour-word contingency effect is
eliminated, and if so, how fast? One possibility is that participants discover the statistical regularities early on in the task and
stop searching for contingencies. If so, then the contingency effect should not be extinguished by changing the probabilities.
More likely, the effect will extinguish, but the rate at which this happens is diagnostic for some of the competing accounts.

The repetition account assumes that the effect results from recent exposure to other similar trials and thus predicts rapid
unlearning. Similarly, a high learning rate connectionist account predicts, by definition, a high learning rate and fast extinc-
tion. In contrast, a low learning rate connectionist account predicts, by definition, a low learning rate and slow extinction,
which would be reflected by a gradual decrease in the size of the contingency effect across several unlearning blocks.

For the instance account, if the window of trials that participants retrieve for response prediction is large (e.g., the last 100
trials), then the contingency effect should very slowly extinguish as participants are exposed to more and more uncorrelated
trials. This is because it will take a great deal of unlearning before the average contingency of the last 100 trials is substan-
tially reduced (e.g., on the 21st trial of unlearning, 80% of the trials the system is using are still from the learning phase). This
slow unlearning would be reflected by a gradual decrease in the size of the contingency effect across several unlearning
blocks (just like the low learning rate connectionist prediction).

For an instance account that posits that the system relies on a limited number of the most recently encountered trials, the
effect should extinguishing very rapidly, perhaps in the first block of changed probabilities. For instance, if the system makes
its calculations based on just the last 10 trials, then by trial 11 the participant is not using a single trial from the learning
phase to generate response expectancies. Thus, for the instance account, both a large window and small window version
can accommodate fast learning, but only the small window account predicts fast extinction when unlearning.

In summary, Experiment 1 investigates the rate of initial learning of contingency information and subsequent unlearning.
The experiment begins with three short blocks of 18 trials in which there is a 67% contingency. Learning across blocks is ana-
lysed to assess acquisition speed. Directly following these three learning blocks were nine unlearning blocks of 18 trials each
in which the contingencies were dropped to chance (33%, three choice). The decrease in the size of the contingency effect
across unlearning blocks is assessed to determine extinction speed.

The repetition account predicts rapid learning and unlearning. For connectionist accounts, if the learning rate is high, then
the contingency effect should emerge rapidly in learning and extinguish rapidly in unlearning. If the learning rate is low,
then the contingency effect should emerge gradually in learning and extinguish gradually in unlearning. Finally, for instance
accounts, learning could possibly occur rapidly regardless of window size. Unlearning speed will depend on the number of
trials the system is able to use to generate response expectancies.
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2.1. Method

2.1.1. Participants
Ninety-eight University of Waterloo undergraduates participated in Experiment 1 in exchange for course credit.

2.1.2. Apparatus
Stimulus and response timing were controlled by E-Prime (Experimental Software Tools, 2002). Participants pressed the

‘‘j” key for blue, the ‘‘k” key for red, and the ‘‘l” key for green with the first three fingers of their right hand.

2.1.3. Materials and design
Participants sat approximately 60 cm from the screen and viewed stimuli on a black screen. There were four stimulus

words (LOCK, WIDE, REST, CRAM), but any given participant only saw three of these.1 There were three display colours (blue,
red, green). The experiment began with three learning blocks of 18 trials each. In each learning block, each of the three words
was presented four out of six times (67%) in a randomly assigned colour (e.g., LOCK in blue, WIDE in red, REST in green) and once
in each of the remaining colours (e.g., LOCK would be presented four times in blue, once in red, and once in green). Directly
following these three learning blocks there were nine unlearning blocks, again of 18 trials each. In each unlearning block, each
of the three words was now presented equally often (two out of six times) in each of the three colours. Participants were not
notified of or told to expect the switch from learning to unlearning. Stimuli were presented in lowercase, bold, 18 pt. Courier
New font. Stimuli within blocks were presented in random order.

2.1.4. Procedure
At the beginning of each trial participants saw a white fixation cross for 250 ms, followed by a blank screen for 250 ms,

followed by the coloured word for 2000 ms or until a response was made. A blank screen was presented for 300 ms following
a correct response, and the message ‘‘Incorrect” or ‘‘No response” was presented in red for 1000 ms following an incorrect or
missed response, respectively.

2.2. Results

Trials in which participants failed to respond were deleted from analyses (less than 1% of the data). For response latencies,
only correct responses were analysed. For each participant in each cell, response latencies that were more than 2.5 standard
deviations above or below the mean were excluded from analysis (approximately 1% of the data). Other than reducing noise,
these exclusion criteria do not affect the pattern of the results.2

2.2.1. Response latencies
A 2 (contingency; high, low) � 12 (block) ANOVA for response latencies yielded a significant main effect of contingency,

F(1, 97) = 6.794, MSE = 6112, p = .011, a main effect of block, F(11, 1067) = 3.179, MSE = 11788, p < .001, and an interaction
between these two factors, F(11, 1067) = 4.736, MSE = 5647, p < .001. Planned comparisons were conducted to determine
which blocks yielded a significant contingency effect. The data and statistics are presented in Table 1. Comparisons revealed
significant and relatively consistent contingency effects for all three learning blocks (Blocks 1–3). There was also a significant
(but small) contingency effect in the first unlearning block immediately following learning (Block 4). For the following seven
blocks (Blocks 5–11), there were no significant contingency effects and the differences were all close to zero. Unexpectedly,
high contingency trials were significantly slower than low contingency trials in the final block (Block 12). However, given the
number of statistical tests conducted and the fact that this difference is in the wrong direction for a contingency effect, this
finding is likely a Type I error. Indeed, this effect is no longer significant after a Bonferroni correction (Block 4 falls below
significance with this correction as well).

2.2.2. Error percentages
The error data are presented in Table 2. A 2 (contingency) � 12 (block) ANOVA revealed a significant main effect of block,

F(11, 1067) = 1.857, MSE = 62, p = .041, but no main effect of contingency, F(1, 97) = 2.561, MSE = 65, p = .113, nor an interac-
tion, F(11, 1067) = 1.433, MSE = 66, p = .152. These data are not discussed further.
1 This was a programming error. Four words (rather than three) were randomly assigned to an array of size four for each participant. The program only
needed three words and only referenced the first three positions of this array. Thus, whichever word was assigned to the forth position of the array for a given
participant was simply never referenced and never presented to the participant. Note that this in no way confounds our results.

2 Unlike Experiment 2 to follow, immediate repetition trials were not trimmed in this experiment (i.e., trials in which the preceding trial had the same word
and/or colour). The reason that this is a particularly important trimming procedure is because complete repetition trials (i.e., trials in which both the word and
the colour are repeated) are responded to very quickly and these trials are disproportionately represented in the high contingency condition. In fact, due to the
blocked structure of the task, the only way it is possible to have a complete repetition in the low contingency condition is for the last trial of one block to match
the first trial of the next block. We opted not to perform this trimming procedure in Experiment 1 for two reasons. First, there were already so few observations
per cell (in fact, only 10 of the 98 participants had an observation left in every cell after this trim). Second, sequential effects do not confound analyses in the
unlearning blocks, given that complete repetitions are no longer disproportionately represented in the high contingency cells. Moreover, analyses with
repetition trials removed yield similar (howbeit substantially noisier) results. The same is true of Experiment 3.



Table 2
Experiment 1 percentage errors for block and contingency.

Contingency

High Low Effect

Learning
Block 1 5.8 9.1 3.3
Block 2 5.3 6.6 1.3
Block 3 4.7 5.9 1.2

Unlearning
Block 4 4.4 6.4 2.0
Block 5 3.6 4.9 1.3
Block 6 5.2 5.2 0.1
Block 7 5.9 5.6 �0.3
Block 8 6.3 4.4 �2.0
Block 9 4.7 5.3 0.7
Block 10 5.7 5.1 �0.6
Block 11 5.4 4.8 �0.4
Block 12 6.1 5.9 �0.2

Table 1
Experiment 1 response latencies (in milliseconds) and statistical comparisons for block and contingency.

Contingency Statistic

High Low Effect

Learning
Block 1 593 638 45 t(97) = 3.697, SEdiff = 12, p < .001**

Block 2 567 604 37 t(97) = 3.004, SEdiff = 12, p = .003**

Block 3 540 585 45 t(97) = 4.524, SEdiff = 10, p < .001**

Unlearning
Block 4 563 586 23 t(97) = 2.186, SEdiff = 11, p = .031*

Block 5 579 571 �8 t(97) = .721, SEdiff = 11, p = .473
Block 6 578 578 0 t(97) = .039, SEdiff = 11, p = .969
Block 7 566 569 3 t(97) = .336, SEdiff = 9, p = .715
Block 8 590 583 �7 t(97) = .658, SEdiff = 10, p = .512
Block 9 584 585 1 t(97) = .118, SEdiff = 12, p = .906
Block 10 579 580 1 t(97) = .105, SEdiff = 10, p = .916
Block 11 606 588 �18 t(97) = 1.455, SEdiff = 12, p = .149
Block 12 601 578 �23 t(97) = 2.425, SEdiff = 9, p = .017*

* p < .05.
** p < .004 (Bonferroni correction).
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2.3. Discussion

The results of this experiment clearly demonstrate that both learning and unlearning occur extremely rapidly. Initial con-
tingency learning was significant in the very first block of 18 trials. Unlearning seems to occur just as rapidly. There was only
a very small carryover from the learning blocks into the first unlearning block, and then the effect disappeared in the follow-
ing unlearning blocks. Thus, it is clear that the learning mechanism is highly responsive to the actual contingencies. This
rules out a few of the accounts considered in the Introduction. The data are consistent with connectionist accounts, but only
if a high learning rate is assumed. With a low learning rate, it would take the system much longer to accrue enough infor-
mation to learn contingencies in the learning phase and it would take substantially more unlearning for the effect to extin-
guish. Similarly, the finding of rapid extinction rules out an instance account in which it is assumed that the system draws on
a relatively large sample of trial memories. Fast learning and unlearning, however, is consistent with a small window in-
stance account. Finally, the repetition account posits that the colour-word contingency effect results from transient repeti-
tion effects and is thus consistent with the observed rate of learning and unlearning.

3. Reanalysis 1

The repetition account of the colour-word contingency effect, as noted above, attributes the effect to either residual acti-
vation or temporary SR associations occurring more often for high contingency trials than low contingency trials. The earliest
experiments we conducted using the colour-word contingency paradigm had constraints on presentation order such that no
colour could be repeated from one trial to the next, thus making it impossible for such complete repetitions (e.g., MOVEblue
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could never directly follow MOVEblue; Schmidt et al., 2007) and we have also been careful to control for n � 1 sequence ef-
fects wherever we had enough data per cell to do so (i.e., by deleting trials in which the colour repeats, thus eliminating com-
plete repetitions, which are faster than other trials). Thus, we can already rule out an account that holds that colour-word
contingency learning results from trial n � 1 repetition effects. However, these controls have not ruled out sequence effects
beyond trial n � 1. For instance, it may be the case that complete repetitions on trial n � 2, n � 3, or perhaps even more dis-
tant lags also produce a speeding of responses. Thus, the contingency effect could simply be the result of the combination of
benefits from various lags. We therefore conducted a reanalysis of data from Schmidt et al. (2007, Experiment 2) to test for
n � 2 through n � 5 repetition effects. The critical test condition is complete repetitions, where both the word and colour re-
peat. We also coded for word repetitions, where the word but not the colour repeats; colour repetitions, where the colour but
not the word repeats; and alternations, where neither the word nor colour repeats. The reason for selecting this particular
experiment for our reanalysis is that the contingency manipulation was small enough (50% in a four choice task, where
chance is 25%) to allow sufficient observations in all cells (e.g., in experiments with larger contingency manipulations where
each low contingency pairing only occurs once per block, as was the case in Experiment 1 here, the only way to get a com-
plete repetition is for the last trial in one block to match the first trial in the next block).

The predictions of connectionist and instance accounts are less clear than those of the repetition account. One might
argue that a connectionist model with a high enough learning rate should predict a larger influence of more recent trials
(given that each new trial needs to be able to have a significant influence on connection weights). In that sense, repetition
effects might be expected. However, even with high learning rates there is still an accumulation over several trials. For the
instance account there is no a priori reason to expect that the most recent events should (or should not) have a greater influ-
ence on responding than later trials within the window of trials that the system takes into account. It is our suggestion that
it is not the case that each individual retrieved instance biases its associated response; rather, the idea is that participants
are retrieving a number of associated instance memories and determining the likely (i.e., most frequent) response based on
these.

3.1. Method

A full description of the methodology for the experiment used in this reanalysis can be found in the original article
(Schmidt et al., 2007, Experiment 2). The study was very similar to Experiment 1 here. Participants were 16 University of
Saskatchewan undergraduates. The task was four choice rather than three. In each block, each of four words was presented
6 out of 12 times (50%) in a randomly assigned colour and twice in the remaining colours in each of eight blocks. There was a
constraint on presentation order such that the display colour could not repeat from one trial to the next. Trials were recoded
for both contingency and for repetition type at four lags (n � 2, n � 3, n � 4, and n � 5). Complete repetitions were trials in
which both the word and colour repeated. Word repetitions were trials in which only the word repeated. Colour repetitions
were trials in which only the colour repeated. Finally, alternations were trials in which neither the word nor the colour
repeated.

3.2. Results

There were very few errors in the experiment used for this and the following reanalysis (in fact, the average participant
made about seven errors total, less than the number of conditions used in the following analyses). We therefore restrict our
analyses to response latencies. Trials on which participants failed to respond (less than 1% of the data) and incorrect re-
sponses (less than 4% of the data) were deleted. These trimming procedures do not alter the basic pattern of data reported
below. The data are presented in Table 3.

3.2.1. Trial n-2
A 2 (contingency; high, low) � 4 (repetition type; complete repetition, word repetition, colour repetition, alternation) AN-

OVA for response latencies revealed a marginal main effect for contingency, F(1, 15) = 3.178, MSE = 2587, p = .095. Critically,
there was no main effect of repetition type, F(3, 45) = 1.871, MSE = 2383, p = .148, nor an interaction, F(3, 45) = 1.453,
MSE = 1453, p = .240.

3.2.2. Trial n-3
A 2 (contingency; high, low) � 4 (repetition type; complete repetition, word repetition, colour repetition, alternation) AN-

OVA for response latencies revealed a significant main effect for contingency, F(1, 15) = 8.624, MSE = 3813, p = .010. Again,
there was no main effect of repetition type, F(3, 45) = .465, MSE = 2905, p = .708, nor an interaction, F(3, 45) = .375,
MSE = 4504, p = .772.

3.2.3. Trial n-4
A 2 (contingency; high, low) � 4 (repetition type; complete repetition, word repetition, colour repetition, alternation)

ANOVA for response latencies revealed a marginal main effect for contingency, F(1, 15) = 3.180, MSE = 7190, p = .095. There
was no main effect of repetition type, F(3, 45) = .006, MSE = 6370, p = .999, nor an interaction, F(3, 45) = .510, MSE = 5669,
p = .677.



Table 3
Reanalysis 1 response latencies (in milliseconds) for lag, repetition type, and contingency.

Contingency

High Low

Trial n � 2
Complete repetition 713 719
Word repetition 705 738
Colour repetition 741 740
Alternation 703 729

Trial n � 3
Complete repetition 708 759
Word repetition 709 732
Colour repetition 711 747
Alternation 711 730

Trial n � 4
Complete repetition 701 750
Word repetition 722 725
Colour repetition 709 740
Alternation 711 735

Trial n � 5
Complete repetition 690 709
Word repetition 712 727
Colour repetition 709 727
Alternation 715 741
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3.2.4. Trial n-5
A 2 (contingency; high, low) � 4 (repetition type; complete repetition, word repetition, colour repetition, alternation)

ANOVA for response latencies revealed a significant main effect for contingency, F(1, 15) = 5.128, MSE = 2324, p = .039. There
was no main effect of repetition type, F(3, 45) = 1.868, MSE = 2499, p = .149, nor an interaction, F(3, 45) = .070, MSE = 2089,
p = .976.

3.3. Discussion

The results of Reanalysis 1 show no evidence for repetition effects at lags of two to five trials. For each of these four lags,
no effect of repetition type emerged. These null findings are problematic for the repetition account, which purports to ex-
plain the contingency effect solely by the influence of these transient repetition effects. Of course, interpreting the null is
always difficult. One might argue that we merely lacked statistical power to detect these lag effects. However, there is a
way to demonstrate that, in fact, lag effects do not explain the contingency effect. For this we turn to Reanalysis 2.

4. Reanalysis 2

Reanalysis 1 indicated no evidence for n � 2 through n � 5 repetition effects. Rather than simply failing to reject this null, we
conduct a further analysis to demonstrate that these (absent) lag effects do not account for the contingency effect. Recall that the
repetition account purports to fully explain the contingency effect in terms of these short-lived associations or activations. Thus,
the argument is not only that there should be observable lag repetition effects, but also that these repetition effects should ex-
plain the variance attributed to the contingency effect. In other words, after accounting for the variance attributed to these rep-
etition effects, there should be no variance left over for the contingency manipulation to explain (i.e., because repetition effects
are the contingency effect in this conceptualisation). Thus, if the repetition variables are entered into the first step of a regression
analysis and then contingency is added to the regression analysis in a second step, then the new regression model with contin-
gency included should not explain more variance. If more variance is explained by contingency, then this verifies that our initial
analyses were not simply the result of poor statistical power. Instead, transient repetition effects do not fully explain the con-
tingency effect. The reader is again reminded that n � 1 repetition effects were controlled by design (i.e., colour repetitions were
impossible), so only lags n � 2 and beyond need to be entered into the regression.

4.1. Method

The same data set used for Reanalysis 1 was used for Reanalysis 2. For this analysis, the full raw data set was dummy
coded for participant, contingency, and the repetition type at each lag. That is, each individual trial for each participant
was included as an observation in the regression and then participant number was included as a predictor in the regression
along with contingency, repetition type, and lag (for an explanation of how to do regression with repeated observations per
participants see Bland & Altman, 1995).
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4.2. Results

Null and incorrect responses were trimmed (as in the previous analysis). These trimming procedures do not alter the ba-
sic pattern of data reported below.

4.2.1. Step 1 – participant, repetition type, and lag
In Step 1 of the regression, the dummy coded variables for participants and for repetition trial types at the various lags

were entered as predictors and response latency was entered as the outcome variable. Unsurprisingly, this model explained a
significant amount of variance, R2 = .256, F(27, 5896) = 75.262, p < .001. Note that this model explains the variance between
participants (i.e., the multiple observations per participant were coded for participant number and instead of removing this
variance, as in a traditional regression, between-participant variance was included as a predictor).

4.2.2. Step 2 – adding contingency
In Step 2 of the regression, all of the variables in Step 1 were included plus the new variable for contingency (high, low).

The test for a change in the amount of variance explained was significant, R2 Change = .001, F Change (1, 5895) = 11.018,
p = .001. Note that the reason for the small value of the R2 Change is that the between-participant differences account for
an enormous chunk of the variation (accounted for in Step 1 of the regression). Within the full model, contingency accounts
for 19 ms of variance.

4.3. Discussion

The results of Reanalysis 2 corroborate the findings of Reanalysis 1 by showing that (the non-existent) repetition effects at
lags of two to five trials do not explain the contingency effect. After putting all of these repetition variables into the first step
of a regression to account for what variation they could, contingency continued to explain variance in the second step of the
regression. Note again that this experiment, by design, rules out n � 1 repetition effects due to the constraint on presentation
order (i.e., colour repetitions were impossible). As a result of this analysis, it is safe to conclude that the colour-word con-
tingency effect reflects more than simple priming by transient activations or SR associations as posited by the repetition ac-
count, at least as far out as five trials.

The implication of these two reanalyses for connectionist and instance accounts is less certain. One might have expected
some repetition effects at recent lags for a high learning rate connectionist account, but the argument probably cannot be
made that such lag repetition effects should have completely accounted for the contingency effect. No strong prediction
was made for the instance account.
5. Experiment 2

Given how rapid learning and unlearning were in Experiment 1, it is clear that the ‘‘window” of trials that participants
take into account when calculating their response prediction is remarkably small. This led us to the notion that participants
may be using limited-capacity memory resources to retrieve a small number of recently encountered trial memories in pre-
paring a response. This is consistent with the finding from the sequence learning literature that carrying a memory load im-
pairs learning (Nissen & Bullemer, 1987), though it is not clear that learning between trials is necessarily always the same as
learning within trials (see the General Discussion for a discussion of the similarities and differences between the colour-
word contingency paradigm and several other paradigms).

Experiment 2 tests this memory resource hypothesis by examining the impact of memory load on the colour-word con-
tingency effect. Participants in one condition were given a set of five digits to remember at the beginning of each trial and
were tested for their recognition at the end of each trial. Forcing participants to remember five digits should create a high
load on memory, which leaves little or no memory resources to retrieve trial information that can be used to learn contin-
gencies. Other participants were given two digits to remember. Thus, there is a low load on memory, which ought to enable
participants to use their remaining memory resources for learning contingencies. Thus, a contingency effect is expected in
the low load condition, where a smaller (or possibly null) effect is expected in the high load condition.

These predictions are largely derived from our preferred instance account of the colour-word contingency effect in which
it is assumed that the system needs to perform memory retrieval functions on a trial-by-trial basis to facilitate responding to
high contingency trials. It is probably the case that connectionist models can be modified to allow a role for limited-capacity
memory resources, as well. It is less clear, however, why a memory load should interfere with residual activation or tempo-
rary SR bindings, so memory load effects would seem inconsistent with a repetition account.

5.1. Method

5.1.1. Participants
Sixty University of Waterloo undergraduates participated in Experiment 2 in exchange for course credit. None had par-

ticipated in the previous experiment. Two participants were deleted from the high load condition and two from the low load
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condition for having less than 70% accuracy on the memory task, leaving 28 participants in each of the high and low load
conditions.

5.1.2. Apparatus
The apparatus for Experiment 2 was identical to Experiment 1 with one exception. In addition to the ‘‘j,” ‘‘k,” and ‘‘l” keys

that were pressed with the right hand to respond to colours, participants used their left hand to press the ‘‘y” key for ‘‘yes”
responses and the ‘‘n” key for ‘‘no” responses in regard to the load manipulation.

5.1.3. Materials and design
The materials and design for Experiment 2 were identical to Experiment 1 with the following exceptions. There were only

three stimulus words (LOCK, WIDE, REST). At the beginning of each trial, participants were presented with either five (high
load) or two (low load) random digits (0–9) horizontally presented with three spaces between each digit. Following a re-
sponse to the target colour on each trial, participants were presented with a second set of digits. For both groups of partic-
ipants, there were two blocks of 60 trials each. In each block, a randomly selected digit in the memory set was changed to a
new random digit on half of the trials and none of the digits changed on the other half of the trials. Orthogonal to this, each of
the three words was presented eight out of ten times (80%) in an assigned colour and once in each of the remaining colours
(e.g., LOCK 80% in blue). It is expected that with five digits to remember memory will be too highly loaded to learn contin-
gencies, whereas with only two digits to remember memory is not heavily loaded and will have leftover resources for storing
trial information to learn contingencies. As a result, a contingency effect is expected in the low load condition, but not the
high load condition.

5.1.4. Procedure
At the beginning of each trial participants saw a white fixation cross for 250 ms, followed by a digit memory set for

2000 ms. Participants were instructed to remember these digits in order. Next, there was a blank screen for 250 ms, followed
by the coloured word for 2000 ms or until a response was made. The message ‘‘Correct,” ‘‘Incorrect,” or ‘‘No response” was
presented in white for 500 ms following correct, incorrect, and null responses, respectively. A second set of digits was then
presented until participants decided whether one of the digits had changed by pressing the ‘‘y” key (for ‘‘yes”) or the ‘‘n” key
(for ‘‘no”). This was followed by a second feedback screen, which was identical to the first (except that null responses were
impossible).

5.2. Results

Null responses were deleted (less than 3% of the data), as were trials in which participants failed on the memory test
(about 11% and 8% of the data in the high and low load conditions, respectively). Because we were interested in trial n con-
tingency effects and not sequential effects all trials where the word or colour was the same as that on the preceding trial
were deleted. For response latencies, only correct responses were analysed. In addition, for each participant in each cell, re-
sponse latencies that were more than 2.5 standard deviations above or below the mean were excluded from analysis
(approximately 2% of the data). These trimming procedures do not alter the basic pattern of data reported below.

5.2.1. Response latencies
The response latencies for Experiment 2 are presented in Table 4. A 2 (contingency; high, low) � 2 (memory load; high,

low) ANOVA for response latencies yielded a significant main effect of contingency, F(1, 54) = 16.921, MSE = 7611, p < .001,
and an interaction, F(1, 54) = 5.667, MSE = 7611, p = .021, in which there was a larger contingency effect for the low relative
to the high load group. The main effect of memory load was not significant, F(1, 54) = .453, MSE = 47878, p = .504. Planned
comparisons revealed that participants in the low load group responded faster to high contingency trials (779 ms) than to
low contingency trials (886 ms), t(27) = 4.055, SEdiff = 26, p < .001. In contrast, participants in the high load group did not re-
spond significantly faster to high contingency trials (846 ms) than to low contingency trials (874 ms), t(27) = 1.446, SEdiff

= 20, p = .160.

5.2.2. Error percentages
Percentage errors for Experiment 2 are presented in Table 5. A 2 (contingency) � 2 (memory load) ANOVA for error per-

centages was conducted. The main effect of contingency, F(1, 54) = .219, MSE = 44, p = .642, the main effect of memory load,
Table 4
Experiment 2 response latencies (in milliseconds) for contingency and load.

Contingency

High Low Effect

Low load 779 886 107
High load 846 874 28



Table 5
Experiment 2 percentage errors for contingency and load.

Contingency

High Low Effect

Low load 4.5 4.1 �0.4
High load 5.4 6.9 1.5
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F(1, 54) = 1.263, MSE = 72, p = .266, and the interaction, F(1, 54) = .565, MSE = 44, p = .455, were not significant. Planned com-
parisons revealed no significant differences in errors between high and low contingency trials for participants in the low load
group (4.5% and 4.1%, respectively), t(27) = 0.216, SEdiff = 1.7, p = .830, or in the high load group (5.4 and 6.9%), t(27) = .808,
SEdiff = 1.9, p = .426.

5.3. Discussion

The results of Experiment 2 demonstrate quite dramatically that participants in the high memory load condition did not
show a contingency effect (or at least the effect was significantly attenuated), whereas those participants in the low memory
load condition did show a contingency effect. This is consistent with the idea that limited-capacity memory resources of
some sort are required for colour-word contingency learning. Specifically, the argument is that when memory resources
are taxed with a secondary task, there are no (or less) resources left over to store and/or retrieve instances that can be used
to learn contingencies. The system requires memory resources to be free in order for instances to be stored and contingency
information to be learned. We have nothing to say about the nature of these resources at the present time. Future research
will be needed to answer such as questions as whether these resources are domain general or domain specific. We again note
that connectionist models can likely be modified to allow a role for limited-capacity resources, as well. It is less clear how the
repetition account could accommodate these findings.

These results are also consistent with the finding of Nissen and Bullemer (1987), where load was shown to prevent
sequential learning. Some authors, however, have argued that the apparent memory load effects observed in sequential
learning may actually be due to an integration of the secondary task stimuli into the memory of the sequence (Heuer &
Schmidtke, 1996; Schmidtke & Heuer, 1997). For instance, if a participant has to monitor tones presented between target
stimuli, then these tones could, according to this account, become part of the sequence (i.e., Stimulus 1 ? random
tone ? Stimulus 2 instead of Stimulus 1 ? Stimulus 2), which interferes with learning by separating stimuli in the sequence
rather than by load per se. Whether this is the full explanation of load effects in sequence learning is up for debate, but in our
paradigm this is less of an issue. Learning in the colour-word contingency learning paradigm by definition occurs within tri-
als rather than between. Thus, even if the secondary task information is somehow being encoded along with the target, dis-
tracter, and response, failure to infer the distracter–response contingency is still an issue of load (i.e., too much information
loaded on the system to extract the important contingency).
6. Experiment 3

The results of Experiment 2 leave several unanswered questions about the specific role of memory resources in con-
tingency learning. One possibility is that memory resources are required for the binding of features and responses into
instances. We term this the encoding hypothesis. That is to say, participants need memory resources in order to initially
make and store instances. Thus, if memory resources are taxed by a difficult enough secondary task, then instances will
not be recorded and there will, resultantly, be no instances (or perhaps incomplete instances) to retrieve to use to deter-
mine the high contingency response. If this view is correct, then it is not simply the case that participants are not show-
ing a contingency effect while under load; rather, participants have not learned anything about the contingencies in the
task.

A second possibility is that participants are able to create and store instances while under a memory load, but they are
unable to retrieve these instances while under load. We term this the retrieval hypothesis. In this sense, participants put under
memory load are learning contingency information, but are simply unable to use this learning in the presence of the second-
ary task.

A third possibility is that participants require memory resources both for the creation of instances and for the subsequent
retrieval of these instances. We term this the resource hypothesis. According to this hypothesis, memory resources are needed
more broadly to carry out the various memory functions required for contingency learning. Thus, memory load, according to
this hypothesis, impairs both encoding and subsequent retrieval processes.

To test these various accounts, two groups of participants were included in Experiment 3. Both groups underwent an ini-
tial Learning Block (36 trials) in which contingencies were introduced, followed by a Transfer Block (36 trials) in which con-
tingencies were removed. The critical test block in Experiment 3, as discussed below, is the Transfer Block. Note that
although unlearning is rapid when contingencies are removed, transfer was observed in the initial unlearning block in
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Experiment 1. For Group 1, memory load was high for learning and low for transfer. For Group 2, memory load was low for
learning and high for transfer. As described below, a control experiment was also run that was identical except that memory
load was low for both learning and transfer.

Participants in Group 1 were put under high load in the Learning Block and low load in the Transfer Block. If the encoding
hypothesis is correct (i.e., memory resources are required for the creation of instances), then participants will not learn con-
tingencies while loaded in the Learning Block, leading to no transfer in the subsequent Transfer Block when the memory load
is removed. Alternatively, if the retrieval hypothesis is correct and participants are storing instances while under load in the
Learning Block (but are simply not able to retrieve and use them while under load), then there should be a transfer of learn-
ing in the Transfer Block when the load is removed (i.e., a significant contingency effect). If memory resources are required
for encoding and retrieval (the resource hypothesis), then no transfer should be observed.

Participants in Group 2 were put under low load in the Learning Block and high load in the Transfer Block. If the retrieval
hypothesis is correct, then contingency knowledge can only be used when sufficient resources are available to retrieve in-
stances. Thus, participants will successfully learn contingencies in the Learning Block under a low load, but will not show an
effect in the Transfer Block when a high load is introduced. Alternatively, if the encoding hypothesis is correct and memory
resources are needed for initial encoding of instances, then participants should learn contingencies in the Learning Block
with low load and continue to show a contingency effect in the Transfer Block after a high load has been introduced. In other
words, according to the encoding hypothesis it does not matter if memory is currently loaded, so long as contingency infor-
mation has been learned. Lastly, if memory resources are required for both encoding and retrieval (the resource hypothesis),
then no transfer should be observed.

To summarise, the encoding hypothesis predicts that contingency effects will be observed when participants are not
highly loaded while learning, thus predicting transfer in Group 2, but not in Group 1. The retrieval hypothesis predicts that
contingency effects will be observed when participants are currently not highly loaded (i.e., when they are able to retrieve
instances), thus predicting transfer in Group 1 but not in Group 2. Finally, the resource hypothesis predicts that both encod-
ing and retrieval cannot be accomplished under load, thus predicting no transfer in either of the two groups. Given the latter
possibility, a control experiment was also conducted to ensure that transfer can occur within the specific parameters used in
this experiment. The control experiment was identical to the main experiment save for the fact that memory load was low in
both the learning and transfer blocks. It is unclear what a connectionist account should predict, as it would first have to be
determined how such an account would include a role for memory resources.

6.1. Method

6.1.1. Participants
Eighty University of Waterloo undergraduates participated in Experiment 3 in exchange for course credit, with 40 in each

of the two groups. Seven participants in Group 1 and seven participants in Group 2 were deleted due to less than 70% accu-
racy on the memory task, leaving 33 participants per group. Another 33 participants from the same participant pool were in
the control experiment. One participant was deleted due to less than 70% accuracy on the memory task, leaving 32 partic-
ipants. None of the participants had participated in any of the previous experiments.

6.1.2. Apparatus
The apparatus for Experiment 3 was identical to Experiment 2.

6.1.3. Materials and design
The materials and design for Experiment 3 were identical to Experiment 2 with the following exceptions. For both groups

of participants, there were two blocks of 36 trials each. In the initial Learning Block, each of the three words was presented 8
out of 12 times (67%) in an assigned colour and once in each of the remaining colours. In the subsequent Transfer Block, each
of the three words was presented 4 out of 12 times in each colour (33%, chance). Orthogonal to this, a randomly selected digit
in the memory set was changed to a new random digit on half of the trials and none of the digits changed on the other half of
the trials. For one group of participants (Group 1), load was high (five items) in the Learning Block and low (two items) in the
Transfer Block. For the other half of the participants (Group 2), load was low in the Learning Block and high in the Transfer
Block. Participants were counterbalanced across groups. In the control experiment, load was low for both blocks. The critical
question of interest is which groups of participants show transfer.

6.1.4. Procedure
The procedure for Experiment 3 was identical in all respects to Experiment 2.

6.2. Results

Trials on which participants failed to respond (less than 1% of the data) and trials on which participants made an error on
the memory task (approximately 14% of the data) were removed. Correct response latencies were trimmed by removing tri-
als for each participant in each cell that were over 2.5 standard deviations from the mean (less than 2% of the data). These
trimming procedures do not affect the basic pattern of results described below.



Table 6
Experiment 3 response latencies (in milliseconds) for group, block, and contingency.

Contingency

High Low Effect

Control
Learning Block (low) 891 930 39*

Transfer Block (low) 788 815 27*

Group 1
Learning Block (High) 1015 1032 17
Transfer Block (low) 860 839 �21

Group 2
Learning Block (low) 924 983 59*

Transfer Block (high) 900 897 �3

* p < .05.
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6.2.1. Control: low load learning – low load transfer
Participants in the control experiment were given 67% contingencies to learn under low load in the Learning Block and

then were presented with chance 33% contingencies under low load in the Transfer Block in order to ensure transfer was
possible in the task.

6.2.1.1. Response latencies. Response latency data for the control experiment are presented in Table 6. A t-test on the Learn-
ing Block revealed that high contingency trials (891 ms) were responded to significantly faster than low contingency trials
(930 ms), t(31) = 2.759, SEdiff = 14, p = .010. Critically, a t-test on the Transfer Block revealed a significant transfer effect; high
contingency trials (788 ms) were responded to significantly faster than low contingency trials (815 ms), t(31) = 2.393,
SEdiff = 11, p = .023. Thus, transfer can be observed in this version of the paradigm.

6.2.1.2. Percentage error. Percentage error data for the control experiment are presented in Table 7. A t-test on the Learning
Block control data revealed that high contingency trials (3.8%) did not generate significantly different errors than low con-
tingency trials (3.1%), t(31) = .532, SEdiff = 1.1, p = .599. Additionally, a t-test on the Transfer Block revealed no significant dif-
ference between high contingency trials (3.1%) and low contingency trials (4.3%), t(31) = .847, SEdiff = 1.4, p = .403.

6.2.2. Group 1: high load learning – low load transfer
The first group of participants were given 67% contingencies to learn under high load in the Learning Block and then were

presented with chance (33%) contingencies under low load in the Transfer Block.

6.2.2.1. Response latencies. Response latencies for Group 1 are presented in Table 6. A t-test on the Learning Block revealed
that high contingency trials (1015 ms) were not responded to significantly faster than low contingency trials (1032 ms),
t(32) = .801, SEdiff = 23, p = .429. Critically, a t-test on the Transfer Block revealed no significant transfer effect; high contin-
gency trials (860 ms) were not responded to faster than low contingency trials (839 ms), t(32) = 1.131, SEdiff = 19, p = .267.
Note that the numbers were numerically in the wrong direction. Additionally, this null effect was significantly smaller than
the transfer effect in the control experiment, F(1, 63) = 4.726, MSE = 3928, p = .033. Thus, there was no evidence for the
hypothesis that participants can learn under load.

6.2.2.2. Percentage error. The percentage error data for Group 1 are presented in Table 7. A t-test on the Learning Block re-
vealed that high contingency trials (3.6%) did not generate significantly different errors than low contingency trials (5.4%),
Table 7
Experiment 3 percentage errors for group, block, and contingency.

Contingency

High Low Effect

Control
Learning Block (low) 3.8 3.1 �0.7
Transfer Block (low) 3.1 4.3 1.2

Group 1
Learning Block (high) 3.6 5.4 1.8
Transfer Block (low) 2.2 2.8 0.6

Group 2
Learning Block (low) 2.6 7.4 4.8*

Transfer Block (high) 3.5 3.0 �0.5

* p < .05.
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t(32) = 1.034, SEdiff = 1.7, p = .309. Additionally, a t-test on the Transfer Block revealed no significant transfer effect; high con-
tingency trials (2.2%) did not generate significantly different errors than low contingency trials (2.8%), t(32) = .717, SEdiff = 0.9,
p = .479.

6.2.3. Group 2: low load learning – high load transfer
The second group of participants were given 67% contingencies to learn under low load in the Learning Block and then

were presented with chance (33%) contingencies under high load in the Transfer Block.

6.2.3.1. Response latencies. Response latencies for Group 2 are presented in Table 6. A t-test on the Learning Block revealed
that high contingency trials (924 ms) were responded to significantly faster than low contingency trials (983 ms),
t(32) = 3.013, SEdiff = 20, p = .005. Critically, a t-test on the Transfer Block revealed no significant transfer effect; high contin-
gency trials (900 ms) were not responded to faster than low contingency trials (897 ms), t(32) = .159, SEdiff = 18, p = .875.
Although this null effect was not significantly smaller than the transfer effect in the control experiment, F(1, 63) = 1.964,
MSE = 3564, p = .166, note that the numerical difference was again in the wrong direction. Thus, there was no evidence
for the hypothesis that participants can retrieve and apply learning while under load.

6.2.3.2. Percentage error. The percentage error data are presented in Table 7. A t-test on the Learning Block revealed that high
contingency trials (2.6%) generated significantly less errors than low contingency trials (7.4%), t(32) = 2.916, SEdiff = 1.6,
p = .006. Additionally, a t-test on the Transfer Block revealed no significant transfer effect; high contingency trials (3.5%)
did not generate significantly different errors than low contingency trials (3.0%), t(32) = .390, SEdiff = 1.2, p = .699.

6.3. Discussion

The results of Experiment 3 provide support for the resource hypothesis by showing that memory load interferes with
both storage and retrieval. Participants in Group 1 were not able to encode instances under high load, as indicated by the
lack of transfer in the Transfer Block when the load was reduced. Further, participants in Group 2 were not able to retrieve
stored instances in the Transfer Block when put under high load. Data from the control experiment confirm that transfer is
observable in this task setup. Thus, the combined results suggest that memory resources are required for both encoding and
retrieval, in support of the resource hypothesis. Although the manipulations in this experiment were largely inspired to test
various versions of the instance account, it is likely the case that connectionist accounts could be modified to accommodate
these findings, as well.
7. General discussion

The results of past work and the experiments and reanalyses presented here help to narrow the range of potential expla-
nations for colour-word contingency learning. The available data suggest that these contingencies are acquired implicitly
(Schmidt et al., 2007), that the critical contingency is between the word and the response (Schmidt et al., 2007), that learning
and unlearning of contingencies is extremely rapid (Experiment 1), that the effect does not result solely from repetition ef-
fects (Reanalyses 1 and 2), and that contingency learning requires limited-capacity memory resources (Experiments 2 and 3)
for both storage and retrieval (Experiment 3). Given these criteria, we can begin to piece together a model of learning in this
paradigm.

Our favoured account of colour-word contingency learning assumes that participants use instances to represent
contingency information. According to this instance hypothesis, on each trial a representation of the stimuli and re-
sponse that was made are bound into an instance memory. These instances are then stored in an episodic store. On
each trial, after the word is processed a number of matching instances are retrieved and a response expectancy is
determined. For instance, as the participant processes the word MOVE, they will retrieve a number of instances that
are associated with this (the most recently encountered ones being the most accessible) and use these to determine
that blue is the most probable response. If blue is the correct response (i.e., a high contingency trial), then respond-
ing will be speeded.

The results of the experiments and reanalyses presented here are completely consistent with the instance account.
The rapid learning of contingencies in Experiment 1 is consistent, because it will only take a handful of trials for par-
ticipants to have been exposed to a number of high contingency pairings, while only seeing one or two low contingency
pairings. Thus, right from the start, participants should be able to begin using contingency information to speed high
contingency responses. In addition, because memory has a limited capacity and only so many instances can be retrieved
during target processing, it will only take a small amount of unlearning before participants are no longer retrieving in-
stances from the preceding learning phase (i.e., because the more-recently encountered unlearning trials are more acces-
sible). As such, the rapid unlearning observed in Experiment 1 is also consistent with the instance account. Finally, the
results of Experiments 2 and 3 are consistent with the instance account, because participants should need memory re-
sources to carry out the memory functions required to store and subsequently retrieve instances, and memory load im-
pairs these functions.
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The rapid learning and unlearning in Experiment 1 are also consistent with the connectionist account, so long as the
learning rate is assumed to be high. Presumably, models such as the SRN can be easily modified to allow a role for lim-
ited-capacity resources in storage and retrieval processes (though of course a demonstration to that effect would be wel-
come). Note that the primary difference between the proposed instance account and connectionist models such as the
SRN is the way in which learned information is represented. In the SRN, information is distributed across a network of hidden
units. In the instance account, trial information is stored in discrete instances. Further research will need to be conducted to
distinguish between these two possibilities.

Finally, we were able to rule out a repetition account in Reanalyses 1 and 2 by demonstrating that there were no lag ef-
fects that were able to explain the variance attributed to the contingency manipulation.

7.1. Relation to past research

The colour-word contingency learning paradigm shares obvious similarities with numerous other cognitive paradigms.
However, these paradigms also differ in a number of ways from the paradigm used in the present studies, including the type
of stimuli and responses that are involved in the task, the speed of judgment, and several other factors. Although common-
alities surely exist, it remains to be seen which common processes underlie which effects of contingencies on performance.
Until this issue is examined further, care should be taken when generalising the conclusions from these studies to contin-
gency learning in other paradigms (and vice versa). In the following sections we discuss the relation of the current paradigm
to three other broad categories of paradigms: conflict paradigms (e.g., Stroop, Eriksen flanker), judgement tasks (e.g., eval-
uative conditioning, hidden covariation detection), and sequential learning.

7.1.1. Conflict paradigms
The one paradigm that most of our colleagues seem to equate with the colour-word contingency learning paradigm is the

Stroop task. Nonetheless, of the three types of paradigms discussed here, conflict paradigms such the Stroop task are argu-
ably the least similar to the present contingency paradigm. On the surface, the colour-word contingency task is very similar
to a Stroop task: participants are presented with coloured words and are asked to ignore the identity of the word and re-
spond to the print colour. However, aside from this surface similarity, it can be argued that the two tasks are in fact quite
different.

Conflict paradigms such as Stroop are based on over-trained relations, are partially semantic in nature (e.g., De Houwer,
2003; Risko, Schmidt, & Besner, 2006; Schmidt & Cheesman, 2005), and are driven almost entirely by interference (see
MacLeod, 1991 for a review). In contrast, colour-word contingency learning is based on newly-trained covariations, is
non-semantic (Schmidt et al., 2007), and is driven entirely by facilitation (Schmidt & Besner, 2008). Thus, the informative-
ness of data from conflict paradigms for our contingency learning work is questionable.

However, contingency manipulations have been introduced within the context of conflict paradigms. The best example of
this for our purposes is the work by Miller (1987; see also Carlson & Flowers, 1996) using a flanker task in which a centrally
presented target letter was flanked by two identical distracting letters. Some of these letters were presented most often with
a particular response. Similar to the colour-word contingency paradigm, it was found that targets with high contingency
flankers were responded to faster than low contingency flankers. Although Miller’s work did not investigate learning speed
or the effect of memory load, the structural similarity between the two paradigms is so extensive that it is likely that the
effects in both paradigms result from similar processes.

7.1.2. Judgement tasks
The colour-word contingency learning paradigm shares similarities with various judgement tasks. For instance, in the

hidden covariation paradigm, participants learn the contingencies between facial characteristics and personality character-
istics (Lewicki, 1985, 1986; Lewicki, Hill, & Czyzewska, 1997; but see Hendrickx, De Houwer, Baeyens, Eelen, & Van Aver-
maet, 1997a, 1997b). Similarly, in the evaluative conditioning paradigm participants’ liking of objects is altered by being
paired with valenced words (see De Houwer et al., 2001 for a review). However, there are also many important differences.
For instance, in these judgement paradigms the contingencies are typically 100% (e.g., in hidden covariation detection, facial
characteristic X is always presented with personality characteristic Y). In colour-word contingency learning, contingencies
are less than chance. There are at least two reasons why this difference is interesting. First, it is interesting that participants
are able to detect a regularity in a noisy (i.e., non-100% contingency) dataset. Second, it is not certain whether detecting reg-
ularities in a noisy versus noiseless dataset involves identical processes (e.g., the latter case may lend itself more to explicit
recognition of contingencies and be more prone to strategic influences).

Also, the colour-word contingency task involves speeded responses as the dependent measure, whereas judgement tasks
such as evaluative conditioning most often involve a relatively slower judgment response (e.g., a judgement of the valence of
an object). Changes in the rate of processing do not necessarily imply that the system will reach a different response. That is,
just because a contingency may help to make a judgement faster, it does not follow that the participant will necessarily be
any more likely to make a given response (e.g., Stimulus B may cause a participant to select Response B regardless of whether
they select the response quickly or slowly). Additionally, response latencies are sometimes used in these judgement tasks
(e.g., Lewicki, 1986), but these judgment responses are overall much slower than rapid identification responses, so it remains
unclear whether effects occurring in a few hundred milliseconds are simply a ‘‘scaled down” version of the effects occurring
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at a few thousand milliseconds. In particular, the relatively slower judgement responses may include more explicit (rather
than implicit) processes.

7.1.3. Sequential learning
Sequential learning is another paradigm that shares many similarities with the colour-word contingency paradigm. In the

typical sequential learning paradigm participants are presented with a series of target stimuli to respond to (no distracters)
and the stimuli follow a predictive sequence (Nissen & Bullemer, 1987). Most sequence learning research has participants
respond to a sequence that is either random or 100% predictive (i.e., the same series of stimuli keep repeating). Learning
is determined as the difference in response times between these two conditions. More similar to the colour-word contin-
gency paradigm, some research with sequence learning has been done using probabilistic sequences (i.e., where the next
item in the sequence is predictable, but not perfectly; Jimenez & Mendez, 1999; Song, Howard, & Howard, 2007).

In many ways, the colour-word contingency learning paradigm may seem redundant with the sequential learning para-
digm, because both are speeded reaction time tasks that involve the learning of the relationship between stimuli and sub-
sequent responses. However, the paradigms do differ in fundamental ways that may (or may not) prove significant. For
instance, our paradigm involves participants applying contingency information on a trial-by-trial basis (i.e., participants can-
not know what response to expect until they have begun to process the word). In sharp contrast to this, in the sequence
learning paradigm participants learn a long repeating series of stimuli and responses. This may result in strategic differences
in learning and may also affect the rate of learning. Additionally, instead of learning the association of stimuli to responses, in
sequence learning participants may be learning the series of responses (which is impossible in the colour-word contingency
learning paradigm, because there is no response sequence).

Another fundamental difference between our contingency learning paradigm and the sequence learning paradigm is the type
of information being retrieved. For colour-word contingency learning, participants are required to learn the relation between a
distracter and the associated response within individual trials to determine what response is likely given the current word. In
contrast, for sequence learning participants are required to learn the relation between stimuli to responses across a number
of trials to determine what response is likely to follow. For instance, if presentation of Stimulus A leads to retrieval of Memory
X (i.e., an instance that contains Stimulus A), then participants could use Memory X to predict the response in our contingency
learning paradigm, but would need to retrieve Memory X + 1 to predict the next item in sequence learning. What differences in
learning this will lead to is unclear. More importantly, given these numerous fundamental differences, it cannot simply be as-
sumed that every result found in sequence learning will also be found in colour-word contingency learning, or vice versa.

7.2. Summary

As we have highlighted, the colour-word contingency paradigm shares many similarities with other paradigms used to study
contingency learning, but also has some differences. Thus, it appears premature to assume that an effect observed in one par-
adigm necessarily generalises to the colour-word contingency paradigm (or vice versa). That said, there are some important
ways in which the current results parallel findings from other contingency learning paradigms. Experiment 1 demonstrated ex-
tremely rapid learning and unlearning of contingency information. Although we are the first to study unlearning, the finding of
rapid learning is consistent with what has been found in the hidden covariation detection paradigm, where response biasing has
been demonstrated after exposure to as few as one or two consistent trials (Lewicki, 1985, 1986). In the sequence learning task,
learning has been shown to take about seven blocks of a ten-trial sequence (Nissen & Bullemer, 1987).

It is fascinating, however, that learning occurs so fast even in the colour-word contingency paradigm where contingencies
are not 100%. Rapid learning in a probabilistic task has also been reported by Jacoby and colleagues (2003) using an item
specific proportion congruent manipulation (which Schmidt & Besner, 2008 have argued is simply a colour-word contin-
gency effect incidentally observed within the context of a conflict paradigm). Although Jacoby and colleagues did not provide
individual t-tests for each block, visual inspection of their data suggests that a contingency effect was present in their very
first block of 16 trials. Although there are not many studies on the learning rate in contingency learning paradigms (and we
are not aware of any work on unlearning), it does appear that, in general, the human cognitive system is capable of very rapid
learning (and unlearning) of covariations.

The results of Experiments 2 and 3 produced evidence that contingency learning in the colour-word paradigm is impaired
when memory is loaded with a secondary task. Indeed, a similar result has been found in the sequence learning task, where
minimal learning was found for participants under load (Nissen & Bullemer, 1987). Although more work is certainly needed,
it is interesting that apparently very simple learning processes that are generally reported to occur without awareness (e.g.,
Lewicki, 1986; Nissen & Bullemer, 1987; Schmidt et al., 2007) seem to be dependent on the availability of memory resources
(see Hassin, 2005 for a discussion of implicit working memory). The results of Experiment 3 also add an interesting extension
to this research by showing that memory load appears to affect both storage and retrieval processes.

7.3. Conclusions

The colour-word contingency paradigm is a useful tool to study contingency learning. It is very simple, easy to program,
and produces highly reliable results. In the three experiments presented here it can be seen that learning and unlearning of
contingencies in this paradigm is very rapid and is dependent on memory resources. Two reanalyses of old data ruled out a
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repetition account of these data. We have suggested that a viable explanation for these (and other findings) is that partic-
ipants encode and subsequently retrieve a finite set of instances and use these instances to extract contingency information
to be used to facilitate high contingency responses. Connectionist accounts such as the SRN can likely also be modified to
account for the current results. Whatever account ultimately prevails, the current results constrain viable such accounts
to those that are fast and those that require a role for limited-capacity memory resources.
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