A. Al-Mayah
519-888-4567 x31566
E2 2311

Research Interests:

  • Biomechanical properties of soft tissues
  • Integration of imaging and mechanics
  • Biomechanical-based image registration for surgery and radiotherapy
  • Mechanics and structural applications of composite materials
  • Smart devices and sensors


Research Gate

[YouTube Lecture] September 30, 2014 "An engineering prospective on Cancer'

Application Areas→Cancer, Cardiovascular; Technology Areas→Computational Modeling, Diagnostics, Imaging, Medical Devices; Discipline Areas→Biomechanical Engineering; Faculty→Engineering
Jason Au
519-888-4567 x40522
BMH 1104

Research interests:

  • Developing human ultrasound applications to understand more about complex blood flow in arterial bifurcations and venous valves
  • Recommending exercise strategies that target cardiovascular dysfunction associated with physical inactivity, looking specifically at 'high-risk' vascular areas
  • Developing new uses of ultrasound to diagnose pro-atherogenic blood flow patterns

PubMed Publication

Application Areas→Aging, Cardiovascular, Disease Modelling, Space; Technology Areas→Biomarkers, Diagnostics, Disease Modelling, Imaging, Medical Devices; Discipline Areas→Biology, Biomechanical Engineering, Kinesiology; Faculty→Applied Health Sciences
M. Gorbet
519-888-4567 x37009,519-888-4567 x37009,519-888-4567 x38590,519-888-4567 x42602
OPT 228, OPT 235, CPH 1335C, E7 6444

Research Interests:

  • Biocompatibility with biomaterials and biomedical devices
  • Mechanisms of material-induced thrombosis (blood clot formation) with mechanical heart valves and coronary stents
  • Ophthalmic biomaterials (such as soft contact lenses and keratoprosthesis)



[CBB researcher story]

[YouTube] December 23, 2013 "Waterloo Engineering Research: Targeted Drug Delivery"

[Daily Bulletin] June 1, 2018, 11 CBB Members Named Outstanding Performance Award Winners

Application Areas→Cardiovascular, Diabetes, Optometry, Toxicology; Technology Areas→Biomarkers, Biomaterials, Diagnostics, Medical Devices; Discipline Areas→Biomedical Engineering, Cell Biology, Toxicology; Faculty→Engineering
R. Hughson

Research Interests:

  • Vascular aging and brain health
  • Space physiology research
  • Cardiovascular adaptation to exercise

Schlegel Research Chair in Vascular Aging & Brain Health

Google Scholar

[Global Impact] April 2019 "A “Second Heart” to strengthen our golden years" 

[Waterloo News]  June 28, 2018 "AI and radar technologies could help diabetics manage their disease"

[Engineering News] June 28, 2018 "Researchers developing a prick-free glucose monitor"

[RD Magazine] June 28, 2018 "AI and Radar Technologies Could Help Diabetics Manage Their Disease

[Waterloo News] [CBC News] [Gadgets] May 16, 2018, Co-authors discuss the use of aerobic fitness data from wearable tech to predict illness

[Waterloo Stories] April 19, 2016 "Waterloo science aboard the International Space Station"

[Waterloo Stories] October 8, 2013 "Canadian astronaut Chris Hadfield joins University of Waterloo"

[Waterloo Stories] December 17, 2012 "Canadian astronaut takes Waterloo research into orbit"

Application Areas→Aging, Cardiovascular, Diabetes, Fall Prevention, Space, Wearable Devices; Technology Areas→Biomarkers, Imaging, Medical Devices, Sensors; Discipline Areas→Biology, Biomedical Engineering, Physiology; Faculty→Applied Health Sciences
Subha Kalyaanamoorthy photo
519-888-4567 x35804
ESC 234

Research Interests:

  • Design/discovery of potential therapeutics to target various diseases
  • Understanding the structure and pharmacology of membrane proteins
  • Development of in silico methods/tools for sequence, structure and functional analysis
  • Inferring the structure-function evolution of proteins
  • Protein engineering for biotechnology and pharmaceutical applications

[American Chemical Society] January 23, 2012 "Exploring Inhibitor Release Pathways in Histone Deacetylases Using Random Acceleration Molecular Dynamics Simulations"

[Wiley Online Library] July 27, 2013 "Ligand release mechanisms and channels in histone deacetylases"

[Royal Society of Chemistry] December 19, 2013 "A steered molecular dynamics mediated hit discovery for histone deacetylases"

[Nature Methods] May 8, 2017 "ModelFinder: fast model selection for accurate phylogenetic estimates"

[Royal Society of Chemistry] October 24, 2017 "Reverse engineering: transaminase biocatalyst development using ancestral sequence reconstruction"

Application Areas→Cancer, Cardiovascular, Data Science, Industrial Biotechnology, Neurodegenerative Diseases, Stroke; Technology Areas→Biomaterials, Computational Modeling, Drug Development, Machine Learning/AI, Polymer, Therapeutics; Discipline Areas→Biochemistry, Bioinformatics, Biomedicine, Biophysics, Environmental Biotechnology, Industrial Biotechnology, Pharmacology, Synthetic Biology; Faculty→Science
Karim Karim
519-888-4567 x48336, 519-888-4567 x38336
E7 1326A, E3 3143

Research Interests:

  • Low-dose, low-cost x-ray imaging system (e.g. tuberculosis screening)

  • Circuit technology, Photon counting circuits for biomedical imaging

  • Large area digital medical imaging

  • Silicon Thin-film Applied Research

  • Device physics

  • Amorphous semiconductors and semiconductor devices



Google Scholar

[Engineering News] November 12, 2018 "New X-ray technology to be tested on cancer patients"

[YouTube Lecture] September 30, 2014 "Bending the cost curve: Building a $1000 diagnostic X-ray imager for scalable and sustainable healthcare"

[Office of Research] "Paving the way for a digital X-ray and health-care revolution"

Application Areas→Cancer, Cardiovascular, Infectious Diseases, Wearable Devices; Technology Areas→Diagnostics, Imaging, Medical Devices, Microfabrication, Sensors; Discipline Areas→Biomedical Engineering, Electrical and Computer Engineering; Faculty→Engineering
Anita Layton
(519) 888-4567 ext. 36467
MC 6516

Research Interests:

  • Integrative kidney physiology

  • Biofluid dynamics

  • Diabetes

  • Hypertension

Google Scholar

March 29, 2018 "Canada 150 Research Chair joins Department of Applied Mathematics"

Application Areas→Cardiovascular, Diabetes, Disease Modelling, Personalized Medicine; Technology Areas→Computational Modeling, Disease Modelling; Discipline Areas→Biology, Biomedical Engineering, Computer Science, Physiology; Faculty→Mathematics
Patricia Nieva
519-888-4567 x37786, 519-888-4567 x37786
E3 4115, E5 3024

Research Interests:

  • Point-of-care diagnostic systems and monitoring (healthcare, wearable technology, sensors and devices)

  • Biosensors - Protein sensor for Heat shock protein 70 (HSP70) and point-of-care medical diagnostics (biomarkers)

  • Hybrid and electric vehicles (lithium ion batteries, power management, energy storage, sensors)

  • Micro-electromechanical systems/nano-electromechanical systems (MEMS/NEMS) for harsh environments (automotive, aerospace, turbomachinery, oil-well/logging, nuclear power, communications)

  • MEMS/NEMS, nanomaterials, biosensors, devices, biomanipulators, biosystems, packaging, microassembly

  • Micropower generation, microfabrication, self-contained integrated microsystems


[Waterloo Stories] July 5, 2012 "A tiny machine to predict heart attacks"

[Waterloo Engineering] April, 2015 "Tiny technology to prevent the risk of skipping a beat or worse"

Application Areas→Cardiovascular, Healthcare Systems, Wearable Devices; Technology Areas→Biomarkers, Biomaterials, Imaging, Medical Devices, Microfabrication, Microfluids, Sensors; Discipline Areas→Biomechanical Engineering, Bionanotechnology, Biosystem Engineering, Biotechnology, Mechanical and Mechatronics Engineering, Nanotechnology; Faculty→Engineering
Zhao Pan photo
519-888-4567 x38631
ERC 2028

[Science Mag] June 6, 2016 "This desert moss can water itself with fog"

[Nature] June 08, 2016 "How desert moss drinks from air"

[PNAS] June 22, 2017 "Cavitation onset caused by acceleration"

Application Areas→Biomechanics, Cardiovascular, Data Science, Industrial Biotechnology, Targeted Drug Delivery; Technology Areas→Imaging, Machine Learning/AI, Microfluids, Surface Coating; Discipline Areas→Biology, Biomechanical Engineering, Biomedical Engineering, Biosystem Engineering, Kinesiology, Physics, Robotics; Faculty→Engineering
S. Peterson
519-888-4567 x38722
ERC 3007

Research Interests:

  • Biological fluid dynamics, fluid/structure interaction, vortex dynamics, diagnostic methods

  • Energy harvesting

  • Cardiovascular and mechanical blood flow models

  • Human phonation, vocal fold modeling

  • Stent modeling and design

  • Biomimetic propulsors



Google Scholar

[CBB researcher story] January 8, 2013 "The Ability to be Heard Above the Crowd"

Application Areas→Cardiovascular, Wearable Devices; Technology Areas→Actuators, Medical Devices, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Mechanical and Mechatronics Engineering, Physiology; Faculty→Engineering
Parsin Haji Reza
519-888-4567 x40172
E7 6416

Research Interests

  • Early Cancer Detection
  • Eliminating Positive Surgical Margins
  • Non-contact Biopsies for Endoscopy 
  • Functional Brain Imaging 
  • Early Detection and Understanding the Age-related Vision Loss Problems
  • Wound Care
  • Cardiovascular
  • Machine learning/AI


[Google Scholar]

Application Areas→Cancer, Cardiovascular, Neurodegenerative Diseases, Optometry, Targeted Drug Delivery, Wound Care; Technology Areas→Biomarkers, Computational Modeling, Diagnostics, Imaging, Machine Learning/AI, Medical Devices, Sensors, Therapeutics; Discipline Areas→Biomedical Engineering, Biomedicine, Bionanotechnology, Biophysics, Bioprocessing/Biochemical Engineering, Biosystem Engineering, Biotechnology, Electrical and Computer Engineering, Nanotechnology, Physics; Faculty→Engineering
D. Spafford
519-888-4567 x38185
B1 173

Research Interests:

  • Calcium channel analysis for target drug delivery for treatment of pain, arrhythmias, angina, and potential benefits in treatment of epilepsy and cancer.

  • Structure, function and pharmacology of calcium channels and sodium channels

  • Structure and function and analysis of NALCN cation channel  and anti-calcium channel toxins

  • The Spafford Neurobiology Research Laboratory studies voltage-gated calcium channels, molecular physiology, biophysics, cell biology, protein biochemistry, fluorescence microscopy and tissue cultures.



​Google Scholar

[Science News] April 25, 2014 "Waterloo discovers a key regulator in the pacemakers of our brain and heart"

Application Areas→Biomechanics, Cardiovascular, Neurodegenerative Diseases, Stroke, Targeted Drug Delivery; Technology Areas→Biomarkers, Computational Modeling, Disease Modelling, Drug Development, Imaging; Discipline Areas→Biochemistry, Biology, Biomedicine, Biophysics, Biotechnology, Cell Biology, Pharmacology, Physiology; Faculty→Science
Alex Wong
519-888-4567 x31299
EC4 2019

Research Interests:

  • Biomedical image processing and analysis (prostate, breast, lung and dermatological cancer analysis, retinal photoreceptor and blood vessel analysis, musculoskeletal kinematic analysis

  • Remote sensing data processing and analysis (sea ice, underwater object, oil spill analysis)

  • Perceptual based video and image processing (noise reduction, compression, enhancement)

  • Computer vision and pattern recognition

  • Multimedia management systems

  • 3D graphics and game development

  • Cognitive radio networks


Google Scholar

Canada Research Chair in Medical Imaging Systems [Canada Research Chair Profile]

[Daily Bulletin] June 1, 2018, 11 CBB Members Named Outstanding Performance Award Winners

[Waterloo News] [CBC News] [Gadgets] May 16, 2018, Co-authors discuss the use of aerobic fitness data from wearable tech to predict illness

[Waterloo News] May 15, 2018 "Researchers combine wearable technology and AI to predict the onset of health problems"

[Global Impact] [570 news] [Youtube] April 11, 2018 "How AI is helping doctors diagnose Cancer" 

[The Star] February 9, 2018 "How TheRedPin aims to take a swipe at the real estate industry"

[Waterloo News] June 7, 2017 "Artificial intelligence-driven imaging research makes diagnosing disease easier"

[Waterloo Stories] January 28, 2017 "Artificial intelligence and the Waterloo-Toronto tech supercluster"

[Waterloo Stories] May 20, 2016 "Breakthrough tech helps doctors more accurately diagnose cancer"

[CBB researcher story] January 9, 2013 "Improving Early Diagnosis to Save Lives"

[Waterloo Stories] January 9, 2013 "Making it harder for cancer to hide"

[YouTube Lecture] October 1, 2014 "Integrative systems for biomedical imaging and analysis"

Application Areas→Aging, Cancer, Cardiovascular, Data Science, Disease Modelling, Fall Prevention, Healthcare Systems, Neurodegenerative Diseases, Optometry, Pathogen Detection, Rehabilitation; Technology Areas→Computational Modeling, Diagnostics, Disease Modelling, Imaging, Machine Learning/AI, Medical Devices, Sensors; Discipline Areas→Biomedical Engineering, Computer Science, Electrical and Computer Engineering; Faculty→Engineering; Canada Research Chairs
J. Yeow
519-888-4567 x32152
E3 3159

Research Interests:


  • Nanodevices and carbon nanotube-based sensors for biomedical applications (early disease detection)

  • Microassembly and micromirror devices for genetic microarray reading and tissue imaging

  • Lab-on-a-chip designs

Canada Research Chair in Micro and NanoDevices [Canada Research Chair Profile]

Application Areas→Cancer, Cardiovascular, Pathogen Detection, Wearable Devices; Technology Areas→Actuators, Diagnostics, Medical Devices, Microfabrication, Robotics, Sensors, Therapeutics; Discipline Areas→Biomedical Engineering, Electrical and Computer Engineering, Mechanical and Mechatronics Engineering, Nanotechnology, Robotics; Faculty→Engineering; Canada Research Chairs
Evelyn Yim
519-888-4567 x33928
E6 4014

Research Interests:

  • Stem cells, nanofabrication and advancement of biomaterials in healthcare technologies to repair, replace or regenerate damaged tissue and organ structures

  • Fabrication and application of nano-structure for biomedical applications in neural, vascular, and cornea tissue engineering

  • ​Biomaterial approach to study ex-vivo pluripotent stem cell expansion

  • Modulation of cell behavior with nanotopography

  • Topography-regulation of stem cells lineage commitment and differentiation

  • Differentiation of adult and pluripotent stem cells with nanotopography

Google Scholar


Application Areas→Cardiovascular, Disease Modelling, Neurodegenerative Diseases, Optometry, Personalized Medicine, Stroke, Targeted Drug Delivery; Technology Areas→Biomaterials, Cell Therapy, Disease Modelling, Medical Devices, Microfabrication, Polymer, Surface Coating, Therapeutics; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Biotechnology, Cell Biology, Nanotechnology, Regenerative Medicine, Stem Cell Engineering, Tissue Engineering; Faculty→Engineering
519-888-4567 x36908
EIT 4125

Research Interests:

  • Ultrasound imaging innovations: Complex flow imaging, High-performance beamforming platforms, Flow phantom design

  • Therapeutic ultrasound discoveries: Sonoporation, Micro/nanobubble cavitation, Wave-matter interactions, Cellular dynamics studies

Google Scholar

Application Areas→Aging, Cardiovascular, Stroke, Targeted Drug Delivery; Technology Areas→Diagnostics, Gene Therapy, Imaging, Medical Devices, Therapeutics; Discipline Areas→Biomedical Engineering, Biophysics; Faculty→Engineering

Contacts by group