Our People - 3D Printing/Additive Manufacturing

Arash Arami
519-888-4567 x47648
Location: 
E7 3426

Research Interests:

  • Assistive Robotics and Rehabilitation Engineering

  • Neuromechanical Modeling; Robot-Based System ID
  • Human-Robot Interaction and Neural Control
  • Movement Analysis and Sensorimotor Deficit Modeling
  • Smart Implants and Prosthetics
  • Intelligent Systems and Machine Learning 

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Data Science, Disease Modelling, Fall Prevention, Neurodegenerative Diseases, Rehabilitation, Stroke, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Computational Modeling, Disease Modelling, Machine Learning/AI, Medical Devices, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Biotechnology, Computer Science, Electrical and Computer Engineering, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Physiology, Public Health, Robotics; Faculty→Engineering
Duane Cronin
519-888-4567 x32682
Location: 
EC4 1157

Research Interests:

  • Human body modeling for safety and protection (impact biomechanics, trauma prediction)
  • Material testing, characterization and constitutive models
  • Advanced modeling, additive manufacturing
  • Structural crashworthiness and lightweight vehicle structures

LinkedIn

Google Scholar

[Waterloo Stories] October 5, 2012 "New virtual crash test dummies will have plenty to say"

Group(s): 
Application Areas→Aging, Biomechanics; Technology Areas→3D Printing/Additive Manufacturing, Computational Modeling; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Computer Science, Mechanical and Mechatronics Engineering; Faculty→Engineering
K. Erkorkmaz
519-888-4567 x35214
Location: 
EC4 1013

Research Interests:

  • Machining of Tissue-Engineered Bone Implants

  • Biomanufacturing

  • Precision motion control (high speed machine tools, robots, and electronic/semiconductor manufacturing equipment)

  • Modeling and identification

  • Optimal trajectory planning

ResearchGate

Google Scholar

[Engineering News] October 19, 2016 "Researchers join advanced manufacturing network"

Group(s): 
Application Areas→Industrial Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Computational Modeling, Robotics, Sensors; Discipline Areas→Mechanical and Mechatronics Engineering, Tissue Engineering; Faculty→Engineering
Photo: S. Esmaeili

Research Interests:

  • Biomaterials: emerging metallic and hybrid-cellular materials and nanostructured surfaces
  • Advanced multi-functional materials and surface modification of metals and alloys
  • Processing, characterization and properties of fine-grained, ultrafine-grained and nanostructured alloys

  • Microstructural characterization, modeling and thermo-mechanical processing of light alloy processing

  • Phase transformations in advanced light alloys

Google Scholar

Group(s): 
Application Areas→Biomechanics; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Medical Devices, Surface Coating; Discipline Areas→Nanotechnology, Regenerative Medicine; Faculty→Engineering
Emmanuel Ho
519-888-4567 x21372
Location: 
PHR 4002

Research interests:

  • Imaging, treatment, and prevention of diseases
  • Fabrication and characterization of innovative biomaterials for drug delivery systems (nanoparticles, medical devices, biodegradable films, hydrogels, etc.)
  • Vaccine development for protection against HIV and other diseases

Google Scholar

[Waterloo News] February 6, 2019 "Researchers find new treatment for Chlamydia"

[Waterloo News] April 16, 2018 "Developing new way to fight transmission of HIV"

Group(s): 
Application Areas→Cancer, Disease Modelling, Infectious Diseases, Inflammatory Diseases, Pathogen Detection, Personalized Medicine, Targeted Drug Delivery, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Disease Modelling, Gene Therapy, Medical Devices, Microfabrication, Polymer, Surface Coating, Vaccines; Discipline Areas→Biochemistry, Biomedical Engineering, Bionanotechnology, Biotechnology, Cell Biology, Chemistry, Nanotechnology, Pharmacology, Polymer Chemistry; Faculty→Science
John Honek
519-888-4567 x35817
Location: 
ESC 346

Research Interests:

  • Methionine chemistry and biochemestry (amino acid methionine and its roles in proteins, cellular pathways and its functions)

  • Bionanomaterials, bionanotechnology (for novel drug carriers, molecular foundations for nanodevices)

  • Medicinal chemistry

  • Enzymology
  • Bioorganic chemistry
  • Protein structure and function

ResearchGate

[Daily Bulletin] June 1, 2018, 11 CBB Members Named Outstanding Performance Award Winners

Group(s): 
Application Areas→Cancer, Environmental Biotechnology, Industrial Biotechnology, Infectious Diseases, Targeted Drug Delivery, Toxicology; Technology Areas→3D Printing/Additive Manufacturing, Biomarkers, Biomaterials, Computational Modeling, Drug Development, Imaging, Polymer, Therapeutics; Discipline Areas→Biochemistry, Bioinformatics, Bionanotechnology, Biophysics, Bioprocessing/Biochemical Engineering, Biotechnology, Cell Biology, Chemistry, Genetic Engineering, Nanotechnology, Pharmacology, Polymer Chemistry, Toxicology; Faculty→Science
Heather Keller
519-888-4567, ext. 41761
Location: 
AHS 2682

Research Interests:

  • Improving nutrition and health in hospitals, long term care and the community
  • Dementia

Schlegel Research Chair in Nutrition & Aging

LinkedIn

ResearchGate

Google Scholar

[Grand River Hospital News] March 15, 2019 "Good food, better healing: How GRH is studying to improve food for patients in hospital"

​[Waterloo News] March 23, 2017 "Survey will reduce rates of malnutrition in hospitals"

Group(s): 
Application Areas→Aging, Fall Prevention, Neurodegenerative Diseases, Nutritional Science, Rehabilitation, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Biomarkers, Diagnostics, Machine Learning/AI, Sensors; Discipline Areas→Public Health; Faculty→Applied Health Sciences
J. Kofman
519-888-4567 x45185
Location: 
E7 6318

Research Interests:

  • Biomedical systems & biomechatronics - rehabilitation, assistive devices, intelligent design of prostheses and orthoses, 3D body surface measurement
  • Optomechatronics - computer vision (2D and 3D), range-image registration, range-sensing, range-sensor design, vision-based 3D surface measurement systems, optical system design, laser-camera range, sensor design, phase-shifting / fringe-projection 3D surface measurement systems, real-time full-field 3D imaging sensors / real-time full-field 3D surface measurement systems, hand-held 3D imaging sensors / hand-held 3D surface measurement systems, vision-based robot control, vision-based human-robot interfaces
  • Robotics - robot teleoperation, robot vision, human-robot interfaces, human-robot interaction, human-guided robot learning, vision-based robot control (visual servoing), human-assistive/service robots

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Aging, Biomechanics, Fall Prevention, Mental Health, Muscle, Joint and Bone Diseases, Neurodegenerative Diseases, Rehabilitation, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Imaging, Machine Learning/AI, Robotics, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Computer Science, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
Yuning Li
519-888-4567 x31105
Location: 
QNC 5621

Research Interests:

Development of organic materials and nanomaterials for printed and organic optical and electronic devices

  • Environmentally stable polymer semiconductors for biological and chemical sensors in applications in smart food packaging, health care devices, wearable electronics, etc.
  • Polymers derived from biologically active compounds for biological and biochemical sensors
  • Electrically highly conductive polymers for thermoelectrics, batteries, and solar cells
  • Low-temperature processable metal nanoparticle conductive inks
  • P-type and n-type high charge carrier mobility small molecules and p-conjugated polymers for organic field effect transistors, which have applications in RFIDs and displays
  • Novel synthetic chemistry for conjugated polymers
  • Single-walled carbon nanotubes and graphene

Design, fabrication, and characterization of organic electronics

  • Chemical/biosensors​
  • Organic thin film transistors (OTFTs) or organic filed effect transistors (OTFTs)
  • Small molecule and polymer bulk-heterojunction photovoltaics (OPV) (solar cells)
  • Dye-sensitized solar cells (DSC)
  • Perovskite solar cells
  • Organic light-emitting diodes (OLEDs)
  • Photodiode and phototransistor based organic/polymer photodetectors

​Office of Research - Technology Transfer & Commercialization:

LinkedIn

ResearchGate

Google Scholar

Patents

Group(s): 
Application Areas→Data Science, Healthcare Systems, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Imaging, Medical Devices, Microfabrication, Polymer, Sensors; Discipline Areas→Chemistry, Electrical and Computer Engineering, Nanotechnology, Polymer Chemistry; Faculty→Engineering
Nima Maftoon
519-888-4567 x47654
Location: 
E7 6426

Research Interests:

  • Medical device and diagnostic development for hearing and hearing loss
  • Audiology and Otolaryngology
  • Acoustic, Vibration, physiological and cadaveric measurements, animal models
  • Aging, Biomechanics
Group(s): 
Application Areas→Aging, Biomechanics; Technology Areas→3D Printing/Additive Manufacturing, Computational Modeling, Diagnostics, Imaging, Medical Devices, Microfabrication; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Computer Science, Mechanical and Mechatronics Engineering, Physics, Physiology; Faculty→Engineering
Veronika Magdanz
519-888-4567 x41532
Location: 
E7 6432

Research Interests:

  • microrobots

  • sperm cells
  • magnetic actuation
  • remote control
  • wireless
  • soft robots
  • medical robots
  • bioprinting
  • 3D printing

We develop microrobots for medical applications. The goal is to develop more targeted, active, but less invasive strategies for drug or cell delivery with the help of wireless, autonomously moving microrobots. One strategy is to combine biological elements with artificial components in a biohybrid approach. The biological component (cells, molecules) can serve as power source, loading unit or structural unit.

One example is the "spermbot" - a sperm cell remotely controlled with magnetic fields: https://phys.org/news/2014-01-sperm-bots-desired-video.html
Another example is IRONSperm: a magnetically functionalized nonmotile sperm driven by magnetic fields:https://www.science.org/doi/10.1126/sciadv.aba5855

Inspired by the motion of sperm, we also develop small scale flexible magnetic robots for noninvasive surgery (coming soon). I am also interested in reproductive biology and research that elucidates reasons for infertility. We look into the mechanisms of sperm migration and some interesting phenomena, such as sperm bundling (publication online soon)

[Google Scholar]

Group(s): 
Application Areas→Cancer, Cardiovascular, Disease Modelling, Neurodegenerative Diseases, Personalized Medicine, Targeted Drug Delivery; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Medical Devices, Microfabrication, Polymer, Robotics, Surface Coating; Discipline Areas→Biochemistry, Biology, Biomechanical Engineering, Biomedical Engineering, Biomedicine, Bionanotechnology, Biophysics, Biosystem Engineering, Biotechnology, Cell Biology, Chemistry, Nanotechnology, Polymer Chemistry, Regenerative Medicine, Robotics, Stem Cell Engineering, Tissue Engineering; Faculty→Engineering
V. Maheshwari
519-888-4567 x38885
Location: 
QNC 5619

Research Interests:

  • High Resolution flexible pressure and tactile sensors

  • Microbial fuel cells

  • Nano electrodes for electrochemical detection

  • Flexible Electrodes for bio-interfacing, electrical mapping self-powered devices

  • Cell-inorganic composites
  • Multi-functional materials and devices
  • Wearable sensors
  • Composite membranes
Group(s): 
Application Areas→Diabetes, Healthcare Systems, Pathogen Detection, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Biomaterials, Diagnostics, Medical Devices, Microfabrication, Robotics, Sensors, Surface Coating; Discipline Areas→Bionanotechnology, Chemistry, Nanotechnology; Faculty→Science
Dale Martin
519-888-4567 x36958
Location: 
B1 291C

Research interests:

  • Neurodegeneration
  • Huntington Disease
  • Autophagy
  • Apoptosis
  • Fatty acylation
 

Google Scholar

Group(s): 
Application Areas→Aging, Muscle, Joint and Bone Diseases, Neurodegenerative Diseases, Targeted Drug Delivery; Technology Areas→3D Printing/Additive Manufacturing, Biomarkers, Cell Therapy, Drug Development, Gene Therapy, Imaging, Therapeutics; Discipline Areas→Biochemistry, Bioinformatics, Biology, Biomedicine, Bionanotechnology, Cell Biology, Genetics, Human Factors; Faculty→Science
Stewart McLachlin
519-888-4567 x44784
Location: 
E7 3424

Research interests:

  • Medical devices relating to orthopaedic surgery
  • Aging, biomechanics, personalized medicine, virtual reality, wearable devices, surgical navigation
  • 3D printing/additive manufacturing, actuators, computational modelling, imaging, medical devices

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Personalized Medicine, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Computational Modeling, Imaging, Medical Devices; Discipline Areas→Biomechanical Engineering, Mechanical and Mechatronics Engineering; Faculty→Engineering
Tizazu Mekonnen
519-888-4567 x38914
Location: 
E6 5010

Research Interests:

  • Polymer Science and Engineering
  • Renewable polymers: Processing and Chemical Modifications
  • Polymer blends, composites and nanocomposites

Google Scholar

Group(s): 
Application Areas→Industrial Biotechnology, Targeted Drug Delivery; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Polymer, Surface Coating; Discipline Areas→Bionanotechnology, Bioprocessing/Biochemical Engineering, Industrial Biotechnology, Polymer Chemistry; Faculty→Engineering
Plinio Morita
519-888-4567, ext. 41372
Location: 
TJB 2266

Research Interests:

  • mHealth and wearable technology design
  • Ubiquitous sensors for smart homes and remote patient monitoring
  • Big data and health data analytics
  • Technology to support longer independent living

LinkedIn

Research Gate

Google Scholar

[MaRS] April 26, 2018 "UbiLab team wins Healthy Behaviour Data Challenge"

Group(s): 
Application Areas→Aging, Cancer, Data Science, Diabetes, Disease Modelling, Fall Prevention, Healthcare Systems, Mental Health, Personalized Medicine, Rehabilitation, Wearable Devices, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Computational Modeling, Diagnostics, Disease Modelling, Machine Learning/AI, Medical Devices, Sensors; Discipline Areas→Bioinformatics, Biomedical Engineering, Computer Science, Human Factors, Public Health; Faculty→Applied Health Sciences
C. Ren
519-888-4567 x38233, 519-888-4567 x33030
Location: 
E3 2108G, E3 4105
Contact for: 
Expertise in microfluidics, Lab-on-a-Chip technology, protein and DNA separation towards disease diagnosis and drug discovery, living cell analysis and water toxicity testing.

Research Interests:

  • Protein and DNA separation analysis towards disease diagnosis and drug discovery

  • Biosensing and Devices (bacterial, proteins, fluorescence)

  • Living cell analysis and water toxicity testing

  • Lab-on-a-Chip technology (point-of-care biomedical diagnosis , chemical detection, protein separation and identification, environmental testing)

  • Micro-scale fluid mechanics, droplet microfluidics and nanofluidics

  • High Throughput Screening For Drug Screening
  • Manufacturing Nanomaterials and Carbon Management

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Lab-on-a-Chip Technology [Canada Research Chair Profile]

[Waterloo Stories] June 14, 2012 "Creating the tiny future of science"

Group(s): 
Application Areas→Healthcare Systems, Infectious Diseases, Pathogen Detection, Personalized Medicine, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Biomaterials, Imaging, Machine Learning/AI, Medical Devices, Microfabrication, Microfluids, Sensors, Vaccines; Discipline Areas→Biochemistry, Biomechanical Engineering, Biomedical Engineering, Biomedicine, Biophysics, Bioprocessing/Biochemical Engineering, Biosystem Engineering, Biotechnology, Cell Biology, Chemistry, Mechanical and Mechatronics Engineering, Nanotechnology; Faculty→Engineering; Canada Research Chairs
Oliver Schneider
519-888-4567 x38505
Location: 
CPH 3627

Research Interests

  • Virtual Reality
  • Wearables Devices
  • Computer Human Interaction, haptics, design
  • Data Science
  • Mental Health
  • Nutritional Science

Google Scholar

LinkedIn

Research Gate

[YouTube] October 11, 2018 "DualPanto: A Haptic Device that Enables Blind Users to Continuously Interact with Virtual Worlds"

Group(s): 
Application Areas→Data Science, Mental Health, Nutritional Science, Virtual Reality, Wearable Devices; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Computational Modeling, Machine Learning/AI, Robotics, Sensors, Therapeutics; Discipline Areas→Computer Science, Electrical and Computer Engineering, Human Factors, Kinesiology, Mechanical and Mechatronics Engineering, Robotics; Faculty→Engineering
Hamed Shahsavan
519-888-4567 x34805
Location: 
E6 2018

Research interests:

  • Smart Polymers
  • Liquid Crystal Elastomers
  • Soft Robotic Materials
  • Micro Additive Manufacturing
  • 4D Printing
  • Surface and Interfacial Engineeirng
Group(s): 
Application Areas→Targeted Drug Delivery, Wearable Devices, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomaterials, Medical Devices, Microfabrication, Polymer, Robotics, Sensors, Surface Coating; Discipline Areas→Chemistry, Nanotechnology, Polymer Chemistry, Robotics; Faculty→Engineering
George Shaker
+1 519-498-5173
Location: 
EIT 3123

Alternate Location:

  • Satellite Campus, UW-Schlegel Research Institute for Aging, Research Building, Sensors and Devices Lab

Research Interests:

  • Bio-wearable electronics and systems
  • Bio-electromagnetics, bio-technology, bio-sensors and energy harvesting systems
  • RF/microwave/millimeter wave/Terahertz (THz) circuits and antenna systems
  • Radio frequency (RF)/microwave packaging and Electromagnetic compatibility 
  • (EMC)/Electromagnetic interface (EMI) analyses
  • Vehicle and UAV wireless communications, navigation systems, and telematics systems
  • Complex propagation and scattering phenomena
  • Devices and novel electromagnetic materials and wireless sensors

LinkedIn 

ResearchGate

​Google Scholar

Awards:

  • Top downloaded paper in Medical Physics (arXiv) – October 2019
  • Best Imaging Paper, CVS, 2018
  • ACM MobileHCI 2017 Best Worskshop Paper Award
  • IEEE APS 2017 SPC Honorable Mention Paper Award
  • IEEE Sensors Most Popular Article (March 2017)
  • IEEE Sensors Annual Volume Cover Page

[CBB Events] November 15, 2019 "Professor Shaker organizes a Health Canada Regulatory insights Workshop"

[CNN] November 11, 2019 "Scientists develop sensor to save children and pets from hot car deaths"

[Waterloo News] October 29, 2019 "Advancing healthcare through innovative technology"

[Inside Digital Health] June 3, 2019 "Study: Radar Monitors Sleep with Accuracy Comparable to Current Standards"

[Waterloo News]  June 28, 2018 "AI and radar technologies could help diabetics manage their disease"

[Engineering News] June 28, 2018 "Researchers developing a prick-free glucose monitor"

[RD Magazine] June 28, 2018 "AI and Radar Technologies Could Help Diabetics Manage Their Disease

[Engineering News] July 5, 2016 "Waterloo wins big with tiny power device"

Group(s): 
Application Areas→Aging, Data Science, Diabetes, Environmental Biotechnology, Fall Prevention, Healthcare Systems, Industrial Biotechnology, Neurodegenerative Diseases, Optometry, Personalized Medicine, Rehabilitation, Space, Targeted Drug Delivery, Virtual Reality, Wearable Devices, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Actuators, Biomarkers, Biomaterials, Computational Modeling, Machine Learning/AI, Medical Devices, Sensors; Discipline Areas→Bioinformatics, Biomedical Engineering, Bionanotechnology, Biosystem Engineering, Biotechnology, Electrical and Computer Engineering, Industrial Biotechnology, Public Health, Robotics; Faculty→Engineering
Photo: M. Tam
519-888-4567 x38339
Location: 
QNC 5617

Research Interests:

  • Enhanced drug delivery systems, gene therapy

  • Associative polymers for environmentally friendly coatings

  • Sustainable nanomaterials (cellulose nanocrystals)

  • Atom Transfer Radical Polymerization (ATRP) and stimuli responsive polymeric systems

  • Polymer-surfactant interactions

  • Magnetic nanoparticles for novel separation processes

University Research Chair

Google Scholar

Group(s): 
Application Areas→Environmental Biotechnology, Healthcare Systems, Targeted Drug Delivery; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Polymer, Sensors, Surface Coating, Therapeutics; Discipline Areas→Bionanotechnology, Bioprocessing/Biochemical Engineering, Chemistry, Environmental Biotechnology, Nanotechnology, Polymer Chemistry; Faculty→Engineering; University Research Chairs
Pejoohan Tavassoti
226-998-6469
Location: 
E2 3305

Research Interests:

  • Smart Pavements and Connected Transportation Infrastructure
  • Modern Pavement Instrumentation
  • Non-destructive Testing and Evaluation (NDT/E)
  • Advanced Construction Materials Characterization
  • Sustainable Materials and Green Construction Technologies
  • Recycled Materials Valorization in Pavements
  • Application of Nanotechnology
  • Enhanced Pavement Design and Performance Prediction
  • Application of Artificial Intelligence to Pavement Engineering Problems
  • 3D Printing of Cementitious Materials
  • Implications of Climate Change for Pavement Design and Assest Management
  • Multistakeholder Planning in Pavement Engineering and Management
Group(s): 
Application Areas→Data Science, Environmental Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Machine Learning/AI, Polymer, Surface Coating; Discipline Areas→Environmental Biotechnology, Industrial Biotechnology, Nanotechnology, Polymer Chemistry; Faculty→Engineering
Ehsan Toyserkani
519-888-4567 x37560
Location: 
EC4 1031
Contact for: 
Expertise in additive manufacturing of biodegradable scaffolds for regenerative medicine and tissue engineering applications, optical sensors for biomedical area.

Research Interests:

  • Tissue engineering and biodegradable implants for regenerative medicine (3D printing)

  • Bio-additive and microscale-additive manufacturing (opto-mechanical sensors, smart structures, developed through additive manufacturing)

  • Novel multi-scale additive manufacturing technologies for biomedical, oil/gas and manufacturing sectors

  • Laser-based fabrication techniques with particular focus on direct write processes in micro- and macro-scale

  • Modeling, sensing and real-time control of laser-based manufacturing techniques

University Research Chair

LinkedIn

ResearchGate

Google Scholar

Canada Research Chair in Multi-Scale Additive Manufacturing  [Canada Research Chair Profile]

[Office of Research News] May 8,2018 "Waterloo researchers named Canada Research Chairs" 

[YouTube Lecture] May 6, 2014 "Additive manufacturing"

Office of Research - Technology Transfer & Commercialization:

Group(s): 
Application Areas→Healthcare Systems, Industrial Biotechnology; Technology Areas→3D Printing/Additive Manufacturing, Biomaterials, Computational Modeling, Imaging, Microfabrication, Sensors; Discipline Areas→Biomechanical Engineering, Biomedical Engineering, Mechanical and Mechatronics Engineering, Regenerative Medicine, Tissue Engineering; Faculty→Engineering; Canada Research Chairs; University Research Chairs
Thomas Willett
519-888-4567 x48405
Location: 
E7 6438

Research Interests:

  • Biomaterials and mechanics of biomaterials and tissues

  • Bone quality and fragility, collagen

  • Engineering of bone mimetic materials for skeletal reconstruction (3D printing)

Google Scholar

Group(s): 
Application Areas→Aging, Biomechanics, Cancer, Diabetes, Inflammatory Diseases, Muscle, Joint and Bone Diseases, Wound Care; Technology Areas→3D Printing/Additive Manufacturing, Biomarkers, Biomaterials, Computational Modeling, Imaging, Medical Devices; Discipline Areas→Biochemistry, Biology, Biomechanical Engineering, Biomedical Engineering, Kinesiology, Regenerative Medicine, Tissue Engineering; Faculty→Engineering

Contacts by group